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Motivation: sonic boom and supersonic airplanes

Goal: the development of supersonic aircrafts, quiet enough to be
allowed to fly supersonically over populated areas.
The pressure signature created by the aircraft must be such that, when
reaching the ground is below tolerated thresholds.

Juan J. Alonso and Michael R. Colonno, Multidisciplinary Optimization with
Applications to Sonic-Boom Minimization, Annu. Rev. Fluid Mech. 2012,

44:505 – 26.
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Motivation II: detection of polution sources
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Inverse-time design
Time-inversion as a specific type of Inverse Problem

Problem: Given an observation of the dynamical system at some time
T > 0, to construct all the initial conditions which are compatible with it.

It is as “simple" as solving the equation

ut + A(u) = 0

backwards in time:
u(T ) ! u(0)

Note that the well-posedness of a Cauchy problem in the sense of Hadamard
can be lost in the reverse sense of time
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Wave equation: An example of hyperbolic time-reversibility

Solutions of smooth hyperbolic PDEs can be tracked back and forth following
characteristic lines. This is the case for the classical wave or D’Alembert
equation for elastic strings and membranes and acoustic waves

⇢
ytt ��y = 0 in Q = ⌦⇥ (0,1)
y = 0 on ⌃ = �⇥ (0,1)

The equation is invariant by time-inversion

t ! �t .

The semigroup it generates it is actually a group of isometries.
The conservation of the energy can be red in both senses of time:

E(0) = E(T ),

or, equivalently,
E(T ) = E(0).

The equation, being well-posed in the backward sense, the inverse design
problem has a unique solution, living in the same space as the target.
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Heat equation: Time-irreversible processes
Backward ill-posedness in the Hadamard sense

Consider: ⇢
yt ��y = 0 in Q = ⌦⇥ (0,1)
y = 0 on ⌃ = �⇥ (0,1)

Highly dissipative effect:

ky(T )k2
L2(⌦) =

X

k

e
�2�k T |ŷ0

k |2

This can also be re-written in terms of the energy of the initial data (at t = 0)
recovered out of the final value at t = T :

ŷ
0
k = e

�k T
ŷk (T ).

The same occurs for the solution of the Cauchy problem in the whole space:

y(x , t) = [G(·, t) ⇤ y
0(·)](x);G(x , t) = (4⇡t)�N/2 exp(�|x |2/4t).

A strongly irreversible process too.
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Heat equation: quantifying backward uniqueness & instability

The energy identity yields
1
2

d

dt

Z

⌦

y
2
dx +

Z

⌦

| ry |2 dx = 0, (1)

1
2

d

dt

Z

⌦

y
2
dx + ⇤(t) k y(t) k2

L2(⌦)= 0, (2)

⇤(t) =k ry(t) k2
L2(⌦) / k y(t) k2

L2(⌦) . (3)
The frequency number ⇤(t) decreases along time

⇤(t)  ⇤(0) = ⇤0, 8t � 0.

Thus,
1
2

d

dt

Z

⌦

y
2
dx + ⇤0 k y(t) k2

L2(⌦)� 0. (4)

Therefore

||y(0)||2  exp(2⇤0t)||y(t)||2, ⇤0 =k ry
0 k2

L2(⌦) / k y
0 k2

L2(⌦) .

This is estimate is sharp, the energy version of the Fourier series
representation.

This is an interesting estimate that can be extended to a much broader class
of diffusion processes to measure the complexity of the mixing of energy
along different frequencies.
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Nonlinear time-irreversible processes

In this talk, we consider the inverse-time design problem for
• Scalar conservation laws:

@t u + @x (f (u)) = 0 in [0,T ]⇥ R

• Hamilton–Jacobi equations:

@t u + H(rx u) = 0 in [0,T ]⇥ RN

Main difficulty:

Irreversibility occurs because
of shock formation �! Lack of backward uniqueness.
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Lack of backward uniqueness

Consider the one-dimensional Burgers equation @t u + @x

✓
u

2

2

◆
= 0.

The entropy solutions with initial conditions u
0
1 6= u

0
2 coincide at time t = T .
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The one-dimensional Burgers equation and vanishing viscosity

8
<

:
@t u + @x

✓
u

2

2

◆
= 0 (t , x) 2 [0,T ]⇥ R

u(0, x) = u0(x) 2 BV (R)
(1D-B)

For any initial condition u0 2 BV (R) \ L
1(R) there exists a unique entropy

solution u 2 L
1([0,T ]⇥ R) \ L

1([0,T ];BV (R)).

The entropy solution u(t , x) can be obtained as the zero viscosity-limit of
the nonlinear parabolic problem

8
<

:
@t u"�"@xx u" + @x

✓
u

2
"

2

◆
= 0 (t , x) 2 [0,T ]⇥ R

u"(0, x) = u0(x) x 2 R.

This defines the forward entropy semigroup

S
+
T
: BV (R) \ L

1(R) �! BV (R) \ L
1(R)

u0 7�! S
+
T

u0 := u(T , ·)

which associates to any initial condition u0, the entropy solution at time t = T .
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Inverse design as an Optimal Control Problem

For any target uT 2 L
1(R), we aim to solve the following optimal control

problem

min
u0

J0(u0) :=
1
2

Z

R
(S+

T u0(x)� uT (x))
2 =

1
2
kS

+
T u0 � uTk2

L2(R) (Opt-Pb)

Objectives:
• Characterize the class of reachable targets.
• Construction of a minimizer via a backward-forward method.
• Construction of all the minimizers.

It can be viewed as a shooting problem: Find u0 such that u(T ) ⇠ uT .

Classical optimization methods, based on the use of gradient descent fail.
The functional lacks differentiability when solutions develop shocks. The
sensitivity of the functional dependent also on the sensitivity of shocks: shift
differentiability a Descent algorithms need to be carefully tuned to lead to time
inversion. b

aPh. LeFloch & X. P. Xin, CPAM, 1993; A. Bressan & A. Marson, CPDE, 1995; F. Bouchut & F.
James, NA, 1998; S. Ulbrich, SICON, 2002.

bN. Allahverdi, A. Pozo & E. Zuazua, ESAIM:COCV, 20216; L. Gosse & E. Zuazua, INdAM, 2017.
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Reachability condition

uT is reachable at time T if there exists u0 such that S
+
T

u0 = uT .

Characterization of reachable targets [Gosse-Z, 2017], [Colombo-Perrollaz,

2019]

A target uT is reachable if and only of the following One-Sided Lipschitz
Condition holds:

@x u(x , t)  1
T

8x1, x2 2 R (OSLC)

It is also known as the Oleinik Condition.

Splitting of the phase-space:

BV (R) = {Reachable targets for T > 0} [ {Unreachable targets for T > 0}.

Note that the class of reachable states shrinks as T grows enhancing
time-irreversibility.
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The Backward operator S
�
t

A natural way of recovering a candidate for initial datum is to solve the
equation backwards in time.

We define the backward entropic semigroup S
�
t

: BV (R) ! L
1(R):

8
<

:
@t v" + "@xx v" + @x

✓
v

2
"

2

◆
= 0 (t , x) 2 [0,T ]⇥ R

v"(T , x) = u
T (x) x 2 R.

In fact
S

�
t u

T (x) := S
+
t ũ

T (�x)

where S
+
t

is the forward entropy operator and

ũ
T (x) = u

T (�x).
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The optimal inverse design

min
u02BV (R)

J0(u0) :=
1
2

Z

R
(uT (x)� S

+
T u0(x))

2 (Opt-Pb)

Theorem (Liard-Z, 2019)

* u
⇤
0 = S

�
T

u
T is a minimizer obtained by backward entropic resolution.

* It either leads the final target uT when it is reachable or otherwise into its
L

2-projection.
* The optimal control problem admits multiple optimal solutions: the initial
datum u0 2 BV (R) is a minimizer of (Opt-Pb) if and only if it satisfies

S
+
T u0 = S

+
T (S

�
T

u
T ).

Remark:

• A full-characterization of such initial conditions is given in
[Colombo-Perrolaz, 2019].

• This is better understood in the context of Hamilton-Jacobi equations.
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The Optimal inverse design

Figure: An unreachable target uT 2 BV (R)

Figure: The closest reachable target to uT

for the L2 distance, i.e. ũT = S
+
T

u⇤
0

Figure: The backward entropy initial
condition u⇤

0 = S
�
T

uT

Figure: The minimizer u0 might not be
unique.
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Different Optimal inverse designs
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Skeleton of the construction
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Backward-Forward resolution and Least Squares lead to 
the same inversion



Time-irreversible processes: Hamilton-Jacobi equations

In 1 � d a scalar conservation law of the form

@t v + @x [f (v)] = 0 (SCL)

can be transformed, by integration, in a Hamilton–Jacobi equation

@t u + f (@x u) = 0 (HJ)

v(t , x) solves the scalar conservation law iff

u(t , x) =

Z
x

�1
v(t , y)dy

solves the Hamilton-Jacobi equation.

Time-irreversibility

Solutions to the Hamilton-Jacobi equation (HJ) also develop singularities,
which results in the ill-posedness of the backward Cauchy problem and the
lack of backward uniqueness.

Enrique Zuazua Thresholds and Time Inversion
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Inverse problems in Optimal Control / Reinforcement Learning
Applications such as Recommendation Systems

minimize Jt,x [↵(·)] :=
Z

T

T�t

L(x(s),↵(s))dt + �(x(T ))

over the admissible controls ↵(·) 2 L
1((0,T );Rm), subject to

⇢
ẋ(s) = f (x(s),↵(s)) s 2 [T � t , T ]
x(T � t) = x

The value function
u(t , x) := inf

↵(·)
Jt,x [↵(·)]

is the viscosity solution to a Hamilton–Jacobi equation
⇢

@t u + H(x ,rx u) = 0 (t , x) 2 [0,T ]⇥ RN

u(0, x) = �(x) x 2 RN

H(x , p) = max
q2Rm

{f (x , q) · p � L(x , q)} for any p 2 RN (Hamiltonian).

Identifying the initial condition � in the HJ equation ⇠ identifying the final cost
in the minimization problem.
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Inverse-time design for Hamilton–Jacobi equations
C. Esteve and E. Zuazua. The inverse problem for Hamilton–Jacobi equations and semiconcave envelopes,
SIAM J. Math. Anal. , 2020.

@t u + H(rx u) = 0 in [0,T ]⇥ RN ; u(0, x) = u0(x) inRN .

Objectives
• Characterize reachable targets
• Approximate non-reachable targets.
• Initial-condition reconstruction.
• Interpretation in terms of optimal control.

Background:

• The Hamiltonian H : RN ! R is usually considered to be convex (e.g.
positive definite quadratic forms).

• The initial datum u0 : RN ! R is a given Lipschitz function.
The vanishing visicosity method leads to viscosity solutions letting
" ! 0+ in

@t u"�"�u" + H(rx u") = 0, u"(0, x) = u0(x)

Crandall-P.L.Lions, 1980’s: Vanishing viscosity method ! Existence,
Uniqueness and Stability.
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The Hopf-Lax formula

⇢
@t u + H(rx u) = 0, (t , x) 2 (0,T )⇥ RN

u(0, x) = u0(x), x 2 RN .
(HJ)

The unique viscosity solution is given by the Hopf-Lax formula:

u(t , x) = min
z2RN

h
u0(z) + t H

⇤
⇣

x � z

t

⌘i
for all (t , x) 2 (0,T ]⇥ RN

where function H
⇤ is the Legendre-Fenchel transform of H, i.e.

H
⇤(q) = max

p2RN

[q · p � H(p)], for q 2 RN .

The Hopf-Lax formula links the Hamilton–Jacobi equation with an associated
Optimal Control Problem

The unique viscosity solution u(t , x) is the value function of the Optimal
Control Problem

minimize
↵(·)

Z
T

T�t

H
⇤(↵(s))ds + u0(x(T )) s.t.

⇢
ẋ(s) = ↵(s)
x(T � t) = x
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Forward and Backward viscosity operators

The same as in 1-d scalar conservation laws we can define both the viscosity
forward and backwards dynamics by the vanishing viscosity method:
Forward viscosity dynamics:

S
+
T
: Lip(RN) �! Lip(RN)

u0 7�! S
+
T

u0 := u(T , ·)

where u(T , ·) is the unique viscosity solution to HJ at time t = T with initial
condition.
Backward viscosity dynamics:

S
�
T

: Lip(RN) �! Lip(RN)
uT 7�! S

�
T

uT := u(0, ·)

where u(0, ·) is the unique backward viscosity solution to HJ at time t = 0
with final condition.
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Forward and Backward viscosity operators

Property

1. For any u0 2 Lip(RN) and any T > 0, the function S
+
T
(x) is

semiconcave: 9C > 0 such that D
2
f (x)  C, 8x 2 RN ..

2. For any uT 2 Lip(RN) and any T > 0, the function S
�
T
(x) is

semiconvex: 9C > 0 such that D
2
f (x) � �C, 8x 2 RN .

u0

S
+
T

u0

uT

S
�
T

uT

Enrique Zuazua Thresholds and Time Inversion
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Backward-forward criterion

Theorem

Let uT 2 Lip(RN) and T > 0. Then uT is reachable if and only if

S
+
T (S

�
T

uT ) = uT .

uT

S
+
T
(S�

T
uT )

Two unreachable targets

• In order to be reachable, the target uT needs to be semiconcave.
• The sharp semiconcavity condition for reachability depends on the

Hamiltonian H and the time-horizon T .
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Backward-forward criterion

Idea of the proof

The backward-forward reachability criterion is a direct consequence of the
following property:

For any u0 2 Lip(Rn) and T > 0, we have

S
+
T � S

�
T
� S

+
T

�
u0(x)

�
= S

+
T u0(x).

u0

S
�
T
(S+

T
u0) = ũ0 S

+
T

u0 = uT

S
+
T

S
+
T

S
�
T
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Projection on Reachable set

What if the target uT is NOT reachable?

We aim at constructing a reachable target “as close as possible” to uT .

Different criteria lead to different inversions
Backward-forward projection:

u
⇤
T := S

+
T (S

�
T

uT )

L
2-projection: Consider the optimization problem

minimize
u02Lip(RN )

JT (u0) := kS
+
T

u0 � uT (·)k2
L2(RN )

Enrique Zuazua Thresholds and Time Inversion
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Geometric properties of u⇤
T

(semiconcave envelopes)

For any given target uT 2 Lip(RN), the function u
⇤
T = S

+
T
(S�

T
uT ) is the

smallest reachable target bounded from below by uT .

Left: unreachable target uT . Right: Its A
�1/T –semiconcave envelope u

⇤
T .
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Geometric properties of u⇤
T

(semiconcave envelopes)
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The backward-forward projection (semiconcave envelopes)

Theorem (Esteve-Z, 2020)

Let
H(p) =

hA p, pi
2

for some matrix A > 0.

Then, for any uT 2 Lip(RN), the function u
⇤
T = S

+
T
(S�

T
uT ) is the viscosity

solution to the obstacle problem

min

⇢
v � uT , ��N


D

2
v � A

�1

T

��
= 0. (5)

• Here, D
2
v denotes the Hessian matrix of v ; and for a symmetric matrix

X , �N [X ] denotes its greatest eigenvalue.
• Observe that for T large, equation (5) is an approximation of the

equation for the concave envelope of uT

min
n

v � uT , ��N

h
D

2
v

io
= 0.

• For any uT 2 Lip(RN), we call u
⇤
T := S

+
T
(S�

T
uT ) the A

�1

T
–semiconcave

envelope of uT in RN .
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Initial data reconstruction

Theorem (Esteve-Zuazua, 2020)

Let uT 2 Lip(RN) be a reachable target and set the function ũ0 := S
�
T

uT .
Then, for any u0 2 Lip(RN), the two following statements are equivalent:

(i) S
+
T
(u0) = uT ;

(ii) u0(x) � ũ0(x), 8x 2 RN and u0(x) = ũ0(x), 8x 2 XT (uT ),

where XT (uT ) is the subset of RN given by

XT (uT ) :=
n

z � T Hp(ruT (z)); 8z 2 RN such that uT (·) is differentiable at z

o
.

Observe that the set of u0’s s. t. S
+
T
(u0) = uT is a convex cone with ũ0 as

vertex.

This leads to a simpler characterization of the class of initial data compatible
with a final target for the 1-d Burgers equations (Colombo-Perrolaz)
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Conclusions, open problems and perspectives

Same questions for all nonlinear evolution PDE.
The least square approach ⌘ hard to implement numerically.
The backward-forward methodology needs to be implemented with care,
adapting the artificial viscosity to the sense of time.
These two approaches do not necessarily to the same inversion.
For more complex systems one may not employ OSLC or semiconcavity
conditions that allow to characterize the reachable sets. T

Open problems:
1. Convex-concave fluxes f (pedestrian flows) / Non-convex Hamiltonians.
2. Multi-dimensional Conservation-Laws.
3. Systems of Conservation Laws.
4. Sharp semi-concavity conditions for general convex Hamiltonians.
5. Space-depending Hamiltonians.
6 More general systems: mixed hyperbolic-parabolic type...
7 Applications to Reinforcement Learning.

Note that backward-forward resolution is always a fast and good first hint for
many problems that would be hard (or impossible) to address otherwise
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Projection on the Reachable Set

Question: What if the target is NOT reachable?

We aim to construct a reachable function which is as close as possible to
the given target.

We study two different projections:

The backward-forward projection: Esteve-Z, SIMA 2020

S
�
T

uT u⇤
T
= S

+
T
(S�

T
uT )

uT

S
+
T

S
�
T

The L
2-projection: work in progress.

u
⇤
T = S

+
T u

⇤
0 , where u

⇤
0 is the solution to the optimization problem

minimize
u02Lip(RN )

JT (u0) := kS
+
T u0 � uT (·)k2

L2(RN ).
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The L2-projection

Optimal inverse design

minimize
u02Lip(RN )

JT (u0) := kS
+
T u0 � uT (·)k2

L2(RN ). (OCP)

This optimization problem can be cast as an optimal control problem in which the
dynamics are given by (HJ), and the control is the initial condition.

Existence of a minimizer for (OCP) can be proved by using compactness
arguments, combined with the regularizing effect of the Hamilton-Jacobi
equation (semiconcavity estimates).
Uniqueness of the minimizer does NOT hold due to the lack of backward
uniqueness of (HJ).
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Gradient based methods

A solution to (OCP) can be approximated by means of a gradient descent
algorithm:

u
(n+1)
0 (x) = u

(n)
0 (x)� ↵n �̃n(x),

where ↵n > 0, and
�̃n ⇡ DJT

⇣
u
(n)
0

⌘

is a Lipschitz approximation of the gradient of the functional JT at u0.

The gradient of JT

For any u0 2 Lip(RN), the gradient of JT at u0 is given by the functional

w 2 Lip(RN) 7�! @wJT (u0) = 2
Z

RN

�
S

+
T u0(x)� uT (x)

�
@w S

+
T u0(x)dx ,

where @w S
+
T

u0(x) is the directional Gateaux derivative of the operator S
+
T

with respect to u0.

In a work in progress, we prove that @w S
+
T

u0(x) exists and can be explicitly
computed by means of the Hamiltonian system.
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The gradient of JT (work in progress)

The gradient of the functional JT at u0 2 Lip(RN) can also be given as

DJT (u0) = ⇡(0),

where ⇡(0) is the solution at time 0 of the backward conservative transport
equation ⇢

@t⇡ + div(a(t , x)⇡) = 0 (0,T )⇥ RN

⇡(T ) = S
+
T

u0 � uT RN (6)

where
a(t , x) = Hp(x ,ru(t , x))

The solution to (6) exists and is unique, however, due to the low regularity of
a(t , x), the gradient DJT (u0) = ⇡(0) is just a Radon measure in RN .

Remark:
Note that the equation (6) is the dual equation to the linear transport equation

⇢
@t v + a(t , x)rx v = 0 (0,T )⇥ RN

v(0) = w 2 Lip(RN) RN

resulting from the linearization of the Hamilton-Jacobi equation (HJ).
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L2-projection vs backward-forward approximation

Question: Are L
2-projection and the backward-forward approximation the

same?

One-dimensional Burgers equation: the L
2-projection of any target

vT 2 BV (R) onto the set of reachable targets is unique and is given by

v
⇤
T = S

+
T (S

�
T

vT )

[see Liard-Z., 2021]

Hamilton-Jacobi equation: the L
2-projection is different to the function

after a backward-forward resolution of (HJ). The function

ũT := S
+
T (S

�
T

uT )

is actually the smallest reachable target bounded from below by uT . [see

Esteve-Z, 2020]
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Reachability condition: non-smooth Hamiltonians

Let us consider the one-dimensional case in space and the Hamiltonian

H(p) = |p| for p 2 R.

The reachability condition for a target uT cannot be determined in terms
of the semiconcavity of uT since, in this case, the solution to (HJ) is no
longer semiconcave1

Nonetheless, for the case H(p) = |p|, we can characterize the reachable
set differently as in the following theorem.

Theorem:

Let uT 2 Lip(R), H(p) = |p| and T > 0. Then, the following statements are
equivalent:

1 uT is reachable;
2 For any x 2 R, if x is a local minimum of uT , then there exists x0 2 R

such that |x � x0|  T and uT (x)  uT (x) for all y 2 B(x0,T ).
(see an illustration in the following slide)

1Recall that the semiconcavity of the solution holds under the assumption @ppH(p) � c, for
some c > 0.
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Reachability condition: non-smooth Hamiltonians

The reachability condition in the above Theorem can be proved by using the
Hopf-Lax formula, which, for the case H(p) = |p| reads as

S
+
T u0(x) = min

y2B(x,T )
u0(y) and S

�
T

uT (x) = max
y2B(x,T )

uT (y),

for the forward and backward viscosity operator respectively.

An example of reachable target for the Hamiltonian H(p) = |p| and T = 1.

In view of the above theorem, we have that concave functions uT : R ! R
are reachable for all T .
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