
AI-based Diagnosis of Combustion
Anomalies in Hydrogen Engines

Master’s Thesis

for the degree of

Master of Science (M.Sc.)

Medical Engineering

at the Faculty of Engineering of
Friedrich-Alexander-Universität Erlangen-Nürnberg

submitted on 30.06.2024

by Arun Sai Kumar Reddy Thunga

Supervisors:
Prof. Dr. Enrique Zuazua

Prof. Dr. Tobias Reichenbach

Contents

Contents

1 Abstract 3

2 Introduction 4

2.1 Problem statement . 6

2.2 Objective . 6

2.3 Structure of the thesis . 7

3 Literature Review 8

3.1 Multi-task Multi-class SVMs (Multi-task Multi-class SVMs (M2SV Ms)) 8

3.2 Multi task learning using random forest 9

3.3 Comparison of multi-class classification techniques 9

3.4 An Adaptive Multi-class Imbalanced Classification Framework Based on
Ensemble Methods and Deep Network . 10

3.5 TabNet: Attentive Interpretable Tabular Learning 11

3.6 Anomalies detection using a feed-forward deep learning network . . . 12

4 Theoretical Concepts 14

4.1 Feature Engineering . 14

4.1.1 Benefits and Drawbacks of Feature Engineering 15

4.1.2 Challenges of Machine Learning with Feature Engineering . . . 17

4.2 Oversampling Techniques . 17

4.2.1 Random Undersampling . 18

4.2.2 Random oversampling . 18

4.3 Models for multi-task classification . 20

4.3.1 Multi-class SVM’s . 21

4.3.2 Random Forest Classifiers . 22

4.3.3 XGBoost Classifiers . 24

4.3.4 TabNet . 25

4.3.5 Feed Forward Network . 26

4.3.6 Multi-output classifier’s chain . 27

5 Implementation 28

5.1 Python Implementation . 28

I

Contents

5.1.1 Data Preprocessing . 28

5.1.2 SMOTE Oversampling . 29

5.1.3 Model Architecture and Training 31

5.2 Matlab/Simulink Implementation . 37

5.2.1 Data preparation . 38

5.2.2 Timer . 38

5.2.3 Data Normalization . 38

5.2.4 Feed Forward Neural Network . 39

6 Results & Discussion 41

6.1 Python Results . 41

6.1.1 Multi class SVMs with Multi output classifier 41

6.1.2 Random Forest Classifier with Multi output classifier 44

6.1.3 XGBoost classifier with Multi output classifier 47

6.1.4 TabNet classifier with Multi output classifier 49

6.1.5 Feed Forward Network . 51

6.2 Matlab Results . 53

6.3 Discussion . 55

7 Conclusion & Future Work 58

7.1 Conclusion . 58

7.2 Future Work . 58

7.2.1 Future Scope in Medical Sector . 59

Bibliography 67

II

Contents

List of Abbreviations

SVM Support Vector Machine

M2SV Ms Multi-task Multi-class SVMs

MKVMs Multi-Class Kernelized Vector Machines

LR Logistic Regression

NB Naïve Bayes

KNN k-Nearest Neighbor

DT Decision Tree

RF Random Forest

XGB Extreme Gradient Boosting

XGBoost Extreme Gradient Boosting

MLP Multi-layer Perception

FFN Feed Forward Neural Network

ADASYN Adaptive Synthetic Sampling

SMOTE Synthetic Minority Over-sampling Technique

OvR One-vs-Rest

OvO One-vs-One

OVA One-vs-All

ReLU Rectified Linear Unit

LightGBM Light Gradient Boosting Machine

CatBoost Categorical Boosting

RBF Radial Basis Function

GLU Gated Linear Unit

SHAP SHapley Additive Explanations

LIME Local Interpretable Model-agnostic Explanations

FC Fully Connected Layer

BN Batch Normalization Layer

1

Contents

PI Signal Pressure Indicated

AI Signal Torque generated when fuel is burnt

ECU Engine Control Unit

PCA Principle Component Analysis

FNR False Negative Rate

FPR False Positive Rate

TP True Positives

FP False Positives

TN True Negatives

FN False Negatives

2

1 Abstract

1 Abstract

Detecting irregularities within the combustion chamber of H2 engines presents a
formidable challenge due to the intricacies of the combustion process and the necessity
for precise monitoring. A wide range of sensors captures critical metrics such as
pressure, mean effective pressure, engine speed, crankshaft rotation, boost pressure,
boost temperature, coolant temperature, torque, pre-combustion, and several other
parameters. However, traditional data processing methods struggle to differentiate
between inconsequential anomalies and genuine signals in this complex environment.
To address this challenge, an innovative approach harnesses advanced neural network
architectures and machine learning algorithms, aiming to construct models adept at
distinguishing anomalies from authentic signals.

Despite a scarcity of data in the automotive sector, especially concerning H2 engines,
strategies involving data oversampling have been implemented to address this
challenge. This project, conducted at AVL, focuses on establishing a robust pipeline
by deploying Multi-class Multi-output classification models. The multi-class model
undergoes training and is then employed in a multi-output classifier, implementing
diverse strategies to enhance accuracy.

In this thesis, the utilization of Multi-class SVMs, Random Forest Classifier, and
XGBoost algorithms with multi-output classifiers are outlined. Additionally, two
deep learning methodologies are introduced: a classical feed-forward neural network
and TabNet. These strategies include fine-tuning, optimizing feature selection, and
employing ensemble methods to achieve improved predictive performance. The
model calculates various metrics, such as accuracies and F1 score, and implements
confusion matrix scores to detect false positive rates and false negative rates, providing
a comprehensive assessment of its classification performance.

This initiative seeks to detect anomalies within the combustion chamber through
a supervised learning framework, with the primary goal of precisely pinpointing
irregularities crucial for maintaining the engine’s reliability. In summary, the
integration of Multi-class Multi-output classification models architecture represents a
pivotal step forward in the domain of anomaly detection within H2 engine combustion
chambers. This research underscores the practical and impactful application of these
methodologies, ensuring the early detection and mitigation of potential issues for
improved operational safety.

3

2 Introduction

2 Introduction

Within the expansive realm of anomaly detection, the infusion of machine learning
(ML) methodologies has sparked a revolutionary transformation. This thesis embarks
on an exploration into the intricate landscape of anomaly detection, focusing on the
strategic deployment and far-reaching applications of ML techniques across an array
of industries and diverse research disciplines.

Anomaly detection, at its core, embodies the pursuit of identifying patterns or
occurrences significantly deviating from anticipated norms within datasets or the
behaviors of complex systems. This pivotal process facilitates preemptive actions and
proactive interventions, alerting user to potential faults, irregularities, or deviations
demanding immediate attention and analysis.The identification of anomalies holds a
very important role in data analysis across domains such as finance [42], cybersecurity
[5], healthcare [8], Automotive industries [58] and more. Anomaly detection also
involves in signaling potential fraudulent activities, system failures, or unforeseen
events. This comprehensive guide delves into various anomaly detection techniques,
encompassing supervised learning methods.

Anomalies, also known as outliers, represent data points or observations markedly
deviating from the expected or typical behavior within a dataset. These deviations
may arise from factors like data collection errors, rare events, system malfunctions, or
deliberate fraudulent actions [24]. Grasping the concept of anomalies is crucial due
to its substantial implications across diverse applications. An increasing amount of
research is being done in order to detect anomalies in large-scale data, which has a lot
of real-world applications [8]. However, many existing anomaly detection techniques
fail to retain sufficient accuracy [59].

Machine learning can be employed with significant architecture to detect these
anomalies. Moreover, the depth and complexity of machine learning architectures
align seamlessly with the multifaceted nature of anomaly detection. These algorithms,
ranging from classical methodologies such as Support Vector Machines (SVMs) and k-
Nearest Neighbors (k-NN) to the sophisticated neural network architectures within
deep learning, possess an innate capacity to capture subtle nuances and intricate
patterns within data. This ability empowers these models to detect even the tiniest
changes while minimizing false positives caused by irregularities, thus significantly
enhancing their efficacy in anomaly detection.

Furthermore, the integration of machine learning reduces the need for manual
inspection of extensive datasets, expediting the analysis process with its automation
capabilities [7]. This approach contributes substantially to the improved reliability,
safety, and maintenance efficiency of critical systems, such as combustion chambers.
The automation enabled by deep learning models not only enhances the accuracy of
anomaly detection, but also expedites the identification of potential faults, ensuring
timely interventions and maintenance activities [3].

In addition, deep learning algorithms also reduces the need for manual inspection
of large data sets and facilitates a quicker analysis of them with its automation

4

2 Introduction

capabilities. As a result, this approach contributes to improved combustion chamber
reliability, safety, and maintenance efficiency.

This comprehensive thesis seeks to meticulously dissect the multifaceted landscape
of anomaly detection, shedding light on the diverse applications and methodologies
of ML algorithms. By examining the nuanced effectiveness and persistent challenges
across industries and research fields, this study endeavors to unravel the profound
potential of ML in not just detecting anomalies but also in augmenting the decision-
making processes vital to various applications.

Identifying the type of anomalies is crucial as it allows you to choose the right
algorithm to detect them. This initial step in the anomaly detection process ensures
that the selected machine learning algorithm aligns with the specific characteristics
and patterns associated with the identified anomaly types. Moreover, it sets the
foundation for a more nuanced exploration of outlier detection methods, connecting
seamlessly with the subsequent consideration of the two primary types of outliers:
univariate and multivariate.

Additionally, in this study, a novel multi-task learning framework for Anomaly
Detection is established, which benefits from acquiring common correlation features
among multiple tasks [62]. Subsequently, evaluate the purity of the data to ascertain
whether it is class-balanced or class-imbalanced. In the event of class imbalance,
employ data oversampling techniques such as SMOTE or ADASYN to address the issue.

The proposed methods in this master’s thesis address two primary challenges: the
selection of an appropriate oversampling technique and the identification of anomalies
using suitable machine learning algorithms. To begin with, data over sampling
techniques can be used to generate synthetic numerical data that resemble the
original data addressing data deficiency issue which provides an abundance of data
for machine learning models. Second, employing machine learning algorithms to
identify anomalies that can effectively differentiate between typical and atypical
data patterns.These challenges can significantly degrade the performance of machine
learning models, leading to biased results. To overcome these challenges, the thesis
employs advanced oversampling techniques such as SMOTE or ADASYN to balance
the classes, and applies robust machine learning algorithms, including Multi-class
SVMs, Random Forest, XGBoost, and deep learning algorithms to accurately detect
anomalies.

We will go deeper into the technical complexities of machine learning model
development, training, and the assessment in following sections of this thesis, all of
which are crucial to the effective application of machine learning in the domain of
H2-engine maintenance. We will investigate the intricacies of data preparation, model
architecture selection and performance analysis of model. This study is a pioneering
attempt at the interface of cutting-edge machine learning technology and automotive
industry demands.

5

2 Introduction

2.1 Problem statement

In the field of automobile maintenance, a wide range of sensors are useful for capturing
the signals inside the combustion chamber of engines. Addressing the intricacies of
anomaly detection in H2 engine combustion chambers using numerical data requires
a tailored approach that leverages the power of machine learning (ML). It is difficult
for standard data processing techniques to distinguish between good signals and
abnormal signals. This cutting-edge technology captures even the minute deviations
from the ground truth signal. However, the data related to the H2 Engines, faces a
data deficit. The lack of data makes training and generalizing models particularly
challenging. Therefore, the over sampling techniques are employed to produce
synthetic data.

Later, multi-class, multi-output classification models utilizing machine learning
and deep learning algorithms are proposed. These proposed approaches
simultaneously analyzes the relationships between various parameters, offering
a more comprehensive understanding of anomalies that may be overlooked by
traditional, parameter-centric approaches. Both machine learning and deep learning
introduces a paradigm shift by allowing the system to understand deep patterns
and make nuanced decisions. Implementing a multi-output, multi-class classification
system enables the integration of these advanced techniques, providing a more
nuanced and accurate approach to anomaly detection.

2.2 Objective

Tackling the complexities of anomaly detection in H2 engine combustion chambers
using numerical data necessitates a specialized approach that harnesses machine
learning (ML). To overcome challenges like limited data, feature engineering, and
multi-output multi-class issues, the proposed method involves developing a robust
pipeline. This pipeline generates synthetic training samples through oversampling
methods, transform the data and implements a multi-class, multi-output classification
model chosen based on three criteria: low model complexity, minimal prediction time,
and high accuracy.

One crucial element of this pipeline involves generating synthetic data without directly
duplicating the minority class samples for solving class imbalance problem. This
approach involves training the multi class algorithm and then given it to multi output
classifiers to identify the between anomalies and good signals. Implementing a multi-
output multi-class classification system integrates these advanced techniques, offering
a more accurate approach to anomaly detection. This not only improves the safety and
reliability of H2 engines but also aligns with the industry’s shift towards data-driven
solutions for complex engineering challenges.

Ultimately, the goal is to enhance the efficiency of anomaly detection procedures
during combustion chamber maintenance by combining synthetic data generation
with machine learning techniques. This method addresses data constraints and

6

2 Introduction

enables the model to accurately identify anomaly configurations observed in real-
world situations.

2.3 Structure of the thesis

The upcoming chapters delve into specific aspects of the research topics and objectives.
Chapter 3 provides a comprehensive review of the literature and an overview of
existing machine learning and deep learning approaches. Chapter 4 discusses the
theoretical concepts of oversampling techniques and machine learning models such as
multi-class multi-output classifications with SVMs, random forest classifiers, extreme
gradient boosting classifiers, and deep learning models like TabNet and feed-forward
neural networks, highlighting their strengths and challenges. Chapter 5 details the
implementation of these models, including data preprocessing and oversampling
methods used. As the experiment progresses, Chapter 6 presents the results and a
thorough analysis of the findings. The final chapter offers a detailed conclusion and
suggests directions for future research.

This master’s thesis seeks to address the challenges of finding the anomalies and
improve the accuracy, robustness, and generalization capabilities of machine learning
models in this domain by exploring the potential of multi class SVM’s, and neural
networks. With a comprehensive investigation and empirical evaluation, this research
provides useful insights and tools to advance the detection of anomalies analysis.

7

3 Literature Review

3 Literature Review

The recent surge in research exploring the synergies between multi-task classification
and the challenges of improving accuracy has led to the development and refinement
of multi-output classifiers in the field of machine learning. This literature review aims
to meticulously navigate the pivotal contributions of researchers who have shaped
the intersection of various machine learning models with multi-output classifiers. The
foundational birth of multi-class classification models marked a significant milestone
in the evolution of machine learning. These models were designed to classify
instances into multiple classes, enabling more nuanced and granular predictions than
binary classification systems. However, as the complexity of classification tasks grew,
researchers recognized the limitations of traditional multi-class classifiers in handling
diverse datasets with multiple output variables.

In response to these challenges, the research community began to explore the concept
of multi-output classifiers, which extend the capabilities of traditional classifiers to
predict multiple output variables simultaneously. These approaches are particularly
well-suited for tasks where each instance is associated with multiple labels or target
variables, such as multi-label classification or regression problems with multiple
dependent variables.

3.1 Multi-task Multi-class SVMs (M2SV Ms)

The research conducted by You Ji et al. [36] presents a novel approach to multi-task
learning using Support Vector Machine (SVM). Traditional SVMs are designed for
binary classification tasks, but in multi-task learning, there are multiple related tasks,
each with its own set of classes. The paper addresses this challenge by extending
the SVM framework to handle multiple tasks simultaneously. It introduces a joint
optimization problem that incorporates task-specific parameters and regularization
to leverage shared information among tasks while accommodating their unique
characteristics.

Evgenious et al. [22] proposed a theory which introduces an extension of single-
task SVMs to handle multiple related tasks. In this framework, T classifiers are
learned, each dedicated to a specific task, along with a common classifier capturing
shared information among all tasks. The optimization problem involves minimizing
a combination of regularization terms and hinge loss, with lambda controlling the
regularization for each task. This approach allows for the modeling of relations
between tasks, and kernel methods enable linear and non-linear multi-task learning.
While this formulation and experimental results outperform single-task counterparts,
it assumes all tasks share the same class labels, limiting its applicability to multi-class
problems where correlations between classes are not captured by binary classifiers.

SVMs are transformed in to two main approaches, constructing a multi-class classifier
from binary ones (e.g., one-against-all, one-against-one), or considering all classes
together. Author also mentioned about the Multi-Class Kernelized Vector Machines

8

3 Literature Review

(MKVMs) [17] extend SVMs to multi-class scenarios, aiming to minimize an empirical
error on training samples while generalizing well. Results suggest that considering
all classes simultaneously requires fewer support vectors for large-scale problems
compared to methods using binary classifiers.

The proposed method M2SV Ms aims to learn a model that can perform well on all
tasks simultaneously by considering both the shared and task-specific components of
the classification models. This is achieved through a combination of task-specific
parameters and a regularization term that encourages similarity among tasks. By
jointly optimizing these components, the M2SV Ms approach can effectively exploit
the similarities and differences among tasks to improve classification performance.

3.2 Multi task learning using random forest

In [63], Qing Wang et al. introduces a new ensemble method for decision tress
that integrates principles from multi-task learning. The approach aims to enhance
the predictive performance of decision tree ensembles by jointly training them
on multiple related tasks. Unlike traditional decision tree ensembles, which are
trained independently on each task, Multi-task Forest leverages the relationships and
dependencies between tasks to improve predictive accuracy.

In this paper, author discussed various ensemble methods for classifiers, including
Bagging and Boosting. Bagging, involves the generation of multiple classifiers by
repeatedly sampling subsets of the training data with replacement. This approach
aims to create diverse classifiers that collectively contribute to a robust final prediction.
In contrast, Boosting operates iteratively by sequentially building a series of weak
learners, each focusing on the instances that were misclassified by preceding models.
By assigning higher weights to these misclassified instances. Random Forest, combines
the random sub-spaces and bagging for decision trees, performing comparably or
better than Boosting on noise-free data and proving more robust on noisy data.

In Random Forest technique, it incorporates elements of random subspace and bagging
specifically for using decision trees as the base classifier. At every tree node, a random
subset of features is selected, and the optimal split is determined from this subset.
Additionally, bagging is employed to create the training set of data items for each
individual tree. The number of features randomly chosen from the total features at
each node is a parameter of this approach. From the experiments conducted, it was
observed that Random Forest is comparable to Boosting algorithms and sometimes
better on noise-free data.

3.3 Comparison of multi-class classification techniques

Comparison of multi-class classification techniques by Md Salauddin Khan et al,[52]
conducted multiple experiments using eight classifiers, including Logistic Regression
(LR), Naïve Bayes (NB), k-Nearest Neighbor (KNN), Decision Tree (DT), Random

9

3 Literature Review

Forest (RF), Extreme Gradient Boosting (XGB), SVM, and Multi-layer Perception
(MLP). The author highlights recent advancements in various classifications,
showcasing the application of machine learning algorithms with various features.
Despite progress, traditional approaches face inherent limitations. In response,
the author introduces a novel machine learning algorithm designed to address
these challenges by integrating dimensional and shape features with classifiers.
This approach is systematically outlined through stages including data collection,
outlier checking, balancing, scaling, and classification using the above mentioned
8 classifiers. Performance evaluation metrics are meticulously computed to assess
classifier effectiveness.

XGB represents the natural evolution of decision trees, consolidating multiple trees to
collectively determine the final output, thereby reducing reliance on individual trees.
Suitable for a range of supervised learning tasks such as regression, classification, and
ranking, XGB employs a collection of weak estimators to generate an optimized model.
This will be elaborated further in chapter 4.3.3.

Embracing a phase-based approach akin to other boosting techniques, By adopting
a tree-generation method that follows gradient descent principles, XGB efficiently
constructs robust trees, guiding the target function along the most direct path towards
optimization (Zhang et al., 2017)[64].

The utilization of the XGB classifier within the above 7 machine learning algorithm
demonstrates superior performance, attributed to its gradient boosting capabilities,
effective minimization of loss functions, and mitigation of over-fitting risks [64].
Furthermore, the algorithm efficiently addresses computational complexities by
employing an approximate greedy algorithm and utilizing percentiles for data
segmentation and threshold determination. These parameters significantly contribute
to the classifier’s enhanced performance. In the results, all the models perform well.
However, XGBoost classifier outperformed when compared to other models.

This study also delves into the classification performance of imbalanced and balanced
distributions within the dataset, which holds significant implications for both data
science and real world domain. Utilizing the Adaptive Synthetic Sampling (ADASYN)
or Synthetic Minority Over-sampling Technique (SMOTE) algorithm alongside various
machine learning techniques detailed in the classification stage, the study evaluates
their performance under different parameter configurations. Notably, XGB emerges as
the top-performing approach across both balanced and imbalanced classes, achieving
a superior accuracy.

3.4 An Adaptive Multi-class Imbalanced Classification Framework
Based on Ensemble Methods and Deep Network

In paper [37], by Xuezheng Jiang et al. addressed the critical challenge of imbalanced
classification in multi-class scenarios.

The proposed framework integrates ensemble methods and deep neural networks

10

3 Literature Review

to enhance the classification performance across all classes, particularly focusing on
improving the recognition of minority classes. This paper describes two techniques:
Improved boosting framework FL-boosting and HAFL-Boosting Integration.

In FL boosting model, it is constructed using custom loss functions. These models
implement specific formulas within the custom loss functions to accommodate the
Focal Loss (FL) approach. The FL method integrates with Softmax for multi-
classification tasks, offering ease of implementation within the boosting algorithm’s
custom loss function interface. Unlike traditional methods, such as the One-vs-Rest
(OvR) algorithm, this approach eliminates the need for transformation, significantly
reducing computational complexity and enhancing efficiency.

In second approach, HAFL-Boosting framework is used for deep image dataset
classification. The author introduced a two-stage approach for addressing deep
imbalanced data classification challenges. In the first stage, Feature Extraction with
Deep Network is used, Where a deep neural network is employed to extract features
from the dataset. This deep network is designed to mimic perceptions and performs
both supervised and unsupervised learning. The features extracted by this deep
network serve as input for subsequent processing. In the second stage, HAFL-Boosting
is used, where the deep network is modified by removing layers from the top. This
trimmed deep network is then combined with the HAFL-Boosting framework. HAFL-
Boosting, a boosting algorithm tailored for handling imbalanced data, is applied to
the features extracted by the deep network. By integrating HAFL-Boosting with the
deep network, the model aims to improve classification performance on imbalanced
datasets.

3.5 TabNet: Attentive Interpretable Tabular Learning

The work of Sercan O, Arik, Tomas Pfister [10] laid the ground work for TabNet.
The author proposed a novel high-performance and interpretable canonical deep
tabular data learning architecture named TabNet. At each decision step, it focuses
on important features while employing a sequential attention mechanism, enhancing
interpretability and optimizing learning efficiency by prioritizing key features. Their
extensive experiments proved that TabNet performs better than other methods across
different tabular datasets. The authors explored self-supervised learning methods
designed for tabular data, demonstrating significant performance improvements,
especially when there is plenty of unlabeled data. TabNet revolutionizes the
processing of tabular data by working directly with raw data, eliminating the need
for preprocessing. It seamlessly integrates into end-to-end learning pipelines thanks
to its gradient descent-based optimization during training. Using sequential attention,
TabNet dynamically selects pertinent features at each decision step, bolstering
interpretability and learning efficiency by concentrating on the most critical features.
Unlike traditional methods, TabNet uses a single deep learning structure for both
choosing features and making decisions. These strategic choices empower TabNet
to either surpass or rival other tabular learning models across diverse datasets and

11

3 Literature Review

domains, excelling in classification and regression tasks alike. Furthermore, TabNet
provides two levels of interpretability: local interpretability, which visualizes the
importance and interactions of features, and global interpretability, which measures
the contribution of each feature to the model.

By this approach, TabNet outperforms Decision Trees (DTs)[28] by using sparse,
instance-wise feature selection, it helps create decision boundaries in hyperplane form.
Its sequential multi-step architecture enhances learning capacity through nonlinear
processing of selected features, mimicking ensembling via higher dimensions and
more steps. Inspired by top-down attention mechanisms, TabNet’s encoding
architecture efficiently searches for relevant information in high-dimensional inputs.
Employs a sequential attention mechanism to select semantically meaningful features
at each decision step, enabling efficient learning and yielding interpretable decision
makings.

3.6 Anomalies detection using a feed-forward deep learning
network

In signal processing, anomaly detection plays an important role in preventing potential
risks.

In research conducted by AL.Sulaiman [4], proposed a groundbreaking approach
to directly detect the anomalies, without relying on large machine learning models
like Decision tress and support vector machines. Data availability and access to
diverse platforms are reshaping Information Systems, posing challenges in explaining
complex relationships. Deep learning, a powerful tool in prediction and classification,
addresses these challenges by capturing non-linearities and complex interactions while
offering flexibility in incorporating relevant information and preventing over-fitting,
making it valuable for detecting anomalies [30].

The paper opts for a deep feed-forward neural network instead of recurrent neural
networks or long-short term memory networks, as the focus is on predicting anomalies
rather than analyzing time series. And, also selection of an appropriate activation
function is crucial in deep learning neural networks to expedite convergence and
avoid convergence issues. Activation functions can be step, linear, or nonlinear, with
the Rectified Linear Unit (ReLU) function being the most commonly used due to
its ability to address the vanishing gradient problem. Further details about ReLU
are provided in 4.3.5. Additionally, determining the proper structure of a deep
neural network involves various factors such as selecting the number of hidden
layers and nodes, activation function, and training protocol, which often requires
experimental analysis. This study investigates the feasibility of predicting future
outcomes based on significant changes in current data, utilizing thresholds to define
these changes. Employing a deep forward neural network model, the research
assesses the model’s accuracy, robustness, and performance compared to benchmark
algorithms, highlighting the importance of incorporating relevant factors to enhance
predictive capabilities. Additionally, the study suggests integrating external factors to

12

3 Literature Review

further improve predictive models’ effectiveness in real-world applications.

13

4 Theoretical Concepts

4 Theoretical Concepts

This section majorly focuses on the theoretical foundations for dealing with class
imbalance issues, as well as various machine learning and deep learning algorithms for
multi-task classification. Throughout this chapter, three parts are discussed. First, the
benefits and drawbacks of feature engineering are examined. Next, advantages and
disadvantages of oversampling methods for classification tasks are discussed. Finally,
the most popular machine learning and deep learning models for multi-class multi-
output problems will be examined.

4.1 Feature Engineering

The feature engineering pipeline involves preprocessing steps that transform raw
data into usable features for machine learning algorithms, which are used to build
predictive models. These models typically comprise outcome and predictor variables
which are also known as features, with the feature engineering process involving
the creation and selection of the most relevant predictor variables [31]. Automated
feature engineering has been integrated into certain machine learning software since
2016, involving three primary steps: Feature Transformations, Feature Extraction, and
Feature Selection shown in Figure 1.

Figure 1: Feature Engineering [57]

In many applications, data often has high dimensions, with some features being less
important than others [46]. Feature transformation includes altering, adjusting, or
reorganizing current features in your dataset to extract deeper insights or to enhance
their compatibility with machine learning algorithms [49]. The algorithm accuracy
can be enhanced by removing unnecessary features with the application of feature
selection and data transformation. The goal of every machine learning engineer is
to maximize the predictive power of their models by transforming their data into
a more informative and usable format.Unlike transformation-based methods, which
modify existing input features, feature engineering also involves creating entirely new
feature spaces. Feature transformation enables the conversion of diverse features
into a unified format, simplifying the process for the model to recognize patterns and

14

4 Theoretical Concepts

make accurate predictions [49]. In real world problems, the raw data might not fit to
the pre-existing models or does not meet the requirements of out machine learning
algorithms. Feature transformation involves reshaping these components to ensure
compatibility and coherence. Feature transformation is important for both supervised
and unsupervised tasks. Machine learning models often perform better when features
are transformed to have similar scales or distributions, as this improves the model’s
ability to learn from the data.

Features can also be selected based on the feature importance score. Feature
importance entails methods that assign a score to each input feature within a particular
model, indicating the significance of each feature. A higher score indicates that the
corresponding feature will exert a greater influence on the predictive model’s ability
to forecast a specific variable [55]. Feature importance can be calculated using Gini
importance or through XGBoost [55] [13].

4.1.1 Benefits and Drawbacks of Feature Engineering

A fundamental understanding of the dynamic nature of feature engineering must
first be established before delving into the nuanced exploration of deep learning.
The fundamental capabilities that create important features which are valuable for
recognizing patterns easily by the models will be explored, along with the challenges
that need to be carefully considered in the theoretical landscape of machine learning.
The feature importance plot highlights which features have the greatest impact on the
model’s predictions as shown in figure2. The top features contribute significantly more
to the model’s performance compared to the others, indicating their strong predictive
power. Conversely, the least important features have a minimal influence, suggesting
they provide less valuable information for the model.

As previously stated, feature engineering includes Feature Creation, Transformations,
Feature Extraction, and Feature Selection. Each step plays an important role to
generate new features and consists of more useful information than raw data. There
are pre-existing methods for each steps to generate new features. Features can be
selected or transformed through manual inspection or by feeding the raw data into
pre-existing models to uncover hidden patterns. In the realm of manual inspection,
one of the most direct approaches in feature engineering involves the removal of data.
This could be due to redundancy, irrelevance, or data overload [45]. Redundancy
poses both practical and technical challenges, as it leads to unnecessary storage and
potential inefficiencies in learning systems. Irrelevant features not only occupy space
but also mislead training paths, resulting in poor performance during testing. Manual
techniques based on domain knowledge, random sampling methods, and model-based
approaches that consider feature interaction with learning models. While manual and
randomized selection are straightforward but, feature transformation techniques are
better in most cases for determining the unseen probabilities, feature importance and
hidden patterns [45].

Feature Engineering has several advantages, including:

15

4 Theoretical Concepts

Figure 2: Feature Importance [13]

1. Feature engineering contributes to improved model accuracy and reduced
overfitting by selecting and modifying relevant features, thereby ensuring better
performance on both training and test data[60].

2. Feature engineering aids in reducing the dimensionality of datasets, particularly
beneficial for high-dimensional data prone to overfitting. By selecting only the most
important features, the complexity of the dataset is simplified, leading to improved
model performance.

3. Simpler models that are easier to maintain and better understanding of the
underlying problem [6].

4. It offers a solution to counteract the detrimental effects of outliers by adjusting
their values to better align with the dataset, thus minimizing their negative impact on
model performance.

The weak points are as follows:

1. The significant risk associated with feature engineering in machine learning arises
from the potential for detrimental outcomes when applied without sufficient domain
expertise, emphasizing the importance of understanding the technique’s principles and
implications beforehand[12].

2. Improper feature engineering may introduce bias or inadvertently remove valuable
information, leading to sub-optimal model performance.

16

4 Theoretical Concepts

4.1.2 Challenges of Machine Learning with Feature Engineering

There are numerous challenges of applying Feature Engineering to huge data sets.
As organizations harness the power of machine learning to extract insights and
drive decision-making, navigating the complexities of feature engineering becomes
paramount. However, amidst the promise of enhanced model performance and
interpretability lie challenges which are particularly significant because they impact
the reliability and accuracy of feature extraction and analysis processes. Following are
the concerning issues:

1. Domain Expertise Essential: Successful feature engineering relies on domain
expertise to discern which features are relevant and valuable within the context of
the use case [23]. Implementing inappropriate transformations can have a cascading
impact on both the performance and interpretability of the machine learning model
[26].

2. Time-Consuming and Resource-Intensive: Manual feature engineering is a
time-consuming and resource-intensive process that involves meticulous testing and
refining of individual features. The iterative nature of feature engineering demands
continuous exploration for more effective features, often resulting in weeks or months
of refinement before identifying high-impact features.

3. Data quality issues: Data quality problems like missing data, outliers, and
inaccuracies have the potential to impact both feature quality and the overall
performance of the model [19].

4. Potential Errors and Biases: Manual feature engineering is susceptible to errors and
biases due to its subjective nature, often leading to overstated connections between
data phenomena based on preconceived notions [23]. The process is limited by the
data scientist’s perception, potentially overlooking novel insights and hindering the
discovery of optimal features.

5. Over-fitting : Feature engineering may heighten the likelihood of over-fitting if the
feature selection or transformation becomes overly intricate or tailored to the training
dataset.

4.2 Oversampling Techniques

The imbalanced classification issue arises when there is a significant disparity in the
distribution of classes within our training dataset. While the degree of skewness
may vary, it poses a challenge because it can impact the performance of our machine
learning algorithms. One common consequence of this imbalance is that the algorithm
may overlook the minority class, which is typically the class of greatest interest
[48]. The bias present in the training dataset can impact various machine learning
algorithms, causing some to disregard the minority class altogether, which is often
the class of primary interest for predictions [15]. To address and handle the issue of
class imbalance, one strategy involves randomly adjusting the training dataset through

17

4 Theoretical Concepts

resampling. This can be done by either removing instances from the majority class,
known as under sampling, or replicating instances from the minority class, known
as oversampling. In this section we will explore random oversampling and under
sampling for imbalanced classification.

4.2.1 Random Undersampling

Random under-sampling technique is to handle the class imbalance in assigned labeled
data by randomly selecting majority class instances and removing them from the
training dataset [15]. This results in a reduction in the number of majority class
instances in the transformed training dataset, potentially achieving a more balanced
class distribution.

While this approach is suitable for datasets with class imbalance but a sufficient
number of minority class instances, it comes with limitations. One significant
limitation is the deletion of potentially valuable instances from the majority class,
which could be crucial for fitting a robust decision boundary. Moreover, the random
deletion of instances can lead to the loss of informative data, making the classification
performance less effective.

4.2.2 Random oversampling

Random oversampling technique selects instances of minority classes and adds them
to the training dataset [48]. This process entails selecting instances randomly with
replacement, allowing examples from the minority class to be added multiple times
to the new "more balanced" training dataset. Such a technique proves effective for
algorithms sensitive to skewed distributions, particularly those that iteratively learn
coefficients like artificial neural networks utilizing stochastic gradient descent.

Nevertheless, it is imperative to vigilantly monitor the performance of both the training
and test datasets to evaluate the possibility of overfitting, particularly as oversampling
could escalate computational expenses owing to the recurrent inclusion of minority
class examples. So the problem can be tackled by introducing noise or create the
instances close to the original data points. The focus will be on some popular sampling
techniques relevant to imbalanced data classification.

1. Synthetic Minority Oversampling Technique (SMOTE)

2. Adaptive Synthetic (ADASYN)

Synthetic Minority Oversampling Technique (SMOTE) Synthetic Minority
Oversampling Technique (SMOTE), is a widely utilized approach for tackling
class imbalance in machine learning. The fundamental concept underlying the
SMOTE algorithm involves creating synthetic data points for the minority class by
interpolating between existing instances of that class. Essentially, SMOTE fabricates
new data points artificially [25]. In this method, SMOTE randomly selects an instance
from the minority class and identifies its k nearest neighbors within the same class.

18

4 Theoretical Concepts

The value of k determines the number of nearest neighbors used in the interpolation
process, typically set to 5 as a default. "It subsequently produces new synthetic
samples by interpolating between the original minority instance and its k closest
neighbors as shown in figure 3 [25].

The advantages of SMOTE include its ability to generate additional samples based on
the existing ones, thereby enriching the dataset and enhancing model performance.
However, SMOTE has certain limitations. One significant drawback is the potential
introduction of noise through synthetic instances, particularly when the number of
nearest neighbors is excessively high. Additionally, SMOTE may struggle with tightly
clustered minority class instances or datasets with a limited number of minority class
instances.

Figure 3: SMOTE oversampling [47]

Adaptive Synthetic (ADASYN)

ADASYN presents an alternative approach to oversampling, specifically targeting the
generation of synthetic samples in areas of the feature space that lie closer to the
decision boundary. It focuses on producing more synthetic samples for minority class
instances that pose greater learning challenges, particularly those situated near the
decision boundary.

In ADASYN, synthetic data samples are created from minority class instances that have
a significant number of neighboring instances from the opposite class as shown in
figure 4. The selection of templates for synthetic samples depends on the proportion
of neighboring instances from the opposite class. These templates are then used to
generate new examples through interpolation between the template and its nearest
neighbors from the same class [2]. Similar to SMOTE, ADASYN aims to rebalance

19

4 Theoretical Concepts

imbalanced datasets by generating synthetic instances of the minority class, with a
focus on samples that are heterogeneous or difficult to learn.

The utilization of ADASYN in machine learning offers several advantages: it
enhances classification performance for underrepresented classes, mitigates bias
towards the majority class commonly observed in imbalanced datasets, improves the
generalization capability of models by focusing on difficult-to-learn minority class
instances, and finds applications across various domains such as intrusion detection,
medical research, and fraud detection.

However, ADASYN also has some limitations. Firstly, the computational complexity
may increase due to the creation of more synthetic instances, which can lead to longer
training times for the machine learning models. [2]. Secondly, there is a risk of
overfitting, as the synthetic samples may not accurately represent the true distribution
of the minority class [2]. Lastly, ADASYN is sensitive to noise and outliers in the
dataset, potentially impacting the quality of the generated synthetic samples.

Figure 4: ADASYN oversampling [47]

4.3 Models for multi-task classification

When it comes to Machine Learning, a diverse array of algorithms and techniques
offer distinct approaches to addressing classification tasks. These methods leverage
various mathematical principles and computational strategies to learn patterns and
relationships within data, facilitating accurate predictions and insightful analyses.
With each algorithm, practitioners gain unique insights into the underlying structure
of their datasets, enabling them to uncover valuable information and make informed
decisions. In this section, The exploration will encompass Support Vector Machines
(SVMs), Random Forest, XGBoost, TabNet, and Feed-forward Neural Networks for
multi-class and multi-output classification tasks.

20

4 Theoretical Concepts

4.3.1 Multi-class SVM’s

Classification entails the capacity of a machine to categorize instances into their
respective groups [11]. Multi-class Classification involves categorizing entities into
multiple classes, with each entity being allocated to a single class, ensuring no overlap
occurs between classes. To perform this task effectively, the machine must learn the
patterns associated with each category from the labeled training features available in
a training dataset.

SVM, a supervised machine learning algorithm, is utilized for classification or
regression tasks, striving to identify an optimal boundary among potential outputs.
In essence, SVM undertakes intricate data transformations based on selected kernel
functions, aiming to maximize the separation boundaries between data points
according to predefined labels or classes. In its fundamental form, known as linear
separation, SVM seeks to discover a line that optimally separates a two-class dataset
within a two-dimensional space. In broader terms, the goal is to ascertain a hyperplane
that maximizes the distinction between data points and their respective classes across
an n-dimensional space. These data points, termed Support Vectors, are those
closest to the hyperplane. Various kernel functions such as Linear, Polynomial,
Gaussian, Radial Basis Function (RBF), and Sigmoid are employed, each influencing
the smoothness and effectiveness of class separation. Modifying the hyper-parameters
of these functions may result in overfitting or under-fitting [11]. In its simplest form,
SVM is designed for binary classification tasks, separating data points into two classes.
However, for multi-class classification, SVM employs a technique where the problem
is decomposed into multiple binary classification sub problems.

One-vs-One: In One-vs-One (OvO) classification, the task of classifying instances
is decomposed into pairwise comparisons between each class. For m classes, this
approach trains with ’m(m-1)/2’ binary classifiers, each distinguishing between a
specific pair of classes as shown in Figure5. During prediction, each classifier casts
a vote for its assigned class, and the class with the most votes is selected as the final
prediction. OvO is particularly useful when dealing with binary classifiers that are
efficient and well-suited for pairwise comparisons. However, as the number of classes
increases, the number of classifiers required grows quadratically, potentially leading
to increased computational complexity.

One-vs-Rest: OvR, also known as One-vs-All (OVA), involves training m binary
classifiers, each designed to differentiate between one specific class and all other
classes combined. In the figure 6 during training, each classifier learns to distinguish
its designated class from the rest of the classes in the dataset. In the prediction
phase, the instance is evaluated against each classifier, and the class with the highest
confidence score becomes the predicted class. OvR is beneficial when dealing with
classifiers that naturally support binary classification and are efficient with large
datasets. However, OvR might lead to imbalanced training sets, especially if the

21

4 Theoretical Concepts

Figure 5: One-vs-One [11]

dataset is highly imbalanced across classes, which can affect the model’s performance.

Figure 6: One-vs-Rest [11]

4.3.2 Random Forest Classifiers

A decision tree serves as a non-parametric supervised learning method employed
in classification and regression scenarios. This hierarchical structure encompasses
a root node, branches, internal nodes, and leaf nodes, offering a straightforward
representation of decisions and their potential outcomes, incorporating various factors
such as chance events and resource expenses [51]. Random forest, a supervised
learning technique, constructs an ensemble of decision trees through a process
typically known as bagging. This methodology involves training multiple decision
trees and then combining their outputs to yield a more well grounded and robust
prediction [21].

22

4 Theoretical Concepts

The random forest algorithm extends the bagging method by incorporating both
bagging and feature randomness to construct an independent forest of decision trees
as shown in figure 7. Feature randomness, also referred to as feature bagging or the
"random subspace method," generates a random subset of features, ensuring minimal
correlation among decision trees. This distinction is fundamental between decision
trees and random forests, as decision trees consider all possible feature splits, whereas
random forests only utilize a subset of these features.

In figure 7 , based on the majority voting, the class c is the final class from all the
decision tress.

Random forests offer several advantages in the realm of machine learning. Firstly,
they significantly reduce the risk of overfitting, bias, and overall variance by
accommodating the complete range of data variability, resulting in more precise
predictions [32]. Random forests are versatile, easy to tune, and resistant to
overfitting with ample trees [21] .This ensures that the classifier maintains accuracy
without tightly fitting the training data. Secondly, it provides robust solution for
both regression and classification tasks with high accuracy. Moreover, they excel at
estimating missing values, thanks to feature bagging.

Evaluating feature importance is also simplified with random forests, as they offer
various methods such as Gini importance as discussed in 4.1 and mean decrease
in impurity. However, random forests pose challenges as well. They can be
time-consuming due to their ability to handle large datasets, which often involves
processing numerous decision trees in parallel and they require more resources for
storing data [40]. Furthermore, interpreting predictions from a random forest can be
more complex compared to a single decision tree, adding a layer of intricacy to the
modeling process.

Figure 7: Random Forest Classifier [40]

23

4 Theoretical Concepts

4.3.3 XGBoost Classifiers

Extreme Gradient Boosting (XGBoost) is short for “Extreme Gradient Boosting”, with
"Gradient Boosting" originating from Friedman’s paper [20]. XGBoost is a tree-based
algorithm, designed for speed, ease of use, and performance on large datasets where
where optimization and tuning are not required [56]. XGBoost is an optimized and
parallelized version of the gradient boosting algorithm, significantly reducing training
time [29]. Rather than focusing on training a single optimal model, XGBoost trains
multiple models on various subsets of the training data and then selects the best-
performing one through voting as shown in figure 8. In many scenarios, XGBoost
outperforms traditional gradient boosting algorithms.

Figure 8: XGBoost Classifier [29]

Key features of XGBoost include parallelization for training with multiple CPU cores,
regularization techniques to prevent overfitting [56], the ability to capture and learn
from non-linear data patterns, and built-in cross-validation functionality [29].

In general, XGBoost demonstrates remarkable speed, especially in comparison to
alternative implementations of gradient boosting. Gradient Boosting offers an
algorithm that is straightforward to comprehend and interpret, simplifying the
handling of most predictions [29]. Boosting serves as a sturdy and effective technique
that adeptly combats and mitigates overfitting. XGBoost demonstrates remarkable
performance[14][29], particularly on medium and small datasets with subgroups, as
well as structured datasets featuring a moderate number of features. Given that the
majority of real-world problems revolve around classification and regression tasks,
XGBoost emerges as a dominant choice, excelling in these areas. XGBoost may not
excel with sparse and unstructured data, and it’s essential to note that Gradient
Boosting can be highly sensitive to outliers due to its iterative error-fixing nature.
Additionally, the scalability of the method is limited as each estimator relies on the
correctness of previous predictors, leading to challenges in streamlining the process.

24

4 Theoretical Concepts

4.3.4 TabNet

TabNet leverages a unique Deep Neural Network architecture, akin to tree models,
to discern vital features and enhance data representation a promising solution to
the challenges posed by tabular data [38]. Sercan O. Arik and Tomas Pfister
introduced TabNet, a pioneering deep learning architecture designed for efficient and
interpretable tabular data processing, as outlined in their work [10].

Figure 9: TabNet Architecture [10]

TabNet’s encoder architecture operates in sequential steps, passing inputs through
each step. A single step involves three processes: a feature transformer, an attentive
transformer, and a mask are arranged as in Figure 9. The feature transformer
utilizes a series of Gated Linear Unit (GLU) decision blocks to transform features.
The attentive transformer employs sparse-matrix operations to select salient features,
enhancing interpretability and learning[33]. A mask is then applied to generate
decision parameters, which are fed into the next step. Initially, the entire dataset is
taken without feature engineering, normalized, and processed through the feature
transformer[27]. The output from this step provides predictions for continuous
numbers or classes. Subsequently, the attentive transformer identifies important
features, and their importance is aggregated across steps. This aggregated importance
aids in explaining the model without requiring additional techniques like SHapley
Additive Explanations (SHAP) or Local Interpretable Model-agnostic Explanations
(LIME). These methods helps to break down the importance of each feature for
individual predictions, which can be useful for understanding the model better. Finally,
decision outputs from the feature transformers are aggregated and embedded for
further processing.

The TabNet architecture is composed of two main parts: the Feature Transformer
and the Attentive Transformer. The Feature Transformer uses four consecutive blocks
with a Fully Connected Layer (FC), Batch Normalization Layer (BN), and GLU as
shown in Figure 10. This setup ensures robust learning by sharing layers and
stabilizing variance. The resulting outputs, no.of decision features (n(d)) and number
of attention features (n(a)), are crucial for subsequent steps[27]. The Attentive
Transformer includes FC and BN layers,which are involved in preprocessing the input

25

4 Theoretical Concepts

Figure 10: Feature Transformer and Attentive Transformer [10]

features. While the Prior Scales and Sparsemax layers fine-tune feature importance,
aiding in more effective for decision-making within the TabNet architecture. It also
incorporates an attention mask to identify selected features and understand aggregate
feature importance. This comprehensive approach allows TabNet to perform feature
selection and output mapping effectively within a single model.

By merging the advantages of both tree learning and neural networks, this approach
facilitates the utilization of various learning techniques, including representation
learning and meta-learning, in the context of tabular data. This fusion represents
a significant advancement in tabular data analysis, introducing innovative strategies
and perspectives to enhance the comprehension and utilization of this data format. It’s
attentive transformer enables sparse feature selection, enhancing the interpretability
of the model’s decision-making process. By employing soft feature selection, TabNet
can focus on relevant features while disregarding irrelevant ones, improving its
performance on tabular data.

4.3.5 Feed Forward Network

A feedforward neural network stands as a fundamental archetype within the realm of
artificial neural networks, characterized by the unidirectional flow of information from
input nodes through any hidden layers, if present, to the output nodes [18]. A feed
forward neural network is structured with an input layer, hidden layers, and an output
layer [39]. Neurons are linked by weighted connections of each layer, enabling the
flow of information from input to output. The input layer receives the data, hidden
layers performs the mathematical computations, and the output layer produces the
final results as shown in Figure 11[35]. By adjusting connection weights, the network
learns to minimize errors and improve accuracy in predicting outputs. At each layer, it
introduces a non-linearity by employing activation functions, which incorporate non-
linear shapes such as hyper-planes, thereby applying nonlinear transformations to the
data. [54].

Activation functions are pivotal in feed forward neural networks, infusing non-linear
characteristics that enable the model to discern intricate patterns. They are connected
to the end of each hidden layers. Popular activation functions include sigmoid, tanh,
and ReLU (Rectified Linear Unit)[18][41]. Training a feed forward neural network
entails adjusting the weights of connections between neurons based on a dataset. This

26

4 Theoretical Concepts

Figure 11: Feed Forward Neural Network [35]

iterative process involves passing the dataset through the network multiple times, with
weights updated each time to minimize prediction errors. This iterative optimization
process, known as gradient descent, persists until the network achieves satisfactory
performance on the training data. Feed forward neural networks offer advantages
such as ease of training and implementation, requiring fewer parameters and no back
propagation through time. They operate faster and more efficiently, processing data
in parallel without the need for storing previous states. However, they are less adept
at handling sequential or temporal data and are prone to overfitting due to a lack of
memory and regularization mechanisms.

4.3.6 Multi-output classifier’s chain

Multi-output classifiers are a special class of machine learning models designed to
handle tasks where each input can be associated with multiple labels or classes
simultaneously. One popular approach to multi-output classification is the chain
classifier method. In this method, a separate binary classifier is trained for each
output in the dataset, forming a chain of classifiers. During prediction, each
classifier in the chain not only predicts its corresponding output but also considers the
predictions of the preceding classifiers in the chain. This approach allows the model to
capture dependencies and correlations between different outputs, improving overall
prediction accuracy. Chain classifiers are particularly useful in scenarios where outputs
are interrelated or hierarchical in nature, such as multi- task classification tasks.

27

5 Implementation

5 Implementation

This section delves into practical considerations when employing various techniques
to tackle challenges in multi-class multi-output classification. It is divided into
two parts: Python Implementation and Matlab/Simulink Implementation. In the
Python implementation, approaches like Multi class SVMs, Random Forest classifiers,
XGBoost classifiers, TabNet, and Feed forward networks were implemented and have
proven effective. Methodological diversity is crucial for resilience and adaptability
across different scenarios. This analysis includes a thorough exploration of these
methods, covering data preprocessing, oversampling strategies, architectural choices,
and tailored training methodologies for each model. This section provide detailed
insights into the training and optimization of these machine learning and deep
learning models. Finally, the model with the least complexity is selected for
implementation in Simulink. In the Simulink implementation, it includes data
preprocessing, construction of the prediction pipeline with the chosen model weights,
and performs validation with ground truth data.

5.1 Python Implementation

In the Python implementation, commencing with the extraction of data from the
AVL Concerto tool, the process entails organizing the information meticulously into
a tabular format within Excel. Subsequently, introducing a mathematical function
to assign the classes marks the transition to supervised learning. Following class
assignment, the process advances to data preprocessing, oversampling, and model
training.

5.1.1 Data Preprocessing

Initially, AVL Concerto was employed to visualize the dataset, exporting it to Excel
for preprocessing. In preparation for supervised learning, classes are assigned to
the output label columns. The input dataset encompasses 6 Pressure Indicated
(PI Signal) values, 6 Torque generated when fuel is burnt (AI Signal) values, alongside
supplementary inputs such as speed, data sginals and few other signals. As PI Signal
signals and AI Signal signals are crucial for anomaly detection in engine performance
monitoring. PI Signal signals provide insights into the combustion process within
the engine cylinder, detecting anomalies such as misfires or incomplete combustion
that may result from faulty spark plugs or sensor malfunctions. Similarly, AI Signal
signals indicate changes in combustion efficiency or characteristics, highlighting issues
like fuel quality problems or air-fuel mixture imbalances. Monitoring these signals
enables early anomaly detection, facilitating timely maintenance to prevent potential
damage or performance degradation. By analyzing PI Signal and AI Signal signals,
engine performance deviations or malfunctions can be identified promptly, allowing
for proactive maintenance and optimization efforts to maintain optimal performance,

28

5 Implementation

prevent failures, and minimize downtime. Also, PI Signal and AI Signal are correlated
with all other signals. In the event of a deviation in PI Signal and AI Signal signals, a
corresponding anomaly is expected in the data signal. The absence of PI Signal and
AI Signal signals in the Engine Control Unit (ECU) precludes the use of mathematical
functions for label prediction. Six output columns are created individually for
PI Signal and AI Signal, resulting in a total of twelve output label columns. Utilizing
six PI Signal values generates output labels associated with PI Signal, while six AI
values generate output labels linked to AI Signal.

A mathematical function is introduced to classify the data into three classes:
class1(good), class2(poor), and class3(extremely critically). For creating PI Signal
output labels, outlier detection is applied using a threshold of 10 percent deviation
from the average PI value. The values outside this range are considered as outliers.
Outliers are then removed, and a new average PI is calculated for classification. Inputs
within ±2 percent deviation are classified as class 1, those within ±8 percent as class
2, and deviations beyond 8 percent as class 3, indicating extreme criticality.

To generate AI Signal output labels, a similar approach is employed to identify outliers,
but without using a threshold. Instead, the reference average AI is calculated by
averaging the first ten observations of average AI Signal. Subsequently, another
mathematical function for AI Signal is developed to assign classes. Unlike the previous
PI Signal classification, which utilized deviation as a percentage, absolute values are
used here. If the input AI deviates by ±4 from the average AI, it falls into class 1.
If the deviation is ±10, it is categorized as class 2. Any deviation greater than ±10
is classified as class 3. Classes are assigned to each cylinder, resulting in a total of
12 output columns—6 for PI and 6 for AI, with each column containing three classes
labeled as 1, 2, and 3. Through feature engineering, the other input signals were
transformed, reducing the dimensions while identifying the slopes correlated with PI
and AI.

5.1.2 SMOTE Oversampling

After preprocessing the data, the distribution of classes across the dataset is examined.
In our scenario, the data is not uniformly distributed among all classes, resulting in
a class imbalance issue. As outlined in theoretical concepts, SMOTE is among the
most effective oversampling techniques for addressing class imbalance problems. The
number of samples per each classes per each cylinder is shown in Figure 12 . For
instance, in the case of cylinder 1, when examining the PI values, there are 574
samples for Class 1, 6 samples for Class 2, and 3 samples for Class 3. Similarly,
while examining the AI values, there are 531 samples classified as Class 1, 46 samples
classified as Class 2, and 6 samples classified as Class 3. The number of samples of
class 1 is high when compared to class 2 and class 3. As discussed in the previous data
preprocessing section, each cylinder consists of two output columns, i.e. PI output
label and AI output label.

Figure 12 depicts a scenario where samples belonging to class-1 constitute the

29

5 Implementation

majority, while classes 2 and 3 are in the minority. When training a model using
such a dataset, there’s a risk of the model overfitting to class 1 and neglecting the
other classes, resulting in a class imbalance problem. To address the class imbalance
issue, employed the SMOTE oversampling technique. However, since a minimum of
six observations for each class is required as discussed in chapter 4.2.2, and the dataset
lacks this minimum for some classes. So random sampling is conducted first. Random
sampling is like creating duplicates of the minority classes and ensures a minimum of
six observations per class.

Figure 12: Distribution of classes before oversampling

Following random sampling, we apply SMOTE oversampling to generate additional
samples for the minority classes, effectively mitigating the imbalance problem. A
synthetic minority sample is generated by SMOTE by interpolating between existing
minority class samples. This process involves selecting a minority class sample,
identifying its nearest neighbors from the same class, and creating synthetic samples
along the line segments connecting the sample to its neighbors.

Figure 13: Distribution of classes after oversampling

By synthesizing new samples, SMOTE helps balance the class distribution, addressing
the imbalance problem in the dataset. more samples are available for minority classes

30

5 Implementation

after oversampling, as shown in figure 13. As the frequency of the minority classes
increases, the model endeavors to equally accommodate all classes when fitting the
nonlinear function. Following the random sampling process, duplicates may exist in
the oversampled dataset; these duplicates are subsequently eliminated.

5.1.3 Model Architecture and Training

After data preprocessing and data oversampling, final input features are given to the
model, altogether six input features for each each cylinder, whereas outputs are PI and
AI output label columns.

Multi class SVM’s with Multi output classifier:

In this section, the multi-class SVMs are implemented with a multi-output classifier,
as each cylinder has two output columns to predict simultaneously. After assigning
the features and labels, the data is divided into training and testing sets, with 80% of
the data allocated for training and the remaining 20% for testing. The architecture
of the model is as illustrated in Figure 15. The input data is passed to Principle
Component Analysis (PCA) block for dimensionality reduction. Data that is high-
dimensional is transformed into a lower-dimensional space using PCA, while still
preserving the majority of its variability [34]. It accomplishes this by identifying
principal components, which are orthogonal vectors representing the directions of
maximum variance in the data. The number of principle components created are 2
for each cylinder and shown in figure14. These components are organized based on
their explained variance, enabling the selection of the most informative ones. Through
the projection of data onto these principal components, PCA diminishes the number
of features while conserving the fundamental information essential for modeling.

Figure 14: Principle Component Analysis for cylinder 1

After performing PCA, the principal components are utilized in Support Vector
Machines (SVMs) employing the one-vs-rest (OvR) strategy, which is a supervised
learning method utilized for multi-class classification tasks. This approach involves

31

5 Implementation

training a separate binary classifier for each class, where the samples belonging
to the target class are treated as positive examples, and all other samples are
treated as negative examples. While prediction, the class which is having highest
confidence score from the binary classifiers is selected as the final prediction. By
iteratively comparing each class against the rest, SVMs can effectively handle multi-
class classification tasks with binary classifiers. The PCA and SVM are combined using
the pipeline block. It is a convenient way to chain together multiple processing steps
into a single estimator.

Continuing from the pipeline block, multi class SVMs with Multi-output classifiers are
incorporated, which extend the concept of multi-class classification to scenarios where
each sample may belong to multiple classes simultaneously, resulting in multi-label
classification. These classifiers predict multiple output labels for each sample, with
each label representing a distinct target variable.

This model trains the Multi-output classifiers which enable the modeling of complex
relationships between input features and multiple output variables. This block
provide a versatile framework for addressing multi-label classification problems by
simultaneously predicting multiple output labels for each input sample, as 2 output
columns are predicted for each cylinder. After training the multi-output classifier,
predictions for each column will occur simultaneously, each with three classes.

Figure 15: Architecture of Multi class SVM’s with Multi output classifier

Random Forest Classifier with Multi-output Classifier:

In this model, the input features are passed on to random forest classifier which creates
collection of decision trees, where each tree makes a prediction based on a random
subset of features. The final output is based on the majority vote of the trees. The

32

5 Implementation

random forest classifiers is fitted into multi-output classifier which produces 2 random
forests simultaneously with 2 output labels. Moving on, multi output classifier are
trained and after being trained on the input data, the model can make predictions on
new, unseen data. In the case of a multi-output classifier, the model would provide
two outputs, corresponding to the two possible labels.

Figure 16: Architecture of Random Forest

This model tackles classification problems with two distinct output labels by leveraging
a multi-output random forest architecture. At the core lies the concept of a random
forest, a powerful ensemble learning technique. Imagine a forest teeming with
individual decision trees, each acting as a classifier. Going in depth, as shown in
the figure 16. The model starts by feeding your data with six input features into this
forest.

To prevent the model from becoming overly reliant on specific features, each decision
tree is built using a random subset of the six inputs. This injects diversity into the
forest, making it more robust to potential biases in the training data. Each tree in the
forest independently analyzes the data based on its chosen feature subset.

However, unlike a standard random forest predicting a single label, this multi-output
version tackles the challenge of predicting two distinct labels simultaneously. Each
decision tree within the ensemble makes individual predictions for multiple potential
outputs. To achieve simultaneous prediction of multiple outputs, two key concepts
are employed: Multi-Output Integration and the Wrapper Approach. In Multi-Output
Integration, the prediction process is refined to handle multiple output labels. This
approach utilizes a multi-output classifier, acting as a wrapper, to train separate
random forests within the ensemble. The Wrapper Approach further enhances this
process by encapsulating the individual random forests, ensuring that each specializes

33

5 Implementation

in predicting one output label while optimizing for the second label. This dual
optimization strategy ensures that both prediction tasks are conducted effectively,
leading to more accurate and comprehensive predictions.

After training on a labeled dataset, the model is ready to make predictions on unseen
data. Presented with a new data point containing the six input features, the model
sends it through each tree in the forest. Each tree provides individual predictions for
both output labels.

Finally, the model harnesses the collective wisdom of the entire forest. It gathers the
individual predictions for each output label from all the trees and performs a majority
vote. The label receiving the most votes across the entire forest becomes the final
prediction for that specific output. This approach leverages the strengths of multiple
decision trees, leading to potentially more accurate predictions. In essence, this multi-
output random forest architecture combines the power of random forests – handling
complex relationships and reducing overfitting – with the ability to tackle classification
problems with two distinct output labels. It provides a robust and versatile approach
for various classification tasks.

XGBoost Classifier with Multi-output Classifier:

This model requires an additional preprocessing step, crucial for ensuring effective
interpretation of the information by the XGBoost Classifier. The preprocessing involves
converting the output classes from (1, 2, 3) to (0, 1, 2) format to align with the internal
requirements of the XGBoost library. This conversion resolves compatibility issues and
prevents errors that may arise during model training and prediction

Figure 17: Architecture of XGBoost Classifier with Multi output classifier

34

5 Implementation

After preprocessing the data, it is inputted into the XGBoost classifier, as illustrated in
Figure 17, which combines multiple decision trees to make a more robust prediction.
In this case, with two output labels (each having classes 0, 1, and 2), XGBoost
will internally build an ensemble of trees specifically for each output label similar
to random forests but additionally it computes residuals for each tree. The term
"residuals" refers to the differences between observed values and the values predicted
by a model. These residuals to iteratively improve the ensemble of trees, effectively
minimizing the errors and enhancing the predictive performance of the model. Each
tree focuses on learning the relationships between the 6 input features and the
probabilities of each class (0, 1, or 2) for its corresponding output label.

As the model trains, it iteratively refines these trees to minimize prediction errors and
it optimizes its internal structure (the trees and their connections) to accurately predict
the class labels for both output variables. Further, the XGBoost classifier is fed into
multi output classifier to generate the decision trees simultaneously for each output
column, It uses the same wrapper approach as same as in random forest. Then the
model is trained to predict the outputs with more accuracy.

TabNet with Multi-output Classifier:

The Figure 18 illustrates a machine learning architecture designed for a multi-output
classification task using a TabNet classifier. The process begins with the collection of
raw input data, which undergoes data preprocessing to clean and transform it into a
suitable format. This preprocessing step includes handling missing values, encoding
categorical variables, and normalizing numerical features.

Figure 18: Architecture of TabNet with Multi output classifier

Additionally, for this model, preprocessing involves combining label columns into a
single multi-dimensional array, standardizing the data, converting data to PyTorch

35

5 Implementation

tensors, and creating PyTorch Dataset and Data Loader objects. The preprocessed
data is then fed into a TabNet classifier, a deep learning model optimized for tabular
data. TabNet leverages sequential attention and decision steps to learn effective
feature representations. This classifier is integrated within a multi-output framework,
allowing it to predict multiple labels simultaneously for each data instance.

Once the data is prepared and the model framework is established, the system
enters the training phase. Here, the multi-output TabNet classifier is trained on the
processed data, optimizing its parameters to improve prediction accuracy. The training
involves iterative learning to minimize the loss function, refining the model’s ability
to generalize from the training dataset. After training, the model is ready to make
predictions on new, unseen data. The trained model is applied to the test dataset or any
new input data to generate predictions for multiple output labels, and its performance
is evaluated using relevant metrics.

This architecture effectively combines the advantages of deep learning and decision
trees, providing a robust solution for complex, multi-output classification tasks.

Feed Forward Neural Network:

The network architecture in Figure 19 begins with the Input layer, which takes the
input data. In the image, it has a shape of (None, 6), indicating that it can accept a
batch of any size (represented by None) and each sample in the batch has 6 features.
The Dense layer is a standard fully-connected layer, which is the most common type
of layer in neural networks. The input data is transformed linearly, followed by a non-
linear activation function. Activation functions that are non-linear help the network
learn patterns of data that are more complex.

The first Dense layer in the image has 64 units, meaning it transforms the 6-
dimensional input vector into a 64-dimensional vector. The output of the dense layer
is then passed to a ReLU activation function. The BN layer is not a standard part of
every neural network architecture, but it can be helpful for improving the training
process. Batch normalization normalizes the activations of the previous layer, which
can help to prevent the gradients from exploding or vanishing during training. This
can make the training process more stable and efficient.

The Dense1 layer is another Dense layer, similar to the first one, but it takes the output
of the Batch Normalization layer as input and has 32 units. So it transforms the
64-dimensional vector from the previous layer into a 32-dimensional vector. Batch
Normalization1 is another Batch Normalization layer, similar to the one used earlier.
The Output Layers form the final part of the architecture, which splits into two
branches, each with a Dense layer. This suggests that the model is performing a
multi-class classification task, where it needs to predict multiple categories for each
input sample. The first Dense layer in this section has 3 units, and the second Dense
layer also has 3 units. Each unit corresponds to a class. This indicates that the
model is trying to classify the input data into 3 different categories. Furthermore, the
outputs from these neurons are typically passed through a softmax function, which

36

5 Implementation

Figure 19: Architecture of Feed Forward Network

ensures that the maximum probability corresponds to the predicted class, enhancing
the interpretability and stability of the model’s predictions.

5.2 Matlab/Simulink Implementation

In the Simulink implementation, the trained model from Python is implemented in
Simulink. In the Simulink model implementation, it undergoes data preprocessing in
MATLAB, including data normalization and building the neural network as shown in
the Figure 20. The best model from the above algorithms is considered into account
by accuracy, prediction time and model complexity. The feed forward neural network
is selected as the appropriate model for our scenario, considering these conditions.

37

5 Implementation

Figure 20: Simulink Model

5.2.1 Data preparation

Data preprocessing is done in the MATLAB environment. First, the parameters saved
in CSV files is imported into MATLAB and load the weights and biases of each layer
into the workspace. The raw data from the AVL Concerto tool is obtained, extracting
features . Initially, it undergoes the same preprocessing steps as in Python to create
the features for each cylinder. In total, we provide six features as input to the Simulink
model.

5.2.2 Timer

Within this system, the Timer block is used to count up the time and select inputs from
a table based on the timing.

5.2.3 Data Normalization

Once the input data is prepared from Data preparation block, it must be normalized
because the model trained in the python was trained with normalized inputs, making
it essential for predictions to also use normalized inputs. The mean and standard
deviations are saved during the training phase in the Python environment. These
are used for normalizing the input data during the prediction phase in the Simulink
environment by using the equation 1. After normalization, the data is passed to the
next block, the Feed Forward Neural Network (FFN). The complete architecture is
shown in Figure 20 If the inputs are already normalized, they can be directly passed
to the FFN block. This process is controlled by a switch: if the switch is set to 1, the
data is considered normalized; if set to 0, the raw data is passed to the normalization
blocks to produce normalized output features, which then serve as inputs to theFFN
block. We use the Vector Concatenate block from Simulink to combine all the inputs
into a single matrix.

StandardScaler(x) =
x −µ
σ

(1)

where:

38

5 Implementation

• x is the input value,

• µ is the mean of the training data,

• σ is the standard deviation of the training data.

5.2.4 Feed Forward Neural Network

In Figure 20, the feed-forward block depicts the initial step where the input matrix
is fed into a demux block within Simulink. The demux function serves to separate
the matrix into its individual components, thereby creating six distinct features
corresponding to the six cylinders. For each cylinder, a separate feed-forward network
block is established. These network blocks possess two inputs and two outputs: one
input represents the feature vector input and the cylinder number, while the outputs
comprise predicted AI and PI labels.

The architecture established in the Python implementation is replicated to ensure
consistency in predictions. As previously discussed, all weights and biases for
each layer are preloaded into the workspace, enabling their direct utilization in
mathematical operations.

Construction of the feed-forward network commences with the multiplication of
inputs by the first dense layer, followed by addition with the corresponding biases.
Subsequently, the output undergoes the ReLU activation function 2, defined as the
maximum of zero and the output from the initial operation.

ReLU(x) =max(0, x) (2)

where:

• x is the input value,

• ReLU(x) is the output of the ReLU function, which is x if x is greater than 0,
and 0 otherwise.

The resulting output then proceeds to the batch normalization block, comprising
parameters such as beta, gamma, mean, and variance, where the following
mathematical operations are executed 3. Upon completion, the data is forwarded
to the subsequent dense layer for analogous processing: multiplication with the
dense layer’s weights, addition of biases, followed by ReLU activation and batch
normalization.

x̂ =
x −µB
Æ

σ2
B + ε

(3)

where:

39

5 Implementation

• β is a learnable shift parameter,

• γ is a learnable scale parameter,

• µB is the mini-batch mean,

• σ2
B is the mini-batch variance.

The resultant output is multiplied with the PI dense weights to obtain the vector
probabilities. Similarly, for the AI predictions, the output from batch normalization
is multiplied with the AI dense layer weights and biases. A manual implementation
of the softmax function 4 determines the maximum probability among the generated
output labels. Finally, the predicted labels are obtained individually from the model,
concatenated using vector concatenation, and displayed in the scope. Predicted results
are then saved to the workspace with a timestamp using the scope settings.

Softmax(zi) =
ezi

∑N
j=1 ez j

(4)

where zi is the i-th element of the input vector z, and N is the number of elements in
the input vector.

40

6 Results & Discussion

6 Results & Discussion

6.1 Python Results

The results section presents the predictions generated by various models discussed in
the implementation methodologies. This chapter thoroughly examines the accuracy’s
alongside their respective confusion matrices. Before delving deeper, the definition
of the confusion matrix and the process of calculating accuracies and false negatives,
which denote misclassifications by the model, are elucidated.

In this scenario, a 3x3 confusion matrix is employed, where the y-axis displays the
actual labels as ground truth and the x-axis denotes the predicted labels from the
model. The diagonal of the matrix signifies correct predictions, while all other cells
indicate miss classifications. A detailed calculation for each model will be delved into.
The values along the diagonal of the confusion matrix indicates that the predicted label
aligns with the true label. Off-diagonal elements, however, represent instances where
the predicted label does not correspond to the true label, indicating miss classifications
made by the model.

6.1.1 Multi class SVMs with Multi output classifier

In the implementation section, the utilization of training data, comprising 80% of
the dataset, for model training purposes was discussed, with the remaining 20% of
the dataset set aside for testing and prediction generation. Accuracy metrics are
computed independently for each output column using the accuracy score function,
allowing for an evaluation of the model’s performance with regard to individual
labels. Additionally, accuracy’s can be calculated using the confusion matrix formula.
Later, the overall accuracy is calculated by averaging the accuracy’s across all output
columns, providing insights into the model’s capability to predict multiple labels
simultaneously. Figure 21 depicts the accuracy’s of output columns corresponding
to each cylinder.

Figure 21: Accuracies of SVMs

41

6 Results & Discussion

The table presents performance metrics for six cylinders, each designated by a
numerical identifier and associated with two metrics: PI and AI. These metrics likely
contribute to combined "overall accuracy" values. Cylinder1 and cylinder5 exhibit
the lowest accuracy’s in relation to AI, standing at 63.05% and 60.59% respectively,
indicating a notable deficiency. While overall accuracy’s are noteworthy, individual
label accuracy’s hold significance. Conversely, models associated with cylinder 3
demonstrate commendable performance, achieving individual accuracy’s of 91.37%
and 95.32% respectively. Moreover, the overall accuracy for cylinder 3 surpasses that
of the remaining cylinders, indicating superior predictive capability.

Figure 22: SVMs Confusion Matrices

The next step involves delving into confusion matrices, as outlined in the preceding
section of the results, where the definition and mathematical computations necessary

42

6 Results & Discussion

for determining accuracies and false negatives were discussed. False positives are
particularly significant in assessing miss classifications and building trust in the model.
These occurrences arise when the actual class of a data point is negative, yet the
predicted class is positive, also known as Type I error.

The confusion matrices for all cylinders are depicted in Figure 22. For illustration, let’s
focus on the first confusion matrix pertaining to cylinder 1. The labels displayed on the
axes represent the classes; in our scenario, classes 1, 2, and 3 are considered although
the confusion matrix generated by the scikit-learn library considers these classes as 0,
1, and 2. Nonetheless, the underlying principles remain consistent. Class 0 denotes
good, class 1 denotes poor, and class 2 denotes extremely poor. The total number
of samples belonging to class 1 is 736, class 2 is 338, and class 3 is 259. However,
as previously discussed, the diagonal blocks indicate correct predictions. Specifically,
correct predictions related to class 1 amount to 611, class 2 to 180, and class 3 to 129.
Individual accuracy’s can be calculated using the formula provided below 5 and 6.

Accuracy for each class=
Correct Predictions of each class

Total Samples
(5)

Accuracy=
T P + T N

T P + T N + F P + FN
(6)

Individual class accuracy’s are determined by dividing the number of correctly
predicted samples by the total number of samples belonging to each respective class.
In our context, false negative rates are equally crucial to assess, are calculated using
the formula 7. Where, True Positives (TP) occurs when a classification model correctly
predicts a positive output, and the actual output is also a positive. False Negatives (FN)
occurs when a classification model incorrectly predicts a negative outcome, but the
actual outcome is positive. Safety concerns are paramount, as missed anomalies
can lead to catastrophic failures such as fires or explosions in combustion chambers.
Therefore, minimizing the False Negative Rate (FNR) is crucial to ensure safety,
performance, and efficiency in combustion chambers. While it is important to keep
the False Positive Rate (FPR) reasonably low to avoid unnecessary interventions and
associated costs, the primary focus should be on ensuring that actual anomalies are
not missed. FPR is calculated by using the formula 8 Given the high percentage of false
negative rates for class 1 and class 2, labeling this model as the best choice would be
inappropriate due to its subpar performance.

False Negative rate=
FN

FN + T P
(7)

False positive rate=
F P

F P + T P
(8)

43

6 Results & Discussion

Class 1:

Accuracy=
611+ 409

611+ 125+ 183+ 409
=

1020
1328

≈ 0.7675 (or 76.75%)

FNR=
125

125+ 611
=

125
736
≈ 0.1699 (or 16.99%)

FPR=
183

183+ 409
=

183
592
≈ 0.3091 (or 30.91%)

Class 2:

Accuracy=
180+ 285

180+ 158+ 256+ 285
=

465
879
≈ 0.5296 (or 52.96%)

FNR=
158

158+ 180
=

158
338
≈ 0.4675 (or 46.75%)

FPR=
256

256+ 285
=

256
541
≈ 0.4732 (or 47.32%)

Class 3:

Accuracy=
129+ 1004

129+ 125+ 70+ 1004
=

1133
1328

≈ 0.8538 (or 85.38%)

FNR=
125

125+ 129
=

125
254
≈ 0.4921 (or 49.21%)

FPR=
70

70+ 1004
=

70
1074

≈ 0.0652 (or 6.52%)

Class 1 demonstrates a moderate accuracy of approximately 76.75%, with a false
negative rate (FNR) of around 16.99% and a false positive rate (FPR) of approximately
30.91%. Class 2 exhibits a lower accuracy of about 52.96%, with a FNR of 46.75%
and a FPR of approximately 47.32%. In contrast, Class 3 showcases an impressive
accuracy of approximately 85.38%, with a notably lower FNR of around 49.21% and
an even lower FPR of approximately 6.52%. The FPR regards to class 2 and class 3
are higher resulting incorrect positive predictions.

6.1.2 Random Forest Classifier with Multi output classifier

The model is trained using 80% of the dataset, with the remaining 20% set aside
for testing and generating predictions. Accuracy metrics are then computed for
each output column using the accuracy score function, enabling an evaluation of
the model’s performance for individual labels. Following this, the overall accuracy
is calculated by averaging the accuracy’s across all output columns, providing insight
into the model’s capacity to predict multiple labels concurrently. The table below
presents the accuracies of output columns corresponding to each cylinder.

The table 23 offers comprehensive performance data for six distinct cylinders, each
identified by a unique number. It records two specific metrics, AI and PI, for each

44

6 Results & Discussion

Figure 23: Accuracies of Random Forest Classifiers

cylinder, likely reflecting crucial characteristics or measurements pertaining to them.
Furthermore, the table includes an "Overall accuracy" column, which likely integrates
the performance on both AI and PI metrics to provide a holistic assessment of each
cylinder’s performance. The overall accuracy values range from 98.41% to 99.61%,
indicating variability in performance among the cylinders. For example, cylinder
number 3 exhibits the highest overall accuracy of 99.61%, with AI and PI values of
99.85% and 99.38% respectively, while cylinder number 5 displays a slightly lower
accuracy of 98.41%, with corresponding AI and PI values of 98.87% and 98.85%.

The Figure 24 presents the confusion matrices for 6 cylinders, with cylinder 1 being
discussed as an example. The total number of samples belonging to class 1, class 2,
and class 3 are 736, 338, and 259 respectively. As previously mentioned, the diagonal
blocks represent the correct predictions. Specifically, correct predictions for class 1,
class 2, and class 3 amount to 724, 325, and 254 respectively. In the equation 7 is
used to calculate the false negative rate for each class individually.

Class 1:

Accuracy=
724+ 578

724+ 12+ 9+ 578
=

1302
1323

≈ 0.9842 (or 98.42%)

FNR=
12

12+ 724
=

12
736
≈ 0.0163 (or 1.63%)

FPR=
9

9+ 578
=

9
587
≈ 0.0153 (or 1.53%)

Class 2:

Accuracy=
325+ 978

325+ 13+ 12+ 978
=

1303
1328

≈ 0.9812 (or 98.12%)

FNR=
13

13+ 325
=

13
338
≈ 0.0385 (or 3.85%)

FPR=
12

12+ 978
=

12
990
≈ 0.0121 (or 1.21%)

45

6 Results & Discussion

Figure 24: Random Forest confusion matrices

Class 3:
Accuracy=

254+ 1070
254+ 0+ 0+ 1070

=
1324
1324

= 1 (or 100%)

FNR=
0

0+ 254
= 0 (or 0%)

FPR=
4

4+ 1070
≈ 0.0037 (or 0.37%)

In comparing the performance across three classes, it’s evident that each exhibits
varying levels of accuracy and error rates. Class 1 achieves an accuracy of
approximately 98.42%, with a low false negative rate (FNR) of around 1.63% and a
moderate false positive rate (FPR) of approximately 1.53%. Class 2 also demonstrates
a high accuracy of about 98.12%, albeit with a slightly higher FNR of around 3.85%
and a relatively lower FPR of approximately 1.21%. Notably, Class 3 stands out as
a model with perfect accuracy, achieving 100% accuracy, and boasting zero false
negatives and 0.37% positives. Our model demonstrates perfect accuracy in predicting
the extremely critical class, which is particularly significant. These findings highlight
the superior performance of the random forest model, particularly for class 3 across
all cylinders, with accuracy’s ranging from 98% to 99% for class 1 and class 2 as well.

46

6 Results & Discussion

6.1.3 XGBoost classifier with Multi output classifier

Moving forward to XGBoost classifier with multi output classifier, The accuracy
findings are prominently illustrated for each cylinder in Figure 25. Across the models,
accuracy rates ranging from 97.89% to 99.99% are observed for both PI and AI
outputs.

Figure 25: XGBoost Accuracy

Notably, the lowest accuracy score is recorded for the PI output of cylinder 1, while
the highest is attained for the AI output of cylinder 3. Impressively, cylinder 3
attains the highest overall accuracy of 99.94%, underscoring its exceptional predictive
performance. Conversely, cylinder 1 registers the lowest overall accuracy of 98.49%,
reflecting comparatively less precision in predictions. Certainly, the variability in
performance among the cylinders can indeed be attributed to the discrepancy in the
available samples for training each cylinder. When certain cylinders have a greater
abundance of samples across all classes, the resulting model tends to be more robust
and accurate in classifying instances associated with those cylinders. Conversely,
cylinders with fewer available samples may lead to less reliable models with higher
error rates. This difference in sample size directly impacts the model’s ability to
learn and generalize patterns effectively. Consequently, the performance disparity
observed across cylinders can be largely attributed to the inherent imbalance in the
dataset, emphasizing the importance of equitable sampling strategies to ensure fair
and representative model training across all cylinders.

The confusion matrices depicted in Figure 26 provide insights into the classification
performance of each cylinder. Notably, cylinder 1 exhibits a greater number of miss
classifications compared to the other cylinders, particularly evident in class 2 where
15 inputs are misclassified. Conversely, in cylinder 6, three inputs with class 3 are
misclassified, while for the remaining cylinders, the number of misclassified inputs is
negligible. For instance, cylinder 1 is taken as example; In class 1, comprising a total
of 736 samples, the model accurately predicted 727 instances, while 9 samples were
falsely classified. Moving to class 2, consisting of 338 samples, 323 were correctly
identified, with 13 false positives recorded. Remarkably, class 3 witnessed perfect

47

6 Results & Discussion

Figure 26: XGBoost Confusion matrices

prediction, with all 254 samples correctly classified and no false positives encountered.
By utilizing the equation 7 8 below are the false negative rates and false positive rates
for each class.

Class 1:

Accuracy=
727+ 579

727+ 9+ 13+ 579
=

1306
1328

≈ 0.9831 (or 98.31%)

FNR=
9

9+ 727
=

9
736
≈ 0.0122 (or 1.22%)

FPR=
13

13+ 579
=

13
592
≈ 0.0219 (or 2.19%)

48

6 Results & Discussion

Class 2:

Accuracy=
323+ 983

323+ 15+ 9+ 983
=

1306
1330

≈ 0.9812 (or 98.12%)

FNR=
15

15+ 323
=

15
338
≈ 0.0444 (or 4.44%)

FPR=
9

9+ 983
=

9
992
≈ 0.0091 (or 0.91%)

Class 3:

Accuracy=
254+ 1072

254+ 0+ 2+ 1072
=

1326
1328

≈ 0.9985 (or 99.85%)

FNR=
0

0+ 254
= 0 (or 0%)

FPR=
2

2+ 1072
=

2
1074

≈ 0.0019 (or 0.19%)

Comparing Classes 1 to 3, Class 3 emerges as critical due to its potential impact. While
Class 1 exhibits an accuracy of approximately 98.31%, with a False Negative Rate
(FNR) of around 1.22% and a False Positive Rate (FPR) of approximately 2.19%, and
Class 2 showcases an impressive accuracy of about 99.12%, with a FNR of 4.44% and
a FPR of approximately 0.91%, Class 3 stands out with its perfect accuracy, FNR of
zero and extremely low FPR of around 0.19%. This implies that there are no miss
classifications of actual positive cases in Class 3, highlighting its critical nature.

6.1.4 TabNet classifier with Multi output classifier

The TabNet classifier with multi-output functionality will be explored. The accuracy
results for each cylinder are prominently displayed in Figure 27. Across the models,
accuracy rates ranging from 92.91% to 99.53% are observed for both PI and AI
outputs.

Figure 27: TabNet Accuracy

Notably, the lowest accuracy scores are recorded for the PI outputs of cylinders 6 and
1, while the highest accuracy is achieved for the AI output of cylinder 4. Remarkably,

49

6 Results & Discussion

cylinder 4 demonstrates the highest overall accuracy of 99.53%, highlighting its
exceptional predictive capability. Conversely, cylinder 1 exhibits the lowest overall
accuracy of 92.91%, indicating relatively lower precision in its predictions.

Figure 28: TabNet Confusion Matrices

Figure 28 presents the confusion matrices for each cylinder. Among all cylinders,
cylinder 6 stands out with a higher number of miss classifications. Specifically, for
class 3, 82 samples were misclassified, while 44 samples of class 2 were misclassified
for the same cylinder. For example, let’s consider cylinder 1: In class 1, comprising a
total of 510 samples, the model accurately predicted 468 instances, while 42 samples
were falsely classified. Transitioning to class 2, consisting of 300 samples, 264 were
correctly identified, with 36 false positives recorded. Utilizing equation 7 and 8, false
negative rate and false positive rate for each class can be determined.

50

6 Results & Discussion

For class 1:

Accuracyclass 1 =
468+ 482

468+ 482+ 30+ 42
=

950
1022

≈ 0.929

FNRclass 1 =
42

42+ 468
=

42
510
≈ 0.082

FPRclass 1 =
30

30+ 482
=

30
512
≈ 0.059

For class 2:

Accuracyclass 2 =
264+ 685

264+ 685+ 37+ 36
=

949
1022

≈ 0.928

FNRclass 2 =
36

36+ 264
=

36
300

= 0.12

FPRclass 2 =
37

37+ 685
=

37
722
≈ 0.051

For class 3:
Accuracyclass 3 =

212+ 779
212+ 779+ 11+ 0

=
991
1002

≈ 0.989

FNRclass 3 =
0

0+ 212
= 0

FPRclass 3 =
11

11+ 779
=

11
790
≈ 0.014

Class 3 stands out with the highest accuracy at 98.9%, showcasing its proficiency
in correctly predicting both positive and negative instances. This is closely followed
by Class 2, which achieves an accuracy of 92.8%. However, when examining the
false negative rates (FNR), it becomes evident that Class 3 performs flawlessly with
no instances of false negatives, whereas class 2 exhibits the highest FNR at 12%,
indicating a notable proportion of positive instances being misclassified. On the other
hand, in terms of false positive rates (FPR), Class 3 again excels with the lowest rate
at 1.4%, demonstrating its precision in avoiding false predictions. Conversely, Class 1
displays the highest FPR at 5.1%, indicating a relatively higher rate of false alarms.

6.1.5 Feed Forward Network

This analysis explores the Feed-Forward Neural Network (FFNN) architecture,
specifically its multi-output functionality. The accuracy results for each cylinder are
prominently displayed in Figure 29. The accuracy of both the PI and AI outputs
generated by the model is impressive, ranging from 96.11% to 99.99%.

Calculate the accuracies using equation 6. Interestingly, the model struggles most with
the PI outputs of cylinder 6, whereas it performs best on the AI output of cylinder 4.
Remarkably, cylinder 3 and 4 demonstrates the highest overall accuracy of 99.07%

51

6 Results & Discussion

Figure 29: Feed Forward Neural Network accuracy

and 99.09% respectively, highlighting its exceptional predictive capability. Conversely,
cylinder 6 exhibits the lowest overall accuracy of 97.15%, indicating relatively lower
precision in its predictions when compared to other cylinders.

Figure 30 shows the confusion matrices for each cylinder. Cylinder 6 stands out with a
higher number of miss classifications, with 8 samples misclassified in class 1 and 10 in
class 2. For example, in cylinder 1: For class 1, out of 359 samples, 353 were accurately
predicted while 6 were misclassified. In class 2, out of 242 samples, 232 were correctly
identified with 10 false positives. Notably, class 3 had perfect predictions, with all 165
samples correctly classified and no false positives. The false positive rate and false
negative rate for each class can be calculated using equation 7 and equation 8.

Class 1:

Accuracy=
353+ 400

353+ 6+ 7+ 400
=

753
766
≈ 0.9829 (or 98.29%)

FNR=
6

6+ 353
=

6
359
≈ 0.0167 (or 1.67%)

FPR=
7

7+ 400
=

7
407
≈ 0.0172 (or 1.72%)

Class 2:

Accuracy=
232+ 521

232+ 10+ 3+ 521
=

753
766
≈ 0.9829 (or 98.29%)

FNR=
10

10+ 232
=

10
242
≈ 0.0413 (or 4.13%)

FPR=
3

3+ 521
=

3
524
≈ 0.0057 (or 0.57%)

52

6 Results & Discussion

Figure 30: Feed Forward Neural Network Confusion Matrices

Class 3:

Accuracy=
165+ 595

165+ 0+ 6+ 595
=

760
766
≈ 0.9922 (or 99.22%)

FNR=
0

0+ 165
= 0 (or 0%)

FPR=
6

6+ 595
=

6
601
≈ 0.0100 (or 1.00%)

6.2 Matlab Results

In the Matlab implementation, outcomes are stored in the workspace using the
scope settings, incorporating a timestamped structure. Subsequently, the results are
exported from Matlab and is done in Python environment. Here, the performance is
assessed by testing the predictions against the ground truth using the test data, and the
confusion matrix for each cylinder is visualized. Remarkably, the confusion matrices

53

6 Results & Discussion

obtained from Matlab mirror the results obtained in Python. Hence, the performance
achieved in Simulink closely aligns with that achieved in Python.

Figure 31: Confusion matrices for Simulink prediction

In Figure 31, the confusion matrices generated by Simulink predictions are observed
alongside the ground truth test data from Python. The operation of plotting these
matrices was conducted in Python due to its ease of use compared to Matlab scripting.
Let’s delve into the details focusing on cylinder 1: There are 359 samples related to
class 1, 242 to class 2, and 165 to class 3. The diagonal elements represent correct
predictions, while off-diagonal elements indicate miss classifications. For instance, in
class 1, out of 359 samples, 353 were correctly predicted while 6 were misclassified.
Among these misclassified samples, 3 were classified as class 2 and the remaining 3 as
class 3. Notably, for the critical class 3, all samples were correctly classified without
any miss classifications. However, cylinders 1 and 6 exhibit some miss classification
concerning class 1, where a few samples, despite belonging to class 1, were mistakenly
classified as class 2 or class 3. False positives were taken into account, calculated using
the provided d and no false positives. The false positive rate and false negative rate

54

6 Results & Discussion

for each class can be calculated using equation 7 and equation 8, resulting in a false
positive percentage of less than 1% for class 3.

6.3 Discussion

The Figure 32 summarizes the performance of various machine learning models
across six cylinders. In Cylinder 1, the Random Forest model stands out with the
highest overall accuracy, followed by XGBoost and then the Feed Forward Network,
while SVMs and TabNet have lower accuracy. Cylinder 2 sees XGBoost as the top
performer, followed by Random Forest and Feed Forward Neural Network, with SVMs
and TabNet again showing lower accuracy. In Cylinder 3, XGBoost continues to
dominate, followed closely by Feed Forward Neural Network and Random Forest,
with SVMs and TabNet maintaining lower accuracy. In Cylinder 4, XGBoost leads in
accuracy, with Feed Forward Neural Network and Random Forest close behind, while
SVMs and TabNet show comparatively lower accuracy. Cylinder 5 highlights TabNet
with the highest accuracy, followed by XGBoost and Feed-Forward Neural Network,
while Random Forest and SVMs demonstrate lower accuracy. Lastly, in Cylinder 6,
XGBoost maintains its dominance, followed by Feed Forward Neural Network and
Random Forest, with TabNet and SVMs exhibiting the lowest accuracy in this category.
In general, XGBoost consistently performs well across multiple cylinders, while Feed
Forward Neural Network and Random Forests also showcase strong overall accuracy.
Comparatively to the other algorithms tested, SVM and TabNet models tend to have a
lower accuracy.

Figure 32: Overall Accuracy’s for all Models

According to the above discussion, Random Forest, XGBoost, and Feed-Forward Neural
Network managed to achieve the best results across all cylinders. To implement the
trained model for prediction in Simulink, several key considerations were taken into
account when selecting the Feed Forward Neural Network. This model was chosen
due to its comparable accuracy with other models. In MATLAB, implementing machine

55

6 Results & Discussion

learning methods directly requires an additional license. However, constructing neural
networks manually is straightforward and does not require additional packages.

The Figure 33 presents a comprehensive overview of machine learning model
performance and selection criteria across cylinders. The "Model Name" column
identifies the machine learning models utilized, encompassing SVMs (Support Vector
Machines), Random Forest, XGBoost, TabNet, and Feed Forward Neural Network,
each bringing its unique algorithmic framework and approach to the predictive task.
"Model Complexity" likely denotes the intricacy of each model, possibly in terms of the
number of features or variables considered during predictions, with higher complexity
models potentially offering increased accuracy but demanding greater computational
resources as our idea is to implement it without licensed packages in MATLAB. As [50],
stated that in data science filed python would be better than Matlab.

Figure 33: Comparison of ML Techniques for Model Selection

The "Prediction Accuracy" column showcases the overall accuracy achieved by each
model in predicting outcomes for the cylinders, ranging from 86% to 99% from bad
to good, if the accuracy less than 92%, it is considered as bad, average between
92% and 98%, greater than 98 are considered good. accuracy indicating generally
high predictive performance across all models and cylinders. The "Chosen Model"
column delineates whether a particular model was selected (Yes or No), for further
implementation in Simulink, considering that in future work this Simulink model will
be integrated with AVL SW and deployed for validation in an ECU.

Potential reasons for favoring a model could include its achieved accuracy, balance
between accuracy, complexity. The prediction time in Python is high, taking seconds,
which is not suitable for considering the model for constructing prediction model in
Simulink, where outcomes need to be predicted within milliseconds. Constructing a
Feed Forward Neural Network (FFN) with two hidden layers without hyper parameter
tuning is generally less complex than manually constructing a Random Forest (RF)
or XGBoost. This is because a FFN has a straightforward architecture with input,

56

6 Results & Discussion

hidden, and output layers, requiring minimal steps to define and implement. The
code for an FFN can be concise, using basic matrix operations and activation
functions. In contrast, constructing a Random Forest involves creating and managing
multiple decision trees, ensuring they work together in an ensemble, and handling
bootstrap sampling for training subsets. Similarly, building an XGBoost model
requires constructing trees sequentially, managing boosting parameters, and handling
advanced features like regularization and missing value handling, all of which add
complexity compared to a simple FFN. Therefore, for a basic neural network
architecture, the FFN is generally simpler to construct manually compared to RF or
XGBoost. Considering all the factors in to account, a Feed Forward Neural Network
is chosen and further implemented in Simulink. After integrating the Feed Forward
Neural Network into Simulink, the outcomes precisely matched in accuracy and were
delivered within the designated prediction time frame. This was accomplished without
encountering any errors or inconsistencies.

57

7 Conclusion & Future Work

7 Conclusion & Future Work

7.1 Conclusion

In conclusion, experimentation with multiple models in machine learning, such as
multi-class SVMs with multi-output classifiers, random forest classifiers with multi-
output classifiers, extreme gradient boosting classifiers with multi-output classifiers,
and deep learning models like TabNet and feed forward network approaches for
classifying anomalies, has yielded valuable insights in the realm of H2 engine care.
The challenge of detecting even the tiniest deviations within combustion chambers,
complicated by sensor data intricacies involving good signal features and anomalies,
prompted the exploration of advanced neural network architectures and deep learning
methodologies.

The primary aim of the implementation was to address the prevalent issue of anomaly
detection in H2 engine maintenance. Utilizing a deep learning feed forward neural
network, a robust pipeline was successfully established to detect signal deviations
compared with the ground truth. This process included solving the imbalance
problems caused by data deficits. This led to generating synthesized data, where a
deep learning model is trained with both authentic ground truth signals and deviated
signals, learning the complex patterns between them. Validation was performed with
unseen data to evaluate how well the model can identify anomalies and good signals,
thereby improving anomaly detection within the combustion chamber of H2 engines.

Specifically, the outcomes of the implementation highlighted the superior effectiveness
of the decision tree classifiers approach in closely replicating the accuracies of
feed forward neural networks compared to the TabNet and multi-class SVMs with
multi-output classifier approaches. The feed forward neural network demonstrated
advanced capabilities in efficiently capturing the intricate features of combustion
chambers, showcasing its reduced prediction time 6.3. The architecture of the feed
forward neural network is simple and fast compared to other approaches, which are
the reasons for the model’s success in classifying anomaly signals with high quality.

In practical terms, implementation contributes to the refinement of data-driven
methodologies in safety-critical industries, particularly H2 engine maintenance. The
implementation of all approaches provides a comparative understanding of their
efficacy in detecting the anomalies in combustion chamber. This research outcome
holds promise for future applications, offering innovative solutions to enhance
automobile maintenance practices through the utilization of deep learning and
advanced training techniques.

7.2 Future Work

As the field of anomaly detection for automotive maintenance advances, the trajectory
of future research directions will be oriented to push it beyond its current limitations.

58

7 Conclusion & Future Work

Building upon the advancements achieved, this forward-looking exploration is poised
to refine and expand the capabilities of machine learning models. The optimization
of machine learning model architectures, specifically tailored for anomaly detection,
stands as a pivotal objective. By delving into modifications or novel approaches within
the machine learning frameworks, the aim is to reduce false positives rates and false
negative rates and increase the accuracies [1].

Advanced Machine Learning Algorithms: Developing and refining machine learning
algorithms tailored for anomaly detection in H2 engines can significantly enhance
detection accuracy and response times. Deep learning techniques, like Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) [44] , can be
employed to analyze vast amounts of sensor data and identify subtle patterns
indicative of anomalies.

Real-time Monitoring Systems: Integrating real-time data acquisition and processing
systems with advanced anomaly detection algorithms will enable continuous
monitoring of H2 engines. This can facilitate immediate identification and mitigation
of potential issues.

Sensor Fusion and Data Integration: Utilizing data from multiple sensors, such
as temperature, pressure, and knocking sensors, and integrating this information
using sensor fusion techniques can improve the robustness and reliability of anomaly
detection systems. As a result, an extensive understanding of the engine’s operating
conditions is gained.

Edge Computing: Deploying edge computing solutions for anomaly detection in H2
engines allows for data processing [61]. This reduces latency and enhances the
system’s ability to make real-time decisions. Edge devices equipped with machine
learning models can analyze data locally and send alerts or take corrective actions
immediately.

Hybrid Models: Combining physics-based models with data-driven approaches can
improve the accuracy and reliability of anomaly detection systems. Physics-based
models can provide a fundamental understanding of engine behavior, while data-
driven models can learn from historical data to detect anomalies more effectively.

By pursuing these research directions, the field of anomaly detection in hydrogen
engines can advance significantly, contributing to the development of safer, more
efficient, and more reliable hydrogen propulsion systems.

7.2.1 Future Scope in Medical Sector

The future of AI in the medical sector is promising, especially with the integration
of advanced anomaly detection techniques. Anomalies detection in Biomedical
signals is critical for early diagnosis and treatment planning. This subsection
explores the leveraging of machine learning and deep learning techniques used for
anomaly detection in domain of medical signal processing, originally designed for
hydrogen combustion engine signals. Through a transfer learning approach, the

59

7 Conclusion & Future Work

effectiveness of this methodology in detecting abnormalities in various medical signals
is demonstrated, offering potential advancements in diagnostic accuracy and patient
care. Here are some potential areas where AI-driven anomaly detection can be used
in healthcare:

1. Early Diagnosis of the patient: AI-driven anomaly detection techniques can
significantly improve screening programs for various diseases like breast cancer, lung
cancer, Cholesterol and Osteoporosis. For instance, the constructed models could
analyze a chest X-ray to detect not only lung cancer but also other respiratory
conditions such as tuberculosis, pneumonia, and chronic obstructive pulmonary
disease (COPD) [53]. By providing a comprehensive analysis in one go, these
algorithms enhance the efficiency and effectiveness of screening programs.

2. Disease Prediction: Machine learning methods can helpful in detecting the diseases.
For instance, the level Of activity of patients with stroke is helpful in detecting diseases
by enhancing the prediction of stroke recovery outcomes [9]. By using multi class
multi output algorithms, study effectively can classifies patients’ activity levels, which
can inform personalized rehabilitation plans. This approach can be adapted to other
diseases, providing a framework for predicting patient outcomes and improving early
intervention and treatment strategies in various medical conditions.

3. Real-Time Monitoring and Alerts: These models can also continuously track
vital signs, analyzing various physiological data streams simultaneously and other
health indicators. These Multi-task models involves processing multiple types of
signals, such as ECG, EEG, and blood pressure, to detect abnormalities and predict
potential health issues. By integrating and interpreting these signals in real time,
healthcare providers can receive immediate alerts about critical changes in a patient’s
condition, enabling faster and more accurate interventions. These systems improves
patient outcomes, optimizes resource use, and provides continuous, comprehensive
monitoring in diverse healthcare settings.

4. Predictive Maintenance of Medical Equipment: Multi-task models are advantageous
for predictive maintenance of medical equipment using signal data due to their ability
to extract relevant features across diverse sensor inputs, improving computational
efficiency and resource management [16]. They enhance predictive accuracy by
leveraging relationships between different tasks, adapt well to new signals and
conditions, and provide regularization benefits for robust generalization. Additionally,
these models can offer interpretable insights into how various signals contribute to
equipment failure predictions, crucial for informed decision-making in healthcare
settings.

5. Detecting Abnormalities in Bio Medical Signals: AI models demonstrate proficiency
in extracting pertinent characteristics from various types of biomedical data like
ECG, EEG, or EMG signals, thereby enhancing efficiency and optimizing resource
allocation [43]. By jointly learning to predict various abnormalities, these models
enhance accuracy through shared representations and task relationships, adapting
well to new signal types or changing conditions. They provide regularization, ensuring
robust generalization, and offer interpretable insights into the complex interactions

60

7 Conclusion & Future Work

within biomedical signals, crucial for accurate diagnosis and proactive healthcare
management.

61

References

References

[1] AI Frameworks. https://harvard-edge.github.io/cs249r_book/contents/
frameworks/frameworks.html

[2] ACTIVELOOP: Adaptive Synthetic Sampling (ADASYN). https://www.activeloop.
ai/resources/glossary/adaptive-synthetic-sampling-adasyn/

[3] AHMED, Shams F. ; ALAM, Md. Sakib B. ; HASSAN, Maruf ; ROZBU, Mahtabin R.
; ISHTIAK, Taoseef ; RAFA, Nazifa ; MOFIJUR, M. ; SHAWKAT ALI, A.
B. M. ; GANDOMI, Amir H.: Deep learning modelling techniques: current
progress, applications, advantages, and challenges. In: Artificial Intelligence
Review 56 (2023), Nov, Nr. 11, 13521-13617. http://dx.doi.org/10.1007/
s10462-023-10466-8. – DOI 10.1007/s10462–023–10466–8. – ISSN 1573–
7462

[4] AL-SULAIMAN, Talal: Predicting reactions to anomalies in stock movements
using a feed-forward deep learning network. In: International Journal
of Information Management Data Insights 2 (2022), Nr. 1, 100071.
http://dx.doi.org/https://doi.org/10.1016/j.jjimei.2022.100071. – DOI
https://doi.org/10.1016/j.jjimei.2022.100071. – ISSN 2667–0968

[5] ALABADI, Montdher ; CELIK, Yuksel: Anomaly Detection for Cyber-Security Based
on Convolution Neural Network : A survey, 2020, S. 1–14

[6] ALTERYX: Feature Engineering. https://www.alteryx.com/glossary/
feature-engineering

[7] ALZUBAIDI, Laith ; ZHANG, Jinglan ; HUMAIDI, Amjad J. ; AL-DUJAILI, Ayad ;
DUAN, Ye ; AL-SHAMMA, Omran ; SANTAMARÍA, J. ; FADHEL, Mohammed A. ;
AL-AMIDIE, Muthana ; FARHAN, Laith: Review of deep learning: concepts, CNN
architectures, challenges, applications, future directions. In: Journal of Big Data
8 (2021), Mar, Nr. 1, 53. http://dx.doi.org/10.1186/s40537-021-00444-8. –
DOI 10.1186/s40537–021–00444–8. – ISSN 2196–1115

[8] ANDRYSIAK, Tomasz: Machine Learning Techniques Applied to Data Analysis and
Anomaly Detection in ECG Signals. In: Applied Artificial Intelligence 30 (2016),
Nr. 6, 610-634. http://dx.doi.org/10.1080/08839514.2016.1193720. – DOI
10.1080/08839514.2016.1193720

[9] APAO, Norma J. ; FELISCUZO, Larmie S. ; ROMANA, Cherry Lyn C. S. ; TAGARO, J.:
Multiclass Classification Using Random Forest Algorithm To Prognosticate The
Level Of Activity Of Patients With Stroke. In: International Journal of Scientific
& Technology Research 9 (2020), 1233-1240. https://api.semanticscholar.org/
CorpusID:216654256

[10] ARIK, Sercan O. ; PFISTER, Tomas: TabNet: Attentive Interpretable Tabular
Learning. 2020

62

https://harvard-edge.github.io/cs249r_book/contents/frameworks/frameworks.html
https://harvard-edge.github.io/cs249r_book/contents/frameworks/frameworks.html
https://www.activeloop.ai/resources/glossary/adaptive-synthetic-sampling-adasyn/
https://www.activeloop.ai/resources/glossary/adaptive-synthetic-sampling-adasyn/
http://dx.doi.org/10.1007/s10462-023-10466-8
http://dx.doi.org/10.1007/s10462-023-10466-8
http://dx.doi.org/https://doi.org/10.1016/j.jjimei.2022.100071
https://www.alteryx.com/glossary/feature-engineering
https://www.alteryx.com/glossary/feature-engineering
http://dx.doi.org/10.1186/s40537-021-00444-8
http://dx.doi.org/10.1080/08839514.2016.1193720
https://api.semanticscholar.org/CorpusID:216654256
https://api.semanticscholar.org/CorpusID:216654256

References

[11] BAELDUNG: Adaptive Synthetic Sampling (ADASYN). https://www.baeldung.
com/cs/svm-multiclass-classification. Version: March 18, 2024

[12] BIGDATA: Pros And Cons Of Feature Engineering. (27 April 2021). https://
bigdataanalyticsnews.com/pros-cons-of-feature-engineering/

[13] BROWNLEE, Jason: Feature Importance and Feature Selection With XGBoost
in Python. (August 27, 2020). https://machinelearningmastery.com/
feature-importance-and-feature-selection-with-xgboost-in-python/

[14] BROWNLEE, Jason: A Gentle Introduction to XGBoost for Applied Machine
Learning. (February 17, 2021). https://machinelearningmastery.com/
gentle-introduction-xgboost-applied-machine-learning/

[15] BROWNLEE, Jason: Random Oversampling and Undersampling for Imbalanced
Classification. (January 5, 2021). https://machinelearningmastery.com/
random-oversampling-and-undersampling-for-imbalanced-classification/

[16] CANDA, Jam: Machine Learning Techniques for
Predictive Maintenance. https://medium.com/@jam.canda/
machine-learning-techniques-for-predictive-maintenance-662d056e7f08

[17] CRAMMER, Koby ; SINGER, Yoram: On the algorithmic implementation of
multiclass kernel-based vector machines. In: J. Mach. Learn. Res. 2 (2002), mar,
S. 265–292. – ISSN 1532–4435

[18] DEEPAI: Feed Forward Neural Network. https://deepai.org/
machine-learning-glossary-and-terms/feed-forward-neural-network

[19] DEVANSH, Devansh: What are the benefits and challenges of feature
engineering for complex data sets? https://www.linkedin.com/advice/0/
what-benefits-challenges-feature-engineering

[20] DLMC, xgboost d.: Introduction to Boosted Trees. (2022). https://xgboost.
readthedocs.io/en/stable/tutorials/model.html

[21] DONGES, Niklas: Random Forest: A Complete Guide for Machine Learning. (Mar
08, 2024). https://builtin.com/data-science/random-forest-algorithm

[22] EVGENIOU, Theodoros ; PONTIL, Massimiliano: Regularized multi–task learning.
In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York, NY, USA : Association for Computing
Machinery, 2004 (KDD ’04). – ISBN 1581138881, 109–117

[23] EXPLORIUM: 5 Reasons Why Feature Engineering is Challenging.
(AUG 06, 2023). https://www.explorium.ai/blog/machine-learning/
5-reasons-why-feature-engineering-is-challenging/

63

https://www.baeldung.com/cs/svm-multiclass-classification
https://www.baeldung.com/cs/svm-multiclass-classification
https://bigdataanalyticsnews.com/pros-cons-of-feature-engineering/
https://bigdataanalyticsnews.com/pros-cons-of-feature-engineering/
https://machinelearningmastery.com/feature-importance-and-feature-selection-with-xgboost-in-python/
https://machinelearningmastery.com/feature-importance-and-feature-selection-with-xgboost-in-python/
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machine-learning/
https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/
https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/
https://medium.com/@jam.canda/machine-learning-techniques-for-predictive-maintenance-662d056e7f08
https://medium.com/@jam.canda/machine-learning-techniques-for-predictive-maintenance-662d056e7f08
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://deepai.org/machine-learning-glossary-and-terms/feed-forward-neural-network
https://www.linkedin.com/advice/0/what-benefits-challenges-feature-engineering
https://www.linkedin.com/advice/0/what-benefits-challenges-feature-engineering
https://xgboost.readthedocs.io/en/stable/tutorials/model.html
https://xgboost.readthedocs.io/en/stable/tutorials/model.html
https://builtin.com/data-science/random-forest-algorithm
https://www.explorium.ai/blog/machine-learning/5-reasons-why-feature-engineering-is-challenging/
https://www.explorium.ai/blog/machine-learning/5-reasons-why-feature-engineering-is-challenging/

References

[24] FANELLI, Daniele: How Many Scientists Fabricate and Falsify Research?
A Systematic Review and Meta-Analysis of Survey Data. (May 29,
2009). http://dx.doi.org/https://doi.org/10.1371/journal.pone.0005738. –
DOI https://doi.org/10.1371/journal.pone.0005738

[25] GALLI, Sole: Exploring Oversampling Techniques for
Imbalanced. (Mar 20, 2023). https://www.blog.trainindata.com/
oversampling-techniques-for-imbalanced-data/

[26] GALLI, Soledad: The Challenges of Creating Features for Machine
Learning. (February 21, 2022). https://www.kdnuggets.com/2022/02/
challenges-creating-features-machine-learning.html

[27] GEEKSFORGEEKS: Tabnet. (23 Feb, 2023). https://www.geeksforgeeks.org/
tabnet/

[28] GRABCZEWSKI, K. ; JANKOWSKI, N.: Feature selection with decision tree criterion.
In: Fifth International Conference on Hybrid Intelligent Systems (HIS’05), 2005,
S. 6 pp.–

[29] HACHCHAM, Aymane: XGBoost: Everything You Need to Know. (11th August,
2023). https://neptune.ai/blog/xgboost-everything-you-need-to-know

[30] HEATON, JB ; POLSON, Nicholas G. ; WITTE, Jan H.: Deep learning in finance.
In: arXiv preprint arXiv:1602.06561 (2016)

[31] HEAVY.AI: Feature Engineering. https://www.heavy.ai/technical-glossary/
feature-engineering

[32] IBM: What is random forest? https://www.ibm.com/topics/random-forest

[33] ILANGO, Vigneshwar: Tabnet — Deep Learning for Tabular data: Architecture
Overview. (Apr 11, 2021). https://vigneshwarilango.medium.com/
tabnet-deep-learning-for-tabular-data-architecture-overview-448ced8f8cfc

[34] JAADI, Zakaria: A Step-by-Step Explanation of Principal
Component Analysis (PCA). https://builtin.com/data-science/
step-step-explanation-principal-component-analysis

[35] JALLAL, Mohammed A. ; SAMIRA, Chabaa ; ZEROUAL, Abdelouhab: A new
artificial multi-neural approach to estimate the hourly global solar radiation in
a semi-arid climate site. In: Theoretical and Applied Climatology 139 (2020),
02. http://dx.doi.org/10.1007/s00704-019-03033-1. – DOI 10.1007/s00704–
019–03033–1

[36] JI, You ; SUN, Shiliang: Multitask Multiclass Support Vector Machines. In: 2011
IEEE 11th International Conference on Data Mining Workshops, 2011, S. 512–518

64

http://dx.doi.org/https://doi.org/10.1371/journal.pone.0005738
https://www.blog.trainindata.com/oversampling-techniques-for-imbalanced-data/
https://www.blog.trainindata.com/oversampling-techniques-for-imbalanced-data/
https://www.kdnuggets.com/2022/02/challenges-creating-features-machine-learning.html
https://www.kdnuggets.com/2022/02/challenges-creating-features-machine-learning.html
https://www.geeksforgeeks.org/tabnet/
https://www.geeksforgeeks.org/tabnet/
https://neptune.ai/blog/xgboost-everything-you-need-to-know
https://www.heavy.ai/technical-glossary/feature-engineering
https://www.heavy.ai/technical-glossary/feature-engineering
https://www.ibm.com/topics/random-forest
https://vigneshwarilango.medium.com/tabnet-deep-learning-for-tabular-data-architecture-overview-448ced8f8cfc
https://vigneshwarilango.medium.com/tabnet-deep-learning-for-tabular-data-architecture-overview-448ced8f8cfc
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
http://dx.doi.org/10.1007/s00704-019-03033-1

References

[37] JIANG, Xuezheng ; WANG, Junyi ; MENG, Qinggang ; SAADA, Mohamad ;
CAI, Haibin: An adaptive multi-class imbalanced classification framework
based on ensemble methods and deep network. In: Neural Computing and
Applications 35 (2023), May, Nr. 15, 11141-11159. http://dx.doi.org/10.1007/
s00521-023-08290-w. – DOI 10.1007/s00521–023–08290–w. – ISSN 1433–
3058

[38] JIHWAN: TabNet —Deep Neural Net for Tabular.
(Jun 17, 2023). https://medium.com/@okpo65/
paper-review-tabnet-deep-neural-net-for-tabular-a97c43290969

[39] KAMALI, Kaivan: Feedforward neural networks (FNN). (Apr 28,
2021). https://training.galaxyproject.org/training-material/topics/statistics/
tutorials/FNN/tutorial.html

[40] KHUSHAKTOV, Farkhod: Introduction Random Forest Classification.
(Aug 26, 2023). https://medium.com/@mrmaster907/
introduction-random-forest-classification-by-example-6983d95c7b91

[41] KURAMA, Vihar: Feedforward Neural Networks: A Quick Primer for
Deep Learning. (Aug 31, 2022). https://builtin.com/data-science/
feedforward-neural-network-intro

[42] LENDERINK, R.J.: Unsupervised Outlier Detection in Financial Statement Audits.
http://essay.utwente.nl/79813/. Version: September 2019

[43] LI, Chenyang ; SUN, Le ; PENG, Dandan ; SUBRAMANI, Sudha ; NICOLAS,
Shangwe C.: A multi-label classification system for anomaly classification in
electrocardiogram. In: Health Inf. Sci. Syst. 10 (2022), Dezember, Nr. 1, S. 19

[44] LIU, Shiya ; LIU, Lingjia ; YI, Yang: Quantized Reservoir Computing on Edge
Devices for Communication Applications. In: 2020 IEEE/ACM Symposium on
Edge Computing (SEC), 2020, S. 445–449

[45] LOWE, ANDREA: Manual Feature Engineering. (2019-08-20). https://domino.
ai/blog/manual-feature-engineering

[46] MASAELI, Mahdokht ; FUNG, Glenn ; DY, Jennifer G.: From Transformation-
Based Dimensionality Reduction to Feature Selection. In: International
Conference on Machine Learning, 2010

[47] MONDAL, Debmalya: Imbalanced data classification: Oversampling and
Undersampling. (Feb 6, 2023). https://medium.com/@debspeaks/
imbalanced-data-classification-oversampling-and-undersampling-297ba21fbd7c

[48] PYKES, Kurtis: Oversampling and Undersampling. (Sep 10, 2020). https://
towardsdatascience.com/oversampling-and-undersampling-5e2bbaf56dcf

65

http://dx.doi.org/10.1007/s00521-023-08290-w
http://dx.doi.org/10.1007/s00521-023-08290-w
https://medium.com/@okpo65/paper-review-tabnet-deep-neural-net-for-tabular-a97c43290969
https://medium.com/@okpo65/paper-review-tabnet-deep-neural-net-for-tabular-a97c43290969
https://training.galaxyproject.org/training-material/topics/statistics/tutorials/FNN/tutorial.html
https://training.galaxyproject.org/training-material/topics/statistics/tutorials/FNN/tutorial.html
https://medium.com/@mrmaster907/introduction-random-forest-classification-by-example-6983d95c7b91
https://medium.com/@mrmaster907/introduction-random-forest-classification-by-example-6983d95c7b91
https://builtin.com/data-science/feedforward-neural-network-intro
https://builtin.com/data-science/feedforward-neural-network-intro
http://essay.utwente.nl/79813/
https://domino.ai/blog/manual-feature-engineering
https://domino.ai/blog/manual-feature-engineering
https://medium.com/@debspeaks/imbalanced-data-classification-oversampling-and-undersampling-297ba21fbd7c
https://medium.com/@debspeaks/imbalanced-data-classification-oversampling-and-undersampling-297ba21fbd7c
https://towardsdatascience.com/oversampling-and-undersampling-5e2bbaf56dcf
https://towardsdatascience.com/oversampling-and-undersampling-5e2bbaf56dcf

References

[49] R, Vinod Kumar G.: Feature Transformation Topics in Machine
Learning. (2023). https://medium.com/@vinodkumargr/
5-feature-transformation-topics-in-machine-learning-930ad908148e#:~:
text=Feature%20transformation%20is%20the%20process,have%20similar%
20scales%20or%20distributions.

[50] RANE, Zulie: There’s a Clear Winner Between Matlab vs
Python. (Oct 1, 2021). https://towardsdatascience.com/
theres-a-clear-winner-between-matlab-vs-python-f6bb56b2b930#75a7

[51] SAINI, Anshul: What is Decision Tree? (18 Apr, 2024). https://www.
analyticsvidhya.com/blog/2021/08/decision-tree-algorithm/

[52] SALAUDDIN KHAN, Md ; NATH, Tushar D. ; MURAD HOSSAIN, Md ; MUKHERJEE,
Arnab ; BIN HASNATH, Hafiz ; MANHAZ MEEM, Tahera ; KHAN, Umama:
Comparison of multiclass classification techniques using dry bean dataset.
In: International Journal of Cognitive Computing in Engineering 4 (2023), 6-
20. http://dx.doi.org/https://doi.org/10.1016/j.ijcce.2023.01.002. – DOI
https://doi.org/10.1016/j.ijcce.2023.01.002. – ISSN 2666–3074

[53] SÁNCHEZ-GUTIÉRREZ, Máximo E. ; GONZÁLEZ-PÉREZ, Pedro P.: Multi-class
classification of medical data based on neural network pruning and information-
entropy measures. In: Entropy (Basel) 24 (2022), Januar, Nr. 2, S. 196

[54] SHARMA, Pranshu: Introduction to Feed-Forward Neural Network in Deep
Learning. (08 Feb, 2024). https://www.analyticsvidhya.com/blog/2022/03/
basic-introduction-to-feed-forward-network-in-deep-learning/

[55] SHIN, Terence: Understanding Feature Importance in Machine Learning. https:
//builtin.com/data-science/feature-importance. Version: Nov. 07, 2023

[56] SIMPLILEARN: What is XGBoost? An Introduction to XGBoost Algorithm
in Machine Learning. (Nov 7, 2023). https://www.simplilearn.com/
what-is-xgboost-algorithm-in-machine-learning-article

[57] TEAM, Wallstreetmojo: Feature Engineering, January 5, 2024

[58] THEISSLER, Andreas: Detecting known and unknown faults in automotive
systems using ensemble-based anomaly detection. In: Knowledge-Based Systems
123 (2017), 163-173. http://dx.doi.org/https://doi.org/10.1016/j.knosys.
2017.02.023. – DOI https://doi.org/10.1016/j.knosys.2017.02.023. – ISSN
0950–7051

[59] THUDUMU, S. et a.: A comprehensive survey of anomaly detection
techniques for high dimensional big data. (2020). http://dx.doi.org/10.1186/
s40537-020-00320-x. – DOI 10.1186/s40537–020–00320–x

66

https://medium.com/@vinodkumargr/5-feature-transformation-topics-in-machine-learning-930ad908148e#:~:text=Feature%20transformation%20is%20the%20process,have%20similar%20scales%20or%20distributions.
https://medium.com/@vinodkumargr/5-feature-transformation-topics-in-machine-learning-930ad908148e#:~:text=Feature%20transformation%20is%20the%20process,have%20similar%20scales%20or%20distributions.
https://medium.com/@vinodkumargr/5-feature-transformation-topics-in-machine-learning-930ad908148e#:~:text=Feature%20transformation%20is%20the%20process,have%20similar%20scales%20or%20distributions.
https://medium.com/@vinodkumargr/5-feature-transformation-topics-in-machine-learning-930ad908148e#:~:text=Feature%20transformation%20is%20the%20process,have%20similar%20scales%20or%20distributions.
https://towardsdatascience.com/theres-a-clear-winner-between-matlab-vs-python-f6bb56b2b930#75a7
https://towardsdatascience.com/theres-a-clear-winner-between-matlab-vs-python-f6bb56b2b930#75a7
https://www.analyticsvidhya.com/blog/2021/08/decision-tree-algorithm/
https://www.analyticsvidhya.com/blog/2021/08/decision-tree-algorithm/
http://dx.doi.org/https://doi.org/10.1016/j.ijcce.2023.01.002
https://www.analyticsvidhya.com/blog/2022/03/basic-introduction-to-feed-forward-network-in-deep-learning/
https://www.analyticsvidhya.com/blog/2022/03/basic-introduction-to-feed-forward-network-in-deep-learning/
https://builtin.com/data-science/feature-importance
https://builtin.com/data-science/feature-importance
https://www.simplilearn.com/what-is-xgboost-algorithm-in-machine-learning-article
https://www.simplilearn.com/what-is-xgboost-algorithm-in-machine-learning-article
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2017.02.023
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2017.02.023
http://dx.doi.org/10.1186/s40537-020-00320-x
http://dx.doi.org/10.1186/s40537-020-00320-x

References

[60] TUTORIALSPOINT: Importance of Feature Engineering
in Model Building. https://www.tutorialspoint.com/
importance-of-feature-engineering-in-model-building. Version: Nov. 07,
2023

[61] YEUNG, Tiffany: What Is Edge Computing? (Oct 22, 2019). https://blogs.
nvidia.com/blog/what-is-edge-computing/

[62] ZENG, Y et a. Peng: A new deep belief network-based multi-task learning for
diagnosis of Alzheimer’s disease. (2023). http://dx.doi.org/doi.org/10.1007/
s00521-021-06149-6. – DOI doi.org/10.1007/s00521–021–06149–6

[63] ZHANG, Liang ; CHI, Mingmin ; GUO, Jiankui: MTForest: Ensemble Decision
Trees based on Multi-Task Learning, 2008, S. 122–126

[64] ZHANG, Licheng ; ZHAN, Cheng: Machine learning in rock facies classification:
An application of XGBoost. In: International Geophysical Conference, Qingdao,
China, 17-20 April 2017 Society of Exploration Geophysicists and Chinese
Petroleum Society, 2017, S. 1371–1374

67

https://www.tutorialspoint.com/importance-of-feature-engineering-in-model-building
https://www.tutorialspoint.com/importance-of-feature-engineering-in-model-building
https://blogs.nvidia.com/blog/what-is-edge-computing/
https://blogs.nvidia.com/blog/what-is-edge-computing/
http://dx.doi.org/doi.org/10.1007/s00521-021-06149-6
http://dx.doi.org/doi.org/10.1007/s00521-021-06149-6

Declaration

I hereby certify that I have written this thesis independently and that I have not used
any sources or aids other than those indicated, that all passages of the work which
have been taken over verbatim or in spirit from other sources from other sources have
been marked as such and that the work has not yet been has not yet been submitted
to any examination authority in the same or a similar form.

Erlangen, June 28, 2024 my signature

	Abstract
	Introduction
	Problem statement
	Objective
	Structure of the thesis

	Literature Review
	Multi-task Multi-class SVMs (M2SVMs)
	Multi task learning using random forest
	Comparison of multi-class classification techniques
	An Adaptive Multi-class Imbalanced Classification Framework Based on Ensemble Methods and Deep Network
	TabNet: Attentive Interpretable Tabular Learning
	Anomalies detection using a feed-forward deep learning network

	Theoretical Concepts
	Feature Engineering
	Benefits and Drawbacks of Feature Engineering
	Challenges of Machine Learning with Feature Engineering

	Oversampling Techniques
	Random Undersampling
	Random oversampling

	 Models for multi-task classification
	Multi-class SVM's
	Random Forest Classifiers
	XGBoost Classifiers
	TabNet
	Feed Forward Network
	Multi-output classifier's chain

	Implementation
	Python Implementation
	Data Preprocessing
	SMOTE Oversampling
	Model Architecture and Training

	Matlab/Simulink Implementation
	Data preparation
	Timer
	Data Normalization
	Feed Forward Neural Network

	Results & Discussion
	Python Results
	Multi class SVMs with Multi output classifier
	Random Forest Classifier with Multi output classifier
	XGBoost classifier with Multi output classifier
	TabNet classifier with Multi output classifier
	Feed Forward Network

	Matlab Results
	Discussion

	Conclusion & Future Work
	Conclusion
	Future Work
	Future Scope in Medical Sector

	Bibliography

