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“To whom it may concern”



“Peer’s law : The solution to a problem changes the nature of the problem.”

A. Bloch, Murphy’s Law: Complete. Arrow Books, 2002, p. 54.

“When things get too complicated, it sometimes makes sense to stop and wonder: have I asked the
right question?”

E. Bombieri, Prime Territory. Exploring the Infinite Landscape at the Base of the Number System,
The Sciences, vol. 32, no. 5, pp. 32, Sep.–Oct. 1992.

“Lejos un trino.
El ruiseñor no sabe
que te consuela.”

J. L. Borges, Diecisiete haiku (n. 16), in La cifra, Emecé, 1981.
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Abstract

The main focus of this thesis is on the study of singular limits related to scalar conservation
laws. These are first-order partial differential equations that describe how the amount of a physical
quantity in a given region of space changes over time, solely determined by the flux of that quantity
across the boundary of the region.

The first part of this manuscript deals with nonlocal regularizations of scalar conservation laws,
where the flux function depends on the solution through the convolution with a given kernel. These
models are widely used to describe vehicular traffic, where each car adjusts its velocity based on
a weighted average of the traffic density ahead. First, we establish the existence, uniqueness, and
maximum principle for solutions of the nonlocal problem under mild assumptions on the kernel and
flux function. We then investigate the convergence of the solution to that of the corresponding local
conservation law when the nonlocality is shrunk to a local evaluation (i.e., when the kernel tends to
a Dirac delta distribution). For kernels of exponential type, we analyze this singular limit for initial
data of bounded variation as well as for merely bounded ones, using Olĕınik-type estimates. We
also demonstrate how the techniques developed in this analysis can be used to study the long-time
behavior of a nonlocal regularization of the Burgers equation and to show that the asymptotic
profile is given by the N -wave entropy admissible solution. We also investigate the role played by
artificial viscosity in the nonlocal–to–local singular limit process. Finally, we study the boundary
controllability problem for nonlocal traffic models.

In the second part of this thesis, we address the controllability of scalar conservation laws
on networks and its relationship to the vanishing viscosity singular limit. Our main analysis is
carried out in the linear case: for a linear advection-diffusion equation, we show that the cost of
controllability blows up exponentially as the viscosity parameter vanishes for small times and decays
exponentially for a sufficiently long time-horizon. Finally, for nonlinear conservation laws, we prove
a controllability result for entropy solutions using a Lyapunov approach and highlight the stability
of this result when a small viscosity is added.
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Zusammenfassung

Der Schwerpunkt dieser Dissertation liegt auf der Untersuchung singulärer Grenzwerte im Kontext
von skalaren Erhaltungsgleichungen. Dies sind partielle Differentialgleichungen erster Ordnung, die
beschreiben, wie sich die Menge einer physikalischen Größe in einer bestimmten Raumregion im
Laufe der Zeit ändert, allein bestimmt durch den Fluss dieser Größe über die Grenze der Region.

Der erste Teil dieses Manuskripts befasst sich mit nichtlokalen Regularisierungen von skalaren
Erhaltungsgleichungen, bei denen die Flussfunktion von der Lösung abhängt, indem sie mit
einem gegebenen Kernel konvolutiert wird. Diese Modelle werden häufig verwendet, um den
Fahrzeugverkehr zu beschreiben, bei dem jedes Auto seine Geschwindigkeit anhand eines gewichteten
Durchschnitts der Verkehrsdichte voraus anpasst. Zunächst stellen wir die Existenz, Eindeutigkeit
und das Maximumprinzip für Lösungen des nichtlokalen Problems unter milden Annahmen über den
Kernel und die Flussfunktion fest. Anschließend untersuchen wir die Konvergenz der Lösung zu der
des entsprechenden lokalen Erhaltungsgesetzes, wenn die Nichtlokalität zu einer lokalen Auswertung
schrumpft (d.h. wenn der Kern gegen eine Dirac-Delta-Verteilung tendiert). Für Kerne exponen-
tiellen Typs analysieren wir diesen singulären Grenzwert für Anfangsdaten mit beschränkter Varia-
tion sowie für lediglich beschränkte Anfangsdaten unter Verwendung von Olĕınik-Typ-Schätzungen.
Techniken verwendet werden können, um das Langzeitverhalten einer nichtlokalen Regularisierung
der Burgers-Gleichung zu untersuchen und nachzuweisen, dass das asymptotische Profil durch die
N -Wellen-Entropie zulässige Lösung gegeben ist. Wir untersuchen auch die Rolle, die künstliche
Viskosität im nichtlokalen-zu-lokalen singulären Grenzprozess spielt. Schließlich untersuchen wir das
Randsteuerungsproblem für nichtlokale Verkehrsmodelle.

Im zweiten Teil dieser Arbeit beschäftigen wir uns mit der Steuerbarkeit skalärer Erhaltungs-
gleichungen auf Netzwerken und ihrem Zusammenhang mit dem Grenzwert des verschwindenden
Viskositätskoeffizienten. Unsere Hauptanalyse wird im linearen Fall durchgeführt: Für eine lineare
Advektions-Diffusions-Gleichung zeigen wir, dass die Kosten der Steuerbarkeit exponentiell ansteigen,
wenn der Viskositätskoeffizient für kurze Zeiten gegen Null geht, und für einen ausreichend langen
Zeitraum exponentiell abfallen. Schließlich beweisen wir für nichtlineare Erhaltungsgleichungen ein
Steuerbarkeitsresultat für Entropielösungen unter Verwendung eines Lyapunov-Ansatzes und heben
die Stabilität dieses Ergebnisses hervor, wenn eine geringe Viskosität hinzugefügt wird.
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CHAPTER 1

Introduction

The main object of study of this thesis is the first-order partial differential equation

∂tρ(t, x) + ∂xf(ρ(t, x)) = 0, (t, x) ∈ (0,+∞)× R,(1.0.1)

where ρ : [0,+∞) × R → R is called conserved quantity and f : R → R flux (of the conserved
quantity). This type of equation is called scalar conservation law because it expresses the fact that
the variation of ρ between two points is equal to the difference of the flux at these two points. Indeed,
if we (formally) integrate (1.0.1) between two points a, b ∈ R (with a < b), we obtain

d

dt

∫ b

a
ρ(t, x) dx =

∫ b

a
∂tρ(t, x) dx = −

∫ b

a
∂xf(ρ(t, x)) dx = f(ρ(t, a))− f(ρ(t, b))

= [inflow at x = a and time t]− [outflow at x = b and time t] .

(1.0.2)

Under integrability assumptions, this leads to

d

dt

∫
R
ρ(t, x) dx = 0.

In other words, the physical entity ρ is neither created nor destroyed. Thus, (1.0.1) arises when
modeling the evolution of a quantity that is conserved: mass, momentum, energy, etc.

ba

ρ(t, x)

Figure 1.1. Illustration of (1.0.2) in case ρ represents a density of cars. Cf. [44,
Figure 2].

Another way to view the dynamics of (1.0.1) is to rewrite the equation in advective form:

∂tρ(t, x) + f ′(ρ(t, x))∂xρ(t, x) = 0, (t, x) ∈ (0,+∞)× R.

When the flux f is not linear, the quantity ρ is transported at a speed of f ′(ρ) that depends on the
solution itself.

Let us now focus on solving (1.0.1) and, more specifically, the associated Cauchy problem{
∂tρ(t, x) + ∂x(f(ρ(t, x))) = 0, (t, x) ∈ (0,+∞)× R,
ρ(0, x) = ρ0(x), x ∈ R,

(1.0.3)

where ρ0 : R → R is a given initial condition. Among the key features of scalar conservation laws,
there is the emergence of singularities in finite time (even starting from smooth initial data; see
Figure 1.2). Supposing that ρ0 and f are smooth, we can build classical solutions of (1.0.3) by the
method of characteristics, at least on a sufficiently small time-horizon. The idea is as follows: a
classical solution of (1.0.3) is constant along the curves satisfying x′(t) = f ′(ρ(t, x(t))). Indeed, we
compute

d

dt
(ρ(t, x(t))) = ∂tρ(t, x(t)) + x′(t)∂xρ(t, x(t))

= ∂tρ(t, x(t)) + f ′(ρ(t, x(t)))∂xρ(t, x(t)) = 0, t > 0.
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6 1. INTRODUCTION

This allows us to define the solution ρ by fixing a point (t, x) ∈ (0,+∞)× R, solving the equation

x = y + tf ′ (ρ0(y)) , y ∈ R,(1.0.4)

and setting ρ(t, x) = ρ0(y). In the linear case, the characteristic curves are a priori known straight
lines and the graph of the solution at a given time is obtained by translating the graph of the initial
data. In the nonlinear case, the speed depends on the solution itself, which thus deforms over time
(as illustrated in Figure 1.2) and it may happen that equation (1.0.4) has multiple solutions, thus
preventing the construction of a classical solution. More precisely, by [222, Proposition 2.1.1], for
ρ0 ∈ C1(R) ∩W 1,∞(R), the Cauchy problem (1.0.3) has one and only one C1 solution defined on
[0, T ∗)× R, where

T ∗ :=

{
+∞ if f ′ ◦ ρ0 is increasing,

− 1
inf(f ′◦ρ0)′

otherwise,

and does not have one in any larger strip [0, T ]× R.

x

ρ(0, ·) ρ(t, ·)
ρ(T ∗, ·)

Figure 1.2. Finite-time shock formation for scalar conservation laws. Cf. [44,
Figure 5].

We have thus to resort to extending the notion of solutions to possibly discontinuous functions,
such as essentially bounded ones.

Another fundamental feature of conservation laws is the need to prescribe an entropy condition
in order to single out a unique “physically meaningful” solution among the many possible weak ones.
Let us recall the notion of entropy solutions for the Cauchy problem (1.0.3), which is inspired by
the second principle of thermodynamics (see [135, 115]).

Definition 1.0.1 (Entropy solutions). A function ρ : [0,+∞)×R → R is an entropy solution
of the Cauchy problem (1.0.3) with initial datum ρ0 ∈ L∞

loc(R) if ρ ∈ L∞
loc((0,+∞) × R) and, for

every non-negative test function φ ∈ C∞
c ([0,+∞)× R;R+), we have∫ ∞

0

∫
R

(
η(ρ(t, x))∂tφ(t, x) + q(ρ(t, x))∂xφ(t, x)

)
dt dx+

∫
R
η(ρ0(x))φ(0, x) dx ≥ 0(1.0.5)

for every convex entropy η with entropy-flux q, i.e. η, q ∈ C2(R) with η′′ ≥ 0 and η′f ′ = q′.

One of the main contributions in the classical theory of conservation laws, due to Kružkov (see
[174]), is the fact that the solution operator of the scalar conservation law (1.0.1) is a L1-contraction:
using the entropy–entropy-flux pair

η(ρ, k) := |ρ− k| and q(ρ, k) := sign(ρ− k)|f(ρ)− f(k)|, for every k ∈ R,
and a “doubling of variables” argument, he proved that two entropy solutions satisfy∫

R
|ρ1(t, x)− ρ2(t, x)|dx ≤

∫
R
|ρ1(0, x)− ρ2(0, x)| dx, t > 0.

From this, uniqueness and BV bounds follow. For a modern presentation of the proof of the well-
posedness of entropy solutions for scalar conservation laws, we refer the reader to the monographs
[116, 161, 203, 145, 222, 43].

In this thesis, we shall focus on two aspects of scalar conservation laws:

1. their nonlocal regularization;
2. their study on a metric graph.
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1.1. Nonlocal regularizations of scalar conservation laws

1.1.1. Motivation and formulation of the Cauchy problem. Several mathematical models
are formulated in terms of conservation laws.

For instance, the velocity u of a field of particles that do not interact with each other (an isolated
one-dimensional medium) is modeled by the (inviscid) Burgers equation1:

∂tu+ ∂x

(
u2

2

)
= 0, (t, x) ∈ (0,+∞)× R.

In most of what follows, we will be motivated by the study of macroscopic traffic flow (as
introduced by Lighthill–Whitham–Richards, [218, 187]): ρ represents the car density and, typically,
we assume that the flux is a concave function given by

f(ρ) := V (ρ)ρ,

for a suitable velocity function V : R → R that is monotonically decreasing (i.e., the higher the
density of cars on the road, the lower their speed)—e.g., the celebrated LWR–Greenshields model
V (ξ) := vmax(1− ξ/ρmax), with vmax > 0 and ρmax > 0 (see, e.g., [147] and [138, Section 3.1.2]).

The dynamics given by the Cauchy problem{
∂tρ(t, x) + ∂x

(
V (ρ(t, x))ρ(t, x)

)
= 0, (t, x) ∈ (0,+∞)× R,

ρ(0, x) = ρ0(x), x ∈ R,
(1.1.1)

where ρ0 : R → R represents the (non-negative) initial traffic density, does not allow for a car to
change its velocity looking at the traffic ahead, but only based on the density at the given space-time
point. This is one reason for introducing a nonlocal variant of this model, which can be written as{

∂tρ(t, x) + ∂x
(
V (W [ρ](t, x))ρ(t, x)

)
= 0, (t, x) ∈ (0,+∞)× R,

ρ(0, x) = ρ0(x), x ∈ R,
(1.1.2)

with

W [ρ](t, x) := (γ ∗ ρ)(t, x) :=
∫
R
γ
(
x− y

)
ρ(t, y) dy.(1.1.3)

We shall call W [ρ] : (0,+∞)×R → R the nonlocal impact affecting the velocity function V : R → R
of the nonlocal conservation law in (1.1.2). The nonlocal weight γ influences how the density is
averaged; for traffic flow modeling, it is reasonable to assume that γ is anisotropic and, in particular,
supported on the negative axis R− and monotonically non-decreasing. This means that the drivers
adjust their speed based only on the “downstream” traffic density (i.e., only looking forward and
not backward) and give it more consideration the closer it is to their position.

t

t

x

Local

Nonlocal

Figure 1.3. Comparison of local and nonlocal traffic flow models. In the nonlocal
case, the red car looks ahead within the golden region and adjusts its velocity in
response to the high downstream density (which illustrates the effect of the nonlocal
impact on the dynamics). Cf. [170, Figure 1].

In recent decades, nonlocal balance laws have been used to describe various physical phenomena:
from the aforementioned traffic flow [144, 35, 133, 65, 64, 63], to supply chains [166, 223, 146],
crowd dynamics [4, 96, 94, 95], opinion formation [6, 215], chemical engineering processes [214,

1The origins of the viscous Burgers equation can be traced back to [49, 85, 29].



8 1. INTRODUCTION

226], sedimentation [33], slow erosion of granular matter [7, 83, 81], materials with fading memory
effects [60], various biological and industrial models [97], and conveyor belt dynamics [220]. We
refer to [170] for a survey. Moreover, a nonlocal regularization of the Burgers equation (the α-
Burgers equation; see [225, 32, 149]) has long been used to describe the averaged motion of an
ideal incompressible fluid, filtering over spatial scales smaller than some a priori fixed α > 0:{

∂tuα(t, x) + vα(t, x)∂xuα(t, x) = 0, (t, x) ∈ (0,+∞)× R,
−α∂2xxvα(t, x) + vα(t, x) = uα(t, x), (t, x) ∈ (0,+∞)× R.

For the Cauchy problem (1.1.2), various well-posedness results have been presented in the
literature under different sets of assumptions regarding initial data, velocity function, and nonlocal
weight. For example, in [35, 33], existence was established via numerical schemes, while, in [83],
the vanishing viscosity technique was employed; both approaches required an entropy condition to
be imposed to prove uniqueness. More recently, the existence and uniqueness of weak solutions
were established using fixed-point methods, without necessitating an entropy condition (see, e.g.,
[109, 167, 172, 171]). For measure-valued solutions, a similar approach was adopted in [112]. A
key point in this analysis is that, for the Cauchy problem (1.1.2), the regularity of the initial data is
essentially preserved (under suitable assumptions) because of the nonlocal term, which means that
no shocks may arise from a smooth initial density.

The first contribution of this thesis, presented in Chapter 22, is to extend the previously
known well-posedness results to a more general situation: essentially bounded initial data, locally
Lipschitz continuous velocity, and assuming that the nonlocal weight is non-negative and belongs
to BV. This generalizes the standard condition γ ∈ W 1,∞ commonly found in the literature (see,
for example, [167]).

Following [8], we recall that the total variation of a function u ∈ L1(R) is given by

|u|TV(R) := sup

{∫
R
uψ′ dx : ψ ∈ C∞

c (R), ∥ψ∥C0(R) ≤ 1

}
.

The norm ∥u∥BV(R) := ∥u∥L1(R)+ |u|TV(R) endows the space of L1 functions with bounded variation,
BV(R), with a Banach space structure. We also use the notation TV(R) to denote the space of
measurable functions with bounded variation.

The key idea to establish the well-posedness result is to interpret the nonlocal conservation law
in (1.1.2) as a fixed-point problem. To this end, we may rewrite it as a coupled system

∂tρ(t, x) + ∂x(V (w(t, x))ρ(t, x)) = 0, (t, x) ∈ (0,+∞)× R,
w(t, x) :=W [ρ](t, x), (t, x) ∈ (0,+∞)× R,
ρ(0, x) = ρ0(x), x ∈ R.

(1.1.4)

As long as w is Lipschitz continuous, we can view the first equation in (1.1.4) as a linear conser-
vation law with a Lipschitz continuous space-time dependent velocity field. Using the method of
characteristics, we can then express the solution as

ρ(t, x) = ρ0(ξ[w](t, x; 0))∂xξ[w](t, x; 0), (t, x) ∈ (0, T )× R,
for T > 0, where ξ[w] is the solution of the characteristic equation (written here as a Volterra-type
integral equation):

ξ(t, x; τ) = x+

∫ τ

t
V (w(s, ξ(t, x; s))) ds, (t, x, τ) ∈ (0, T )× R× (0, T ).

Plugging this back into the second equation of (1.1.4) yields the following fixed-point problem in w:

w(t, x) =

∫
R
γ(x− y)ρ(t, y) dy =

∫
R
γ(x− ξ[w](0, y; t))ρ0(y) dy, (t, x) ∈ (0, T )× R.(1.1.5)

Banach’s fixed-point theorem provides the existence of a unique solution for problem (1.1.5) in
L∞((0, T ∗);W 1,∞(R)) for a suitably small time-horizon T ∗ > 0. Under the physically reasonable

2G. M. Coclite, N. De Nitti, A. Keimer, and L. Pflug. On existence and uniqueness of weak solutions to
nonlocal conservation laws with BV kernels. Z. Angew. Math. Phys., 73(6):Paper No. 241, 10, 2022.
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additional monotonicity assumptions on the velocity and the weight mentioned above, we obtain
the existence result on an arbitrary time-horizon due to a comparison principle.

1.1.2. Nonlocal–to–local singular limit problem. Having established a well-posedness
result for the nonlocal problem, a natural question arises: whether we can recover the entropy-
admissible solution of the local equation as the nonlocality is shrunk to a local evaluation (i.e.,
when the weight γ approaches a Dirac delta distribution). In other words, given a nonlocal average
parameter α > 0, we consider the rescaled problem{

∂tρα(t, x) + ∂x
(
V (Wα[ρα](t, x))ρα(t, x)

)
= 0, (t, x) ∈ (0,+∞)× R,

ρα(0, x) = ρ0(x), x ∈ R,
(1.1.6)

with

Wα[ρα](t, x) := (γα ∗ ρα)(t, x) :=
1

α

∫
R
γ

(
x− y

α

)
ρα(t, y) dy;(1.1.7)

the aim is then to study the limit of the family {ρα}α>0 as α→ 0+.
The interest in a nonlocal–to–local convergence result lies in bridging the gap between nonlocal

and local modeling of phenomena described by conservation laws. In particular, this type of singular
limit presents an alternative to the classical vanishing viscosity approach (for which we refer, e.g.,
to [161, Appendix B]): it allows us to define entropy-admissible solutions of local conservation laws
by viewing them as limits of weak solutions to nonlocal conservation laws. In contrast to the case
of a parabolic viscous regularization, the nature of the approximating nonlocal equation retains
a somewhat “hyperbolic” character (namely, with finite propagation of mass—albeit with infinite
propagation of information).

First, in [13], it was observed that, at least numerically, the solution of the nonlocal conservation
law appears to converge to the entropy solution of the corresponding local problem as α → 0+.
However, in [90], several counterexamples highlighted that this is not generally true. Positive results
on the nonlocal–to–local convergence were obtained in [234] provided that the limit entropy solution
is smooth and the convolution kernel is even; in [168], for a large class of nonlocal conservation laws
with monotone initial data, exploiting the fact that monotonicity is preserved along the evolution; and,
in [88], under the assumption that the initial datum has bounded total variation, is bounded away
from zero, and satisfies a one-sided Lipschitz condition. More recently, in [45, 46], Bressan and Shen
proved a convergence result for an exponential nonlocal weight—i.e., for γ(·) := 1(−∞,0](·) exp(·)—
provided that the initial datum is bounded away from zero and has bounded total variation. The
core of their argument is the observation that, under suitable changes of variables, the nonlocal
problem can be rewritten as a hyperbolic system with relaxation terms: indeed, letting s := t− x/λ,
y := x (with λ > 0 to be later chosen sufficiently large), the PDE in (1.1.6) can be rewritten as{

∂s (λρα − ραV (Wα)) + ∂y(λραV (Wα)) = 0, (s, y) ∈ (0,+∞)× R,
∂sWα − λ∂yWα = λ

α(ρα −Wα), (s, y) ∈ (0,+∞)× R.

The assumption on the initial data being bounded away from zero played a key role in showing
a uniform total variation bound for the solution of the nonlocal problem—specifically, for the
quantities log(ρα) and log(λ− V (Wα)). On the other hand, in [88], a counterexample was provided
to demonstrate that the total variation of the solution can blow up if the initial datum is not bounded
away from zero.

The limitations illustrated by the aforementioned results lead us to focus, in Chapter 33,
on the particular case of the exponential weight γ(·) := 1(−∞,0](·) exp(·) and study the nonlocal
impact Wα instead of the solution ρα itself. By analyzing Wα, it is possible to remove the additional
assumption that the initial datum is bounded away from zero. This is because Wα enjoys extra

3G. M. Coclite, J.-M. Coron, N. De Nitti, A. Keimer, and L. Pflug. A general result on the approximation of
local conservation laws by nonlocal conservation laws: The singular limit problem for exponential kernels. Ann. Inst.
H. Poincaré Anal. Non Linéaire, 2022.
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1

2

0 x

γα

Figure 1.4. Plot of the one-sided exponential weight γα := α−11(−∞,0](·) exp(·/α)
for α = 1 (blue) and α = 0.5 (red).

regularity; in particular, its total variation remains uniformly bounded by the one of the initial
datum. The key idea is to use the ODE given by

α∂xWα[ρα](t, x) = ∂x

∫ ∞

x
exp

(
x− y

α

)
ρα(t, y) dy

=Wα[ρα](t, x)− ρα(t, x), (t, x) ∈ (0,+∞)× R,

to deduce a conservation law in Wα with a nonlocal source (which acts as a regularization term):

(1.1.8) ∂tWα + ∂x(V (Wα)Wα) = gα − gα ∗ γα, where gα := V ′(Wα)Wα∂xWα.

Using (1.1.8), we establish a uniform total variation bound on Wα without assuming that the initial
datum is bounded away from zero. Furthermore, due to the specific structure of the exponential
weight, this directly implies that the solution of the conservation law converges strongly in L1 to
the entropy-admissible solution of the corresponding local conservation law.

It is worth noting that, in traffic models, the use of an exponential weight is not common; instead,
one with compact support is typically chosen to reflect the fact that cars only look ahead within
a finite space-horizon. However, the behavior of a compactly supported weight can be effectively
approximated by an exponentially-decaying one.

Our approach of using Wα to study the convergence of the nonlocal conservation law was later
extended in [89] to establish convergence results, with rates, for more general classes of weights.

The key assumption in all the contributions cited above is that the initial datum is of bounded
variation. However, it is of interest to consider the case of an initial datum that is merely bounded. To
this end, in Chapter 44, we establish an Olĕınik-type inequality. For the scalar local conservation
law (1.0.1), Olĕınik’s result [206] (see also Lax [181], Ladyženskaya [175], and Hopf [162]) states
that, if f is uniformly strictly convex (i.e. f ′′ ≥ κ > 0 on R), then any entropy solution of (1.0.1)
satisfies the following one-sided Lipschitz bound:

ρ(t, y)− ρ(t, x) ≤ y − x

κt
, t > 0, x, y ∈ R, x ≤ y.

This inequality can be written in a sharp form (see [113, 159]) assuming f ′′ ≥ 0 and that there are
no non-trivial intervals where f is affine (Tartar’s condition; see [227]):

f ′(ρ(t, y))− f ′(ρ(t, x)) ≤ y − x

t
, t > 0, x, y ∈ R, x ≤ y.

The Olĕınik estimate provides an equivalent characterization of entropy solutions and exemplifies
how the nonlinearity in a PDE can produce a regularizing effect on the solution: initial data in L∞

are instantaneously regularized to functions of locally bounded variation (BVloc).

4G. M. Coclite, M. Colombo, G. Crippa, N. De Nitti, A. Keimer, E. Marconi, L. Pflug, and L. V. Spinolo.
Olĕınik-type estimates for nonlocal conservation laws and applications to the nonlocal-to-local limit. Submitted, 2023.



1.1. NONLOCAL REGULARIZATIONS OF SCALAR CONSERVATION LAWS 11

For nonlocal conservation laws, the only previous results in this direction were obtained under
rather restrictive assumptions: an Olĕınik-type estimate was established in [88, Theorem 3] for
initial data that satisfy a one-sided Lipschitz condition and are bounded away from zero and, in
[108, Theorem 3.10] (for a slightly different class of nonlocal conservation laws in advective form),
for initial data that are quasi-concave and have a one-sided bound on the derivative.

Arguing again with (1.1.8), we establish Olĕınik-type estimates for the nonlocal term Wα and a
one-sided bound for the nonlocal source V ′(Wα)Wα∂xWα. As a corollary, we deduce the nonlocal–
to–local convergence results from Chapter 3 without requiring the initial data to have bounded
total variation. However, the trade-off is that we need stronger assumptions on the velocity function
V (which are still satisfied by several relevant models).

1.1.3. Long-time asymptotics for a nonlocal Burgers equation and N-waves. The
Olĕınik inequalities established in Chapter 4 serve as a basis for exploring a distinct, albeit
somewhat related, problem: the long-time behavior of the solution to a nonlocal Burgers equation.
In Chapter 55, we consider{

∂tρ(t, x) + ∂x
(
W [ρ](t, x)ρ(t, x)

)
= 0, (t, x) ∈ (0,+∞)× R,

ρ(0, x) = ρ0(x), x ∈ R,
(1.1.9)

with initial datum ρ0 ∈ L∞(R;R≥0) ∩ L1(R;R≥0) and nonlocal impact

W [ρ](t, x) :=

∫ x

−∞
exp(y − x)ρ(t, y) dy, (t, x) ∈ (0,+∞)× R,(1.1.10)

which also satisfies the identity

∂xW [ρ](t, x) = ρ(t, x)−W [ρ](t, x), (t, x) ∈ (0,+∞)× R.(1.1.11)

We then show that, as t → +∞, ρ(t, ·) converges to the (unique) N -wave solution (or source-type
solution) w of the local Burgers equation (see [192, Eq. (2.1)]), i.e., the solution of the Burgers
equation with initial data given by a Dirac delta,{

∂tw(t, x) + ∂x(w
2(t, x)) = 0, (t, x) ∈ (0,+∞)× R,

w(0, x) =Mδ{x=0}, x ∈ R,
(1.1.12)

which is given explicitly by

w(t, x) =

{ x

2t
if x ∈ (0,

√
4Mt),

0 otherwise.
(1.1.13)

Here, M denotes the mass of the initial datum ρ0.
Proving this result can be reduced to studying a nonlocal–to–local singular limit problem that

is very similar to the ones of Chapters 3 and 4. Indeed, following [192], for a given λ > 0, we
consider the rescaled function

ρλ(t, x) := λρ(λ2t, λx),(1.1.14)

which solves {
∂tρλ(t, x) + ∂x

(
Wλ[ρλ](t, x)ρλ(t, x)

)
= 0, (t, x) ∈ (0,+∞)× R,

ρλ(0, x) = ρ0,λ(x) := λρ0(λx), x ∈ R,
(1.1.15)

with

Wλ[ρλ](t, x) := λ

∫ x

−∞
exp(λ(y − x))ρλ(t, y) dy, (t, x) ∈ (0,+∞)× R.(1.1.16)

We show that, for a fixed t > 0, ρλ(t, ·) → w(t, ·) in L1 (R) as λ→ ∞, which, in turn, implies

∥ρ(t, ·)− w(t, ·)∥L1(R) → 0 as t→ +∞,

with w defined in (1.1.13).

5G. M. Coclite, N. De Nitti, A. Keimer, L. Pflug, and E. Zuazua. Long-time convergence of a nonlocal
Burgers’ equation towards the local N-wave. Nonlinearity (to appear), 2023.
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0 x

w

Figure 1.5. Plot of an N -wave solution (1.1.13) (with M = 1) for t = 0.5 (blue),
t = 1 (red), and t = 2 (yellow). Cf. [72, Figure 1].

A significant difference and added level of complexity, compared to Chapter 3, is the fact that
the initial data converge to a Dirac delta, i.e.,

ρλ(0, ·) →Mδ0 and Wλ(0, ·) →Mδ0(1.1.17)

in the sense of distributions as λ→ +∞. In other words, the sole uniform bound on the initial data
ρ0, with respect to λ, is given by its L1-norm.

To overcome this difficulty, we leverage the Olĕınik-type inequality satisfied by Wλ, i.e.

Wλ(t, x)−Wλ(t, y)

x− y
≤ 1

t
, t > 0, x, y ∈ R, x ̸= y.

Combining it with the uniform L1-bound∫
R
Wλ(t, x) dx =M, t > 0,

we deduce an L∞-bound for t > 0:

0 ≤Wλ(t, x) ≤
√

2M

t
, (t, x) ∈ (0,+∞)× R.

With these ingredients, we can establish the convergence of {Wλ}λ>0 and {ρλ}λ>0 to the N -wave
solution of the (local) Burgers equation following the general framework proposed in [127].

1.1.4. Nonlocal–to–local singular limit with an artificial viscosity. Investigating the
effects of artificial viscosity during the nonlocal–to–local approximation process is also relevant.
Indeed, most numerical tests used to conjecture the convergence results employed a (dissipative)
Lax–Friedrichs scheme; a detailed analysis of the effect of numerical viscosity on the study of the
nonlocal–to–local limit can be found in [87].

The incorporation of viscous perturbations was extensively explored in the context of smooth,
non-negative, compactly supported weights given by standard mollifiers (see [90, 87, 86] and also
[51] in the case of more regular initial data and linear velocity).

In the particular case of an exponential nonlocal weight, in Chapter 66, we improve the
convergence result in [90]. For α, ν > 0, we consider

(1.1.18)

{
∂tρα,ν(t, x) + ∂x(V (Wα[ρα,ν ](t, x))ρα,ν(t, x)) = ν∂2xxρα,ν(t, x), (t, x) ∈ (0,+∞)× R,
ρα,ν(0, x) = ρ0,ν(x), x ∈ R,

6G. M. Coclite, N. De Nitti, A. Keimer, and L. Pflug. Singular limits with vanishing viscosity for nonlocal
conservation laws. Nonlinear Anal., 211:Paper No. 112370, 12, 2021.
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with

(1.1.19) Wα[ρα,ν ](t, x) :=
1

α

∫ ∞

x
exp

(
x− y

α

)
ρα,ν(t, y) dy, (t, x) ∈ (0,+∞)× R,

and smoothed initial data ρ0,ν .
As α, ν → 0+, we show that the family of solutions {ρα,ν}α,ν>0 converges to the entropy solution

of the corresponding local conservation law (1.1.1) under the assumption α/ν → 0 (which is weaker

than the condition α ≤ e−Cν
−β

, with C, β > 0, used in [90]).
A critical observation for our proof is that (1.1.18)–(1.1.19) can be reformulated as a higher-order

equation with competing diffusion and dispersion effects:
∂tWα,ν + ∂x(V (Wα,ν)Wα,ν)

= α∂2txWα,ν + ν∂2xxWα,ν + α∂x(V (Wα,ν)∂xWα,ν)− αν∂3xxxWα,ν , (t, x) ∈ (0,+∞)× R,
Wα,ν(0, x) =

1
α

∫∞
x exp

(x−y
α

)
ρ0,ν(y) dy, x ∈ R.

(1.1.20)

While the proof presented in [90] (which considers more general kernels) relies heavily on energy
estimates for the heat kernel and Duhamel’s principle, our approach differs. Specifically, we establish
an energy estimate for the nonlocal impact Wα,ν by leveraging the structure of (1.1.20); next, we
apply Tatar’s compensated compactness technique (see [197, 227]) to deduce the Lp compactness
of the family {ρα,ν}α,ν>0.

This strategy draws some inspiration from the study of the singular limit problem for the
Camassa–Holm equation (see [84, 74]) and the Ostrovski–Hunter equation (see [76, 73]): in these
cases, the approximating equations are higher-order ones that can be equivalently rewritten as
parabolic–elliptic systems or as conservation laws with nonlocal perturbations. These works were, in
turn, influenced by the seminal paper [221] by Schonbek on the zero diffusion-dispersion limits for
the Korteweg–de Vries–Burgers and Benjamin–Bona–Mahony–Burgers equations. However, (1.1.20)
presents several peculiarities compared to the equations appearing in the references mentioned
above: it involves a mixed derivative ∂2txWα,ν ; (1.1.6) represents a PDE–ODE coupling rather than a
parabolic–elliptic system; and we do not need to rely on the Lp compensated compactness developed
by Schonbek—instead, we are able to deduce an L∞-estimate from (1.1.18), which allows us to apply
the standard L∞ compensated compactness theorem by Tartar.

1.1.5. Controllability of nonlocal conservation laws. Recent research has also focused on
the initial-boundary value problem (IBVP) for nonlocal conservation laws. In [172], a fixed-point
approach based on characteristics (similar to the approach also used in Chapter 2 for the Cauchy
problem) was utilized to show the existence and uniqueness of a weak solution. This naturally
leads to the question of whether it is possible to use the boundary data to “control” the nonlocal
dynamics.

The literature addressing the boundary controllability and stabilization of solutions of nonlocal
conservation laws is limited, despite the significant interest in this problem. This interest stems from
the question of whether it is possible to direct the traffic on a road segment toward a target end-state
or to achieve a given out-flux. In [107, 223, 110, 109, 111, 62], some results on end-state and
out-flux controllability, as well as asymptotic exponential stabilization, were obtained for a nonlocal
model introduced in [24] to describe semiconductor manufacturing systems:

∂tρ(t, x) + ∂x(ρ(t, x)V (W [ρ](t))) = 0, (t, x) ∈ (0,+∞)× (0, 1),

ρ(0, x) = ρ0(x), x ∈ (0, 1),

V (W (t))ρ(t, 0) = u(t), t ∈ (0,+∞),

(1.1.21)

with a strictly positive velocity function V ∈ C1(R;R>0) and a nonlocal impact that is independent

of the spatial domain—namely, V (ξ) := 1/(1 + ξ), for ξ ≥ 0, and W [ρ](t) :=
∫ 1
0 ρ(t, x) dx. These

results were generalized in [66], where (local) end-state controllability and out-flux controllability
results were established for a space-dependent velocity (but space-independent nonlocal impact),
V (x,W [ρ](t)).

For a related system of scalar nonlocal conservation laws on networks (modeling a highly re-
entrant multi-commodity manufacturing system), the optimal control problem was analyzed in [155].
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A more general conservation law featuring an explicitly space-dependent nonlocal flux was considered
in [91] in the context of modeling supply chains and pedestrian flow.

In Chapter 77, we extend the previous results by investigating the controllability of
∂tρα(t, x) + ∂x

(
V
(
Wα[ρα](t, x))ρα(t, x)

)
= 0, (t, x) ∈ (0,+∞)× (0, 1),

ρα(0, x) = ρ0(x), x ∈ (0, 1),

V (W[ρα](t, 0))ρα(t, 0) = V (W[ρα](t, 0))uℓ(t), t ∈ (0,+∞),

with

W[ρα](t, x) :=
1

α

∫ ∞

x
exp

(
x− y

α

)(
1(−∞,1)(y)ρα(t, y) + 1[1,+∞)(y)ur(t)

)
dy,

for (t, x) ∈ (0,+∞)× (0, 1). At the entry point of the road, x = 0, an in-flux boundary condition
with density uℓ is prescribed, which can be interpreted as “on-ramp metering”. The function ur in
the nonlocal operator can be interpreted as a parameter that influences the velocity with which the
density (normalized between 0 and 1 for this discussion) leaves the domain at x = 1; for instance, it
can be used to model traffic lights: if ur ≡ 1, no density leaves (red light); if ur ≡ 0, the adjacent
road is fully evacuated and the density can leave as fast as possible (green light). We stress that it
is necessary to define ur not only at x = 1, but also on (1,+∞) due to the structure of the nonlocal
term.

In the context of control, both uℓ and ur are relevant, and we demonstrate that they can
be employed to steer the system toward a desired end-state or out-flux. We establish that exact
controllability is equivalent to the existence of weak solutions to the backward-in-time problem. In
particular, we prove controllability to constant states. We also analyze the long-time behavior of
the solutions under suitable hypotheses on the boundary data.

x = 1

t

x = 0

Figure 1.6. As in Figure 1.1, the red car looks ahead within the golden region and
adjusts its velocity accordingly. The blue areas on either side of the road segment
indicate the boundary data, uℓ and ur: they represent the in-flux at x = 0 and the
“speed control” of the cars leaving the domain at x = 1, respectively. Cf. [30, Figure
1.1].

1.2. Conservation laws models on networks

The study of conservation laws on networks has a rich history dating back to [160, 80]. Over the
past decades, this field has received significant attention due to its relevance in a variety of applied
problems in diverse domains, such as blood circulation [217, 130], gas pipelines [92, 93], vehicular
traffic [138, 137], irrigation channels [126], and supply chains [118], among others. Surveys and
additional references are available in [138, 47].

In particular, the well-posedness of (suitable notions of) entropy solutions for conservation laws
on networks was extensively investigated. In the second part of this thesis, we concentrate on the
(unique) entropy-admissible solution that arises from a specific vanishing viscosity approximation
process (see [79, 19, 77, 202]; cf. also [52] for Hamilton–Jacobi equations). Our main aim is
to study several aspects of the controllability of scalar conservation laws and, in particular, the
interplay between controllability and vanishing viscosity on tree-shaped networks (i.e., networks
without loops).

7A. Bayen, J.-M. Coron, N. De Nitti, A. Keimer, and L. Pflug. Boundary controllability and asymptotic
stabilization of a nonlocal traffic flow model. Vietnam J. Math., 49(3):957–985, 2021.
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1.2.1. Controllability of linear advection-diffusion equations and vanishing viscosity
limit. In Chapter 88, we begin by considering the case of a linear flux function and incorporate a
small viscosity effect. We study a model that has been used to describe the flow of a fluid containing
a dissolved contaminant through a network of one-dimensional cracks (see [207, 125]).

Following the notation in [124], we represent the network by a finite, directed, and connected
graph G := (V, E) with vertices V := {v1, . . . , vn} and edges E := {e1, . . . , em} ⊂ V × V. We use the
notation E(v) := {e ∈ E : e = (v, ·) or e = (·, v)} for the set of edges incident to a vertex v ∈ V;
V∂ := {v ∈ V : |E(v)| = 1} for the set of boundary vertices; and V0 := V\V∂ = {v ∈ V : |E(v)| ≥ 2}
for the sets of internal vertices or junctions (here, |S| is the cardinality of a finite set S). For
every edge e =

(
vin, vout

)
, we define ne

(
vin
)
:= −1 and ne

(
vout

)
:= 1 (to indicate its starting

and end point) and ne(v) := 0 for v ∈ V \
{
vin, vout

}
. We write E in(v) := {e ∈ E : ne(v) > 0} and

Eout (v) := {e ∈ E : ne(v) < 0} for the sets of edges pointing into and out of the vertex v ∈ V,
respectively. Furthermore, we split V∂ into a set of boundary vertices V in

∂ := {v ∈ V∂ : ne(v) < 0 for
e ∈ E(v)}, from which edges go into the network, and Vout

∂ := {v ∈ V∂ : ne(v) > 0 for e ∈ E(v)}, in
which edges end. We identify each edge with an interval of length ℓe: e.g., e ≃ (0, ℓe).

v1

v6

v2 v5

v3 v4

e1

e2
e5

e3 e4

Figure 1.7. Tree-shaped network with edges e1 = (v6, v1), e2 = (v2, v6), e3 =
(v3, v5), e4 = (v4, v5), e5 = (v3, v5); inner vertices V0 = {v5, v6} (blue), and boundary
vertices V∂ = {v1, v2, v3, v4}. We split the set of boundary vertices into V in

∂ =
{v2, v3, v4} (green) and Vout

∂ = {v1} (red). The set E(v6) = {e1, e2, e5} denotes the
edges adjacent to the junction v6, which can be divided into E in(v6) = {e2, e5} and
Eout(v6) = {e1}. The arrows illustrate the direction. Cf. [50, Figure 1].

With these notations, we write the system under consideration as follows:

(1.2.1)



ae∂ty
e
ε(t, x) + be∂xy

e
ε(t, x)− ε∂2xxy

e
ε(t, x) = 0, t ∈ (0, T ), x ∈ e, ∀e ∈ E ,

yeε(t, v) = uvε(t), t ∈ (0, T ), v ∈ V∂ ,
ye1ε (t, v) = ye2ε (t, v), t ∈ (0, T ), v ∈ V0, ∀e1, e2 ∈ E(v),∑

e∈E(v) b
eyeε(t, v)n

e(v)− ε∂ne(v)y
e
ε(t, v) = 0, t ∈ (0, T ), v ∈ V0,

yeε(0, x) = ye0(x), x ∈ e, ∀e ∈ E ,
where (ae)e∈E and (be)e∈E are strictly positive constants depending on the edge, ε ∈ (0, 1] is a viscosity
parameter, T > 0 is a fixed time-horizon, and ∂ne(v)y

e
ε(t, v) := ne(v)∂xy

e
ε(t, v). Here, yeε represents

the contaminant concentration, be is the flow rate on each edge of the graph, and uvε is the datum
at each boundary vertex. We also use the notation yε := (ye1ε , . . . , y

em
ε ) and uε := (uv1ε , . . . , u

vk
ε ),

where k = |V∂ | and m = |E|. We impose Kirchhoff-type junction conditions: (1.2.1)3 is a continuity
condition in the internal nodes and (1.2.1)4 implies that the flux of the mass is null.

8J. A. Bárcena-Petisco, M. Cavalcante, G. M. Coclite, N. De Nitti, and E. Zuazua. Control of hyperbolic and
parabolic equations on networks and singular limits. Submitted, 2023.
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Our main focus is steering the solution of (1.2.1) to rest, by using boundary controls, and
analyzing the asymptotic behavior of the associated cost of null-controllability as ε → 0+, i.e. as
the solution of (1.2.1) converges to that of the hyperbolic problem

(1.2.2)



ae∂ty
e(t, x) + be∂xy

e(t, x) = 0, t ∈ (0, T ), x ∈ e, ∀e ∈ E ,
ye(t, v) = uv(t), t ∈ (0, T ), v ∈ V in

∂ ,

ye1(t, v) = ye2(t, v), t ∈ (0, T ), v ∈ V0, ∀e1, e2 ∈ Eout(v),∑
e∈E in(v) b

eye(t, v) = ye1(t, v)
∑

e∈Eout(v) b
e, t ∈ (0, T ), v ∈ V0, e1 ∈ Eout(v),

ye(0, x) = ye0(x), x ∈ e, ∀e ∈ E ,

where the contaminant does not undergo diffusion and is only driven by the velocity of the liquid flow.
In the hyperbolic problem, boundary conditions can only be prescribed at v ∈ V in

∂ ; in addition, we
point out that each v ∈ V0 has |Eout(v)| coupling conditions, which is only sufficient to ensure mass
conservation at the junctions and to specify the concentrations flowing into the outgoing edges. On
the other hand, in the parabolic problem, each v ∈ V0 has |E(v)| coupling conditions, guaranteeing
the conservation of mass and also the continuity of the solution at the junctions.

For the asymptotic result, we additionally assume

(1.2.3)
∑
e∈E(v)

bene(v) = 0, v ∈ V0,

which is a balance relation for the flow, ensuring that the energy does not increase at the junctions.
This condition is also important for proving the vanishing viscosity approximation result in [125].

We first show that the system (1.2.2) is null-controllable (using zero boundary data) for sufficiently
large times (without needing assumption (1.2.3)) and not controllable for small times.

By the results in [164], it is known that the parabolic problem (1.2.1) is null-controllable when
the boundary control acts on all the external vertices (except at most one; however, it may not
be null-controllable if it only acts on a smaller subset of the boundary vertices). As established in
the classical literature (see, e.g., [104, Chapter 2.3]), proving the null-controllability of (1.2.1) is
equivalent to establishing an observability inequality for the adjoint system:

(1.2.4)



−ae∂tφeε(t, x)− be∂xφ
e
ε(t, x)− ε∂2xxφ

e
ε(t, x) = 0, t ∈ (0, T ), x ∈ e, ∀e ∈ E ,

φeε(t, v) = 0, t ∈ (0, T ), v ∈ V∂ ,
φe1ε (t, v) = φe2ε (t, v), t ∈ (0, T ), v ∈ V0, ∀e1, e2 ∈ E(v),∑

e∈E(v) ε∂ne(v)φ
e
ε(t, v) = 0, t ∈ (0, T ), v ∈ V0,

φeε(T, x) = φeT (x), x ∈ e, ∀e ∈ E ,

where we have used (1.2.3) to obtain (1.2.4)4. The aforementioned cost of controllability is given by

K(ε, T, ae, be,G) := sup
y0∈L2(E)\{0}

inf
uε∈U

(∫ T
0

∑
v∈V∂

|uvε(t)|2 dt
)1/2

∥y0∥L2(E)
,

where U denotes the subset of controls in L2((0, T ); ℓ2(V∂)) such that the solution of (1.2.1) satisfies
y(T, ·) ≡ 0, and the equivalent cost of observability of the adjoint variable by

K̃(ε, T, ae, be,G) := 1√
ε

sup
φT∈L2(E)\{0}

∥aφε(0, ·)∥L2(E)(∫ T
0

∑
v∈V∂ |∂ne(v)φeε(t, v)|2 dt

)1/2 .
From the controllability result for the hyperbolic problem, we expect the following behavior: for
small times, K → +∞ as ε→ 0+; on the other hand, for T sufficiently large, K → 0 as ε→ 0+.

The main results of this Chapter are quantitative versions of these claims:

– we show that the cost explodes exponentially for small times by considering a datum for the
adjoint problem supported far away from the observation domains and checking that, while
its mass remains within the network, the portion that reaches the observation vertices is of
order exp(Cε−1);
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– we prove that the cost decays exponentially for large times by first using the decay of the
free solutions and then, when the mass of the state is almost null, by observing it exactly.

Our strategy is based on the Hilbert Uniqueness Method (H.U.M., introduced by J.-L. Lions;
see [191]) and, in particular, on the ideas of [106, 150]. To prove the blow-up, we rely on a
“non-degeneracy” estimate and an Agmon-type inequality. For the proof of the decay, we need to
establish a decay property for the L2-mass of the adjoint system and a Carleman-type inequality
(keeping track of the viscosity parameter). The proof of the Carleman inequality is particularly
demanding due to the presence of boundary terms at the junctions. To address this issue, we need
to introduce a general construction of Fursikov–Imanuvilov weights (see [136]) using a piecewise-C2

auxiliary function.
Several previous contributions on the controllability of various classes of PDEs on networks can be

found in the literature. For example, results on wave, Schrödinger, heat, beam, and other equations
were collected in [117]. In particular, [117, Chapter 8.1] demonstrated that the heat equation with
Kirchhoff-type junction conditions can be controlled to zero under suitable assumptions. We also
refer to [178, 177, 176, 179] for the well-posedness, controllability, and stabilization of several
models of thermoelastic beams, linked plates, and plate–beam systems and to [28, 152, 157, 233,
121, 151, 156] for models arising in water flow, gas transport, etc.

No results were available on uniform controllability in the context of singular limits on networks,
despite the problem’s long history on Euclidean domains. The study of uniform controllability
problems for singular perturbations of PDEs began with the pioneering works [191, 189, 190, 195,
194]. In the context of linear advection-diffusion equations in the vanishing viscosity limit, the
first result was obtained by Coron and Guerrero in [106], where they also made a conjecture on
the minimal time needed to achieve uniform controllability. Subsequently, in [140], Glass refined
the available estimates. The result of [106] was generalized to several space dimensions and (non-
constant) Lipschitz continuous transport speed in [150]. Nonlinear transport terms were later taken
into account by Glass and Guerrero, who studied the Burgers equation in [141], and by Léautaud,
who extended their results to more general flux functions in [183].

Related results have recently been obtained for other systems as well: namely, the Stokes system
(see [25]), an artificial advection-diffusion problem (see [100, 101]), and fourth-order parabolic
equations (see [55, 196, 165]).

1.2.2. Controllability of scalar conservation laws on networks. In Chapter 99, we
return to the nonlinear problem and examine the controllability of entropy solutions.

Previously, there were no known controllability results for scalar conservation laws on networks in
the context of entropy solutions. Some studies focused on optimization problems (see [15, 14]) and
stabilization issues (as in [123]). Further results were obtained on the related topic of conservation
laws on the real line with space-discontinuous flux in [2, 16]. On the contrary, the controllability and
stabilization of (systems of) conservation laws on networks were extensively studied in the context
of smooth solutions (see, e.g., [153, 154] and references therein).

The study of controllability in the case of the IBVP associated with (systems of) conservation
laws on a segment has a longer history. In the framework of classical solutions, controls drive the
state to the desired target and prevent the formation of singularities (see [185, 186, 104, 28]).
In the context of entropy solutions, the set of admissible target states has been investigated in
[17, 18, 20, 21, 99]. Several controllability results were obtained relying on the Lax–Olĕınik
representation formula, which applies when the flux function is strictly convex or concave (see
[3, 20]); on the method of generalized characteristics introduced by Dafermos in [114], which allows
for one inflection point (see [18, 21, 99, 163, 211]); or on the return method proposed by Coron
in [102], which also covers the case of a finite number of inflection points (see [163, 141, 183]).

In the recent development [122], Donadello and Perrollaz introduced a novel approach to the
controllability problem for multi-dimensional conservation laws building on the classic concept of
Lyapunov functionals, which originated in the study of asymptotic stabilization (see [212, 36, 28,

9N. De Nitti and E. Zuazua. On the controllability of entropy solutions of scalar conservation laws at a junction
via Lyapunov methods. Vietnam J. Math., 51(1):71–88, 2023.
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103, 105]). They demonstrated a null-controllability result without needing convexity/concavity
assumptions, instead relying on appropriate geometric monotonicity-type conditions.

To simplify the notation, we focus on networks composed of a single junction with n incoming
and m outgoing edges (i.e., star-shaped graphs; see the illustration in Figure 1.8). Following the
notation of [138], the incoming edges are labeled by i ∈ Iin := {1, . . . , n} and parameterized by
the segments Ii := (−Li, 0); the outgoing edges are labeled by j ∈ Iout := {n+ 1, . . . , n+m} and
parameterized by the segments Ij := (0, Lj), with Li, Lj > 0; the junction is at x = 0. As in
Chapter 8, we shall also use the notation G := (0, E), where E = {Iℓ}ℓ∈{1,...,n+m}.

v5

v1

v2

v0

v3

v4

I5
I1

I2

I3

I4

Figure 1.8. Junction with n = 2 incoming and m = 3 outgoing edges. Cf. [50].

For each edge of the graph, we consider the dynamics given by a scalar hyperbolic conservation
law with flux fℓ (with ℓ ∈ {1, . . . , n+m}) satisfying the following assumptions:

(F1) fℓ ∈ Lip(R;R+);
(F2) fℓ is non-degenerate: for all (ξ, ζ) ∈ R×R\{(0, 0)}, we have L ({z ∈ R : ξ + ζf ′ℓ(z) = 0}) =

0, where L denotes the Lebesgue measure;
(F3) inf f ′ℓ ≥ cℓ > 0.

With these assumptions, we consider the system

∂tui + ∂xfi (ui) = 0, t > 0, x ∈ Ii,

∂tuj + ∂xfj (uj) = 0, t > 0, x ∈ Ij ,

ui(0, x) = u0,i(x), x ∈ Ii,

uj(0, x) = u0,j(x), x ∈ Ij ,

ui(t,−Li) = ub,i(t), t > 0,∑n
i=1 fi(ui(t, 0−)) =

∑n+m
j=n+1 fj(uj(t, 0+)), t > 0,

(1.2.5)

for all i ∈ {1, . . . , n} and j ∈ {n + 1, . . . , n + m}. Here, for every ℓ ∈ {1, . . . , n + m}, the initial
data satisfy u0,ℓ ∈ L∞(Iℓ;R+) and, at the entry points of the network, we prescribed in-flux
boundary conditions with data ub,i ∈ L∞((0,+∞);R+) for i ∈ {1, . . . , n}. As in Chapter 8, we
impose a junction condition that ensures mass conservation; moreover, as in [19], we will need to
introduce additional entropy-admissibility conditions (which are motivated by the vanishing viscosity
approximation) to guarantee uniqueness.

The main contribution of this Chapter is adapting the result established by Donadello and
Perrollaz in [122, Proposition 4] to (1.2.5). For the proof, we also rely on a Lyapunov functional
consisting of an exponentially-weighted L1-norm; however, we have to face additional difficulties:
we need to take into account an adapted entropy-admissibility condition to propagate information
across the junction. This is similar in spirit to the considerations in Chapter 8 regarding the
controllability of (1.2.2).

Assumptions (F1)–(F3) are key in our study, as they were in [122]. Hypothesis (F1) is classical
in Kružkov’s well-posedness theory and guarantees finite speed of propagation; (F2) is a technical
condition needed to ensure the existence of strong boundary traces for L∞ entropy solutions of
conservation laws (see, e.g., [204, 209, 231]); and (F3) encodes the requirement that all generalized
characteristics emanating from (t, x) ∈ {0} × Iℓ leave the cylinder (0, Tℓ)× Iℓ by time Tℓ := Lℓ/cℓ.
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In other words, (F3) implies that, after a sufficiently long time, the dynamics on each edge will
depend solely on the boundary data prescribed at the exterior nodes and not on the initial data;
moreover, under hypothesis (F3), the effective boundary condition can be imposed only at x = −Li,
for i ∈ {1, . . . , n}.

Assumption (F3) renders (1.2.5) unsuitable for traffic flow models (which typically involve bell-
shaped flux functions; see [138] and references therein), but it is common in supply chain modeling:
for example, in the so-called M/M/1 queuing model with capacity one (see [118]), the flux function
is given by f(ξ) = ξ/(ξ + 1).

Finally, similarly to Chapter 8, we consider a viscous regularization of (1.2.5):

∂tuε,i + ∂xfi (uε,i) = ε∂2xxuε,i, t > 0, x ∈ Ii,

∂tuε,j + ∂xfj (uε,j) = ε∂2xxuε,j , t > 0, x ∈ Ij ,

uε,i(0, x) = u0,ε,i(x), x ∈ Ii,

uε,j(0, x) = u0,ε,j(x), x ∈ Ij ,

uε,i(t,−Li) = ub,i(t), t > 0,

uε,j(t, Lj) = ub,j(t), t > 0,∑n
i=1

(
fi(uε,i(t, 0−))− ε∂xuε,i(t, 0−)

)
=
∑n+m

j=n+1

(
fj(uε,j(t, 0+))− ε∂xuε,j(t, 0+)

)
, t > 0,

uε,i(t, 0−) = uε,j(t, 0+), t > 0,

(1.2.6)

for all i ∈ {1, . . . , n} and j ∈ {n + 1, . . . , n +m}. We aim to study the effect of viscosity on the
inviscid control strategy. A small exponential tail remains as an error when considering the evolution
of the difference of two solutions uε and vε with different initial conditions but the same boundary
data, which needs to be taken into account.

Outline

The contributions contained in this thesis are organized into two parts.
Part 1 deals with nonlocal regularizations of conservation laws modeling traffic flow.

– In Chapter 2, we start by studying the well-posedness of a class of nonlocal conservation
laws that includes (1.1.2). In particular, we shall focus on the case when the nonlocal
impact is given by the convolution of the density with an averaging kernel γ which is only
of bounded variation.

– Chapters 3–4 are dedicated to the convergence of the nonlocal model to the corresponding
local one. In particular, in Chapter 3, we prove the convergence of the (unique) weak
solution of (1.1.2) to the (unique) entropy solution of the local conservation law (1.1.1)
under the assumption that the initial datum is non-negative, bounded, and of bounded
variation. On the other hand, in Chapter 4, we establish Olĕınik-type estimates that give
(under suitable—more restrictive—assumptions on the velocity function) the convergence
for initial data that are not necessarily of bounded variation.

– In Chapter 5, we use an Olĕınik-type estimate to study the long-time asymptotics for a
nonlocal regularization of the Burgers equation.

– In Chapter 6, we remark on the effect of artificial viscosity on the nonlocal–to–local limit
process.

– In Chapter 7, we study the boundary controllability of nonlocal conservation laws.

Part 2 deals with conservation laws on networks.

– In Chapter 8, we focus on a linear viscous problem: we study the controllability of
advection-diffusion equations on networks and the asymptotic behavior of the cost of null-
controllability as the viscosity parameter vanishes.

– In Chapter 9, we consider a class of (nonlinear) conservation laws and prove a controlla-
bility result for the entropy solution.

In the final Chapter 10, we present some open problems and perspectives for future research.
These include, in particular, the development of the theory of nonlocal conservation laws on networks,
thereby bridging the gap between Part 1 and Part 2
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Publications related to the thesis. This thesis unifies the exposition of mathematical con-
tributions that were previously published or appeared as preprints during the course of the author’s
Ph.D. studies:

Chapter 2: [71];
Chapter 3: [69];
Chapter 4: [68];
Chapter 5: [72];
Chapter 6: [70];
Chapter 7: [30];
Chapter 8: [50];
Chapter 9: [120].

In line with the established practice in the mathematical community, all co-authors of these papers
are listed alphabetically and have contributed.

Notably, the author of this thesis made significant contributions to the theoretical aspects of
these works. These contributions include, for instance, investigating the effects of BV weights on
the well-posedness of nonlocal conservation laws; exploiting the underlying structure of exponential
weights to derive scalar equations instead of systems of equations with relaxation, which are crucial to
the study of uniform bounds and of the nonlocal–to–local singular limit problem; examining Olĕınik-
type estimates and related compactification effects (particularly in the linear velocity case, which
also led to the analysis long-time behavior for the nonlocal Burgers equation); studying backward-
in-time evolutions and boundary controllability of nonlocal conservation laws in the presence of
an exponential weight; analyzing the impact of junction conditions on the estimates of the cost of
controllability in the vanishing viscosity limit for advection-diffusion equations on networks; and
employing Lyapunov approaches for the controllability of entropy solutions of conservation laws
on networks. The author of this thesis was not involved in the implementation of the numerical
experiments:

– the simulations presented in the Chapters of Part 1 of the thesis have been produced by L.
Pflug based on the numerical scheme and MATLAB code he had previously developed in
[213, Chapter 3] and [173];

– the simulations presented in Chapter 9 have been produced by M. Munsch based on the
numerical scheme studied in [202] and the Python code developed in [201].
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Nonlocal conservation laws





CHAPTER 2

Well-posedness of nonlocal conservation laws with BV weights

The main aim of this Chapter is to establish the well-posedness of weak solutions for the following
class of nonlocal conservation laws:

(2.0.1)

{
∂tρ(t, x) + ∂x

(
V (W [ρ](t, x))ρ(t, x)

)
= 0, (t, x) ∈ (0, T )× R,

ρ(0, x) = ρ0(x), x ∈ R,

for a fixed time horizon T > 0 and

W [ρ](t, x) := (γ(t, ·) ∗ ρ(t, ·))(x), (t, x) ∈ (0, T )× R.(2.0.2)

Before stating our main result, let us recall the notion of weak solution adopted in [167, Definition
2.13].

Definition 2.0.1 (Weak solution of the nonlocal balance law). We say that ρ ∈
C
(
[0, T ];L1

loc(R)
)
is a weak solution of the nonlocal conservation law in (2.0.1) if, for all φ ∈

C1
c ([0, T )× R),∫ T

0

∫
R

(
∂tφ(t, x)ρ(t, x) + ∂xφ(t, x)V

(
W [ρ](t, x)

)
ρ(t, x)

)
dx dt+

∫
R
φ(0, x)ρ0(x) dx = 0,

with W [ρ] as in (2.0.2).

First, we prove the existence and uniqueness of weak solutions of (2.0.1) locally in time.

Theorem 2.0.1 (Local well-posedness of nonlocal conservation laws with rough kernels). Let
us fix T > 0 and suppose that the following conditions hold:

(A1) γ ∈ L∞((0, T ); BV(R)) and γ ≥ 0;

(A2) V ∈W 1,∞
loc (R);

(A3) ρ0 ∈ L∞(R).
Then, there exists T ∗ ∈ (0, T ] such that (2.0.1) admits a unique weak solution ρ ∈ C

(
[0, T ∗];L1

loc(R)
)
∩

L∞((0, T ∗);L∞(R)) in the sense of Definition 2.0.1. Moreover, the weak solution can be written as

ρ(t, x) = ρ0(ξw∗(t, x; 0))∂xξw∗(t, x; 0), (t, x) ∈ [0, T ∗]× R,

where w∗ is the unique solution on (0, T ∗) × R of the fixed point problem in (2.1.4) and ξw∗ the
characteristics, defined in (2.1.3).

As pointed out in Chapter 1, we emphasize that, for the nonlocal problem (3.0.1), no entropy
condition is needed to select a unique solution.

Furthermore, a global well-posedness result can be achieved under additional hypotheses.

Theorem 2.0.2 (Global existence and comparison principle). Under the assumptions of Theorem
2.0.1, let us suppose, in addition, that

(A4) V ′ ≤ 0;
(A5) supp(γ(t, ·)) ⊆ R≤0 and γ(t, ·) is monotonically non-decreasing on R≤0 for all t ∈ [0, T ];
(A6) ρ0 ∈ L∞(R;R≥0).

Then, for any T > 0, the initial-value problem (2.0.1) admits for every a unique solution

ρ ∈ C
(
[0, T ];L1

loc(R)
)
∩ L∞((0, T );L∞(R))

satisfying the comparison principle

ess inf
x∈R

ρ0(x) ≤ ρ(t, x) ≤ ess sup
x∈R

ρ0(x), (t, x) ∈ (0, T )× R.

23
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ρ1(t, x)

ρ2(t+ T1, x)

ρ3(t+ T2, x)

x

t

T1

T2

T3
T ∗

ρ1(t, x)

ρ2(t+ T1, x)

ρ3(t+ T2, x)

ρ4(t+ T3, x)

...
...

x

t

T1

T2

T3

T4

Figure 2.1. Illustration of the extension of the time-horizon and construction of
the global solution. Cf. [167, Figure 3].

In Section 2.1, we prove these well-posedness results and, in Section 2.2, we present some
numerical experiments to illustrate them.

2.1. Proof of the well-posedness result

The proofs of Theorem 2.0.1 and Corollary 2.0.2 follow the steps presented in [167]. However,
we have to introduce several technical modifications to deal with the more general nonlocal weight
satisfying assumption (2.0.1).

Step 1. Formulation of the fixed-point equation in the nonlocal term w. We assume, for the
moment, that the nonlocal term

(2.1.1) W [ρ](t, x) =

∫
R
γ(t, x− y)ρ(t, y) dy =: w(t, x), (t, x) ∈ (0, T )× R,

is a given Lipschitz continuous function. Then, the corresponding conservation law is linear with
Lipschitz continuous velocity V ◦w and we can use the method of characteristics to write the solution
of the Cauchy problem as

(2.1.2) ρw(t, x) = ρ0(ξw(t, x; 0))∂xξw(t, x; 0), (t, x) ∈ (0, T )× R,
where ξw solves the characteristics equation

ξw(t, x; τ) = x+

∫ τ

t
V
(
w(s, ξw(t, x; s)

)
ds, τ ∈ [0, T ].(2.1.3)

Plugging (2.1.3) into the nonlocal term in (2.1.1) yields, for (t, x) ∈ (0, T )× R,

w(t, x) =

∫
R
γ(t, x− y)ρ(t, y) dy =

∫
R
γ(t, x− y)ρ0(ξw(t, y; 0))∂yξw(t, y; 0) dy

=

∫
R
γ
(
t, x− ξw(0; y; t)

)
ρ0(y) dy,

which is a fixed-point problem in w.
Step 2. Local existence for the nonlocal conservation law. We use Banach’s fixed-point theorem

to prove the existence of a solution w∗ ∈ L∞((0, T ∗);W 1,∞(R)) of (2.1.3) on a sufficiently small
time-horizon T ∗. Then, we can build a solution of (2.0.1) in terms of characteristics as follows:

ρ(t, x) = ρ0(ξw∗(t, x; 0))∂xξw∗(t, x; 0), (t, x) ∈ (0, T ∗)× R,

which is presented in [167, Theorem 2.20] and [169, Theorem 3.1] in detail.
Step 3. Uniqueness for the nonlocal conservation law. The uniqueness of w∗ can be shown to

imply the uniqueness of the solution ρ. The main idea is to prove that any weak solution can be
written in the same way as instantiated in (2.1.2) (see [167, Lemma 3.1 and Theorem 3.2]).

Step 4. Extension of the solution for larger times. Gluing a sequence of initial value problems
with initial data equal to the terminal-time solution of the previous one, we can extend the existence
result to a longer (but not necessarily arbitrary) time-horizon (as in [167, Theorem 4.1]).
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Step 5. Extension to arbitrary time-horizons and comparison principle. Under the stronger
assumptions (A4)–(A6), we can extend the solution to an arbitrary time horizon and show that a
comparison principle holds. For the detailed argument, we refer to [172, Lemma 5.8]. It mainly
consists of studying the time evolution of the maximum/minimum of the solution and showing that
its time derivative is negative, implying that the minimum can only increase and the maximum can
only decrease over time.

Extension of the proof to BV weights. The only parts of the proof outlined above that
need to be adjusted from [167] to extend the well-posedness result to our more general setting are
related to Step 2. More precisely, they can be summarized as follows:

1. proving that, for t ∈ [0, T ], the convolution (x 7→ γ(t, ·) ∗ ρ(t, ·))(x) is in W 1,∞ for γ ∈
L∞((0, T ); BV(R));

2. establishing the analog of [167, Proposition 2.17], where it was shown that the mapping
induced in Step 1 satisfies the assumptions of Banach’s fixed-point theorem by relying on
the regularity assumption γ ∈ L∞((0, T );W 1,∞(R)

)
.

x

τ

t0

t1

x0 x1 x2

ξ (t0, x0; ·)

ξ (t0, x1; ·) ξ (t1, x1; ·)

Figure 2.2. Characteristics for the nonlocal conservation law. Cf. [167, Figure 1].

We start by proving the Lipschitz-continuity (in space) of the convolution.

Lemma 2.1.1 (Smoothing via convolution with BV functions). Let γ ∈ BV(R) and f ∈ L∞(R).
Then γ ∗ f ∈W 1,∞(R).

Proof. From [8, Remark 3.5] or [184, Corollary 2.17], we deduce that, for h ∈ R,
∥τhγ − γ∥L1(R) ≤ |γ|TV(R)|h|.

where τhγ(x) := γ(x + h) for a.e. x ∈ R. As a consequence, we can estimate, by using Young’s
convolution inequality (see [48, Theorem 4.33]),

∥τh(γ ∗ f)− γ ∗ f∥L∞(R) = ∥(τhγ − γ) ∗ f∥L∞(R)

≤ ∥f∥L∞(R)∥τhγ − γ∥L1(R) ≤ |γ|TV(R)∥f∥L∞(R)|h|.

We thus conclude that γ ∗ f ∈W 1,∞(R). □

We now review the proof of the fixed-point argument contained in [167, Proposition 2.17]. As
mentioned above, this is the main step that needs to be taken to adapt the arguments of [167]
to the case of a nonlocal impact given by the convolution of the density ρ with a rough kernel
γ ∈ L∞((0, T ); BV(R)).

Proposition 2.1.1 (Properties of the fixed-point mapping). Let

F :

ΩM
′

M (T ) → L∞((0, T );W 1,∞(R)),

w 7→
(
(t, x) 7→

∫
R
γ
(
t, x− ξw(0, z; t)

)
ρ0(z) dz

)
,

(2.1.4)
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be the fixed-point mapping defined in Step 1 and let

ΩM
′

M (T ) :=
{
w ∈ L∞((0, T );W 1,∞(R)) : ∥w∥L∞((0,T );L∞(R)) ≤M

and ∥∂xw∥L∞((0,T );L∞(R)) ≤M ′
}
,

(2.1.5)

with

M := κ̄∥γ∥L∞((0,T );L1(R))∥ρ0∥L∞(R), M ′ := κ̄|γ|L∞((0,T );TV(R))∥ρ0∥L∞(R),

for a fixed (sufficiently large) κ̄ > 0. Then, the fixed-point mapping defined in (2.1.4) satisfies the
following properties.

(1) There exists T ∗ ∈ (0, T ] such that ∥F [w]∥L∞((0,T ∗);L∞(R)) ≤M for all w ∈ ΩM
′

M (T ∗).

(2) There exists T ′ ∈ (0, T ] such that ∥∂2F [w]∥L∞((0,T ′);L∞(R)) ≤M ′ for all w ∈ ΩM
′

M (T ′).

(3) F is Lipschitz continuous with respect to the uniform topology, i.e., for w, w̃ ∈ ΩM
′

M (T̄ ) and
T̄ := min{T ∗, T ′}, we have

∥F [w]− F [w̃]∥L∞((0,T̄ );L∞(R)) ≤ |γ|L∞((0,T̄ );TV(R))T̄∥w − w̃∥L∞((0,T̄ );L∞(R))

× ∥V ′∥L∞((−M,M)) exp
(
2T̄∥V ′∥L∞((−M,M))M

′) ;
thus, for small time T̂ ∈ (0, T̄ ], F is a contraction on ΩM

′
M

(
T̂
)
.

Proof. We shall prove the three claims separately.
Claim (1). For w ∈ ΩM

′
M (T ) and t ∈ [0, T ], we estimate—recalling the definition of F in (2.1.4)—

∥F [w](t, ·)∥L∞(R) =

∥∥∥∥∫
R
γ(t, · − ξw(0, z; t))ρ0(z) dz

∥∥∥∥
L∞(R)

≤ ∥γ(t, ·)∥L1(R)∥∂2ξw(t, ·; 0)∥L∞(R)∥ρ0∥L∞(R)

≤ ∥γ(t, ·)∥L1(R) exp
(
t∥V ′∥L∞((−M,M))M

′) ∥ρ0∥L∞(R),

where we have used the substitution rule and the properties of the characteristics (see [167, Lemma
2.6(3)] and [169, Corollary 2.1])—in particular, the fact that

(2.1.6) ∥∂2ξw(t, ·; 0)∥ ≤ exp
(
t∥V ′∥L∞((−M,M))M

′) , t ∈ [0, T ],

which is an immediate consequence of differentiating (2.1.3) with respect to x ∈ R to obtain a linear
Cauchy problem in ∂2ξw. As M and M ′ are fixed, we can find a time horizon T ∗ ∈ (0, T ] such that

∥γ∥L∞((0,T );L1(R)) exp
(
T ∗∥V ′∥L∞((−M,M))M

′) ∥ρ0∥L∞(R) ≤M

⇐⇒ exp
(
T ∗∥V ′∥L∞((−M,M))M

′) ≤ κ̄.

Claim (2). We estimate the spatial derivative of the fixed-point mapping in (2.1.4) (which is

well-defined according to (2.1.1)) for w ∈ ΩM
′

M (T ) and (t, x) ∈ (0, T )×R. Some technical details are
left out and can be found in [167, Lemma 2.6(2)]; however, the argument is essentially as follows:

|∂xF [w](t, x)| ≤
∫
R

∣∣∂xγ(t, x− ξw(0, z; t))ρ0(z)
∣∣ dz

≤ ∥∂2ξ(t, ·; 0)∥L∞((0,T )×R)∥ρ0∥L∞(R)

∫
R
|∂2γ(t, x− y)|dy

≤ |γ(t, ·)|TV(R) exp
(
t∥V ′∥L∞((−M,M))M

′) ∥ρ0∥L∞(R),

where we applied once more the substitution rule and the estimate in (2.1.6). Making this uniform
in (t, x) ∈ (0, T )×R and since M and M ′ are fixed, we can find a time horizon T ′ ∈ (0, T ] such that

|γ|L∞((0,T );TV(R)) exp
(
T ′∥V ′∥L∞((−M,M))M

′) ∥ρ0∥L∞(R) ≤M ′

⇐⇒ exp
(
T ′∥V ′∥L∞((−M,M))M

′) ≤ κ̄.

We can indeed choose T ′ = T ∗. Thus, combining the previous results, we conclude that

F
(
ΩM

′
M

(
T ′)) ⊆ ΩM

′
M

(
T ′),

i.e., F is a self-mapping on ΩM
′

M (T ′).
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Claim (3). To demonstrate the contraction property of F in L∞((0, T ′);L∞(R)), we estimate,

for w, w̃ ∈ ΩM
′

M (T ′) and (t, x) ∈ (0, T ′)× R,
|F [w](t, x)− F [w̃](t, x)|

=

∣∣∣∣∫
R
γ(t, ξw(0, z; t))ρ0(z) dz −

∫
R
γ(t, ξw̃(0, z; t))ρ0(z) dz

∣∣∣∣
≤
∫
R
|γ(t, ξw(0, z; t))− γ(t, ξw̃(0, z; t))| ρ0(z) dz

≤ |γ|L∞((0,T );TV(R))∥ξw − ξw̃∥L∞((0,t)×R×(0,t))∥ρ0∥L∞(R) exp
(
t∥V ′∥L∞((−M,M))M

′)(2.1.7)

≤ |γ|L∞((0,T );TV(R))t∥V ′∥L∞((−M,M))∥w − w̃∥L∞((0,t);L∞(R))∥ρ0∥L∞(R)(2.1.8)

× exp
(
2t∥V ′∥L∞((−M,M))M

′) .
In (2.1.7), we used the substitution rule and the uniform bound on ∂xξw and ∂xξw̃ (obtained from
(2.1.5)); in (2.1.8), the stability of the characteristics with respect to the nonlocal term (see [167,
Lemma 2.6(3)] and [169, Theorem 2.4] for further details). Making the previous estimate uniform

in (t, x) and recalling that M,M ′ are fixed, we conclude that there exists T̂ ∈ (0, T ′] such that

|γ|L∞((0,T );TV(R))T̂∥V ′∥L∞((−M,M))∥w − w̃∥
L∞((0,T̂ );L∞(R))∥ρ0∥L∞(R)

× exp
(
2T̂∥V ′∥L∞((−M,M))M

′
)
≤ 1

2
.

From this, it follows that F is also a contraction in ΩM
′

M

(
T̂
)
for a sufficiently small T̂ ∈

(
0, T̄

)
. □

2.2. Numerical experiments

In what follows, we present some numerical simulations using a non-dissipative scheme based on
the method of characteristics (see [213, Chapter 3] and [173]).

We consider the Cauchy problem (2.0.1) with initial datum

ρ0(x) = 1(0, 12)
(x) + 1(1,∞)(x), x ∈ R(2.2.1)

and focus on the LWR–Greenshields velocity (see [161, Eq. (1.26)]), i.e. V (ξ) := 1 − ξ, and on
the Burgers velocity (see [161, Eq. (1.8)]), i.e. V (ξ) := ξ (see also [138, Section 3.1.2] for the
fundamental diagrams and for a generalized Greenshields model [147]). To illustrate the effect of a
nonlocal weight with a discontinuity in its support, we consider

γ1(·) = 21(−1,0)(2 · ), γ2(·) =
4

3
1(−2,−1)(4 · ) +

8

3
1(−1,0)(4 · ),(2.2.2)

which satisfy γ1, γ2 ∈ BV(R).
For the LWR–Greenshields velocity, a comparison principle is satisfied. Since the initial datum

is chosen in such a way that it achieves the maximum density (and thus moves with zero velocity) in
(1,∞), the initial density in (−∞, 1) slows down as it gets closer to x = 1. The second illustration
in Figure 2.3 indicates a disturbance that evolves from points where the discontinuities of γ and ρ
“intersect”.

For the example involving the Burgers velocity, a comparison principle does not hold (due to
the chosen initial datum and the right-looking nonlocal impact—see [167, Example 6.1]) and the
entire mass concentrates at x = 0.5 as time evolves. Thus, the solution ceases to exist for large time.
The impact of the discontinuous weight (the fourth illustration in Figure 2.3) destroys the rather
“smooth” structure of the solution that we would obtain when using a continuous kernel.
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Figure 2.3. Top (left and right): Plot of the solution for the LWR–
Greenshields velocity function, i.e. V (ξ) := 1 − ξ, with weights γ1 and γ2, respec-
tively. Bottom (left and right): Plot of the solution for the Burgers velocity,
i.e. V (ξ) := ξ, with weights γ1 and γ2, respectively. Colorbar: 0 1.
N.B.: for the rightmost figure, the maximal density exceeds 1, but is still visualized
in dark red.



CHAPTER 3

Nonlocal–to–local singular limit for BV initial data

This Chapter focuses on the nonlocal–to–local limit for a class of nonlocal conservation laws
with an exponential nonlocal weight. Given α > 0 and a time horizon T > 0, we consider{

∂tρα(t, x) + ∂x
(
V (Wα[ρα](t, x))ρα(t, x)

)
= 0, (t, x) ∈ (0, T )× R,

ρα(0, x) = ρ0(x), x ∈ R,
(3.0.1)

with

Wα[ρα](t, x) :=
1

α

∫ +∞

x
exp

(
x− y

α

)
ρα(t, y) dy,(3.0.2)

and study the convergence of the family {ρα}α>0 to the entropy solution of the corresponding local
conservation law {

∂tρ(t, x) + ∂x
(
V (ρ(t, x))ρ(t, x)

)
= 0, (t, x) ∈ (0, T )× R,

ρ(0, x) = ρ0(x), x ∈ R,
(3.0.3)

as α → 0+. As mentioned in Chapter 1, the key idea is to analyze the nonlocal impact Wα[ρα].
Due to the relation α∂xWα[ρα] =Wα[ρα]− ρα, the strong convergence {ρα}α>0 to a weak solution
of the local conservation law follows from the strong convergence of {Wα}α>0, for which we can
prove a suitable total variation bound. Our main result is as follows.

Theorem 3.0.1 (Convergence to the entropy solution). Let us assume that

ρ0 ∈ L∞(R;R≥0) ∩ TV(R);(3.0.4)

V ∈W 1,∞
loc (R) and V ′(ξ) ≤ 0, ξ ∈ [ess inf ρ0, ess sup ρ0];(3.0.5)

ξ 7→ V (ξ)ξ is concave for ξ ∈ [ess inf ρ0, ess sup ρ0].(3.0.6)

Then the solution ρα ∈ C
(
[0, T ];L1

loc(R)
)
of (3.0.1) and the corresponding nonlocal impact Wα[ρα]

converge to the entropy solution of the local conservation law (3.0.3) in C
(
[0, T ];L1

loc(R)
)
as α→ 0+.

Remark 3.0.1 (Generalizations). Motivated by traffic flow models, we restrict ourselves to
monotonically decreasing velocities and non-negative initial data. However, our results can be gen-
eralized to different setups. The assumption on V being monotonically decreasing can be changed to
V being monotonically increasing as long as we also change the nonlocal impact to

Wα[ρα](t, x) :=
1

α

∫ x

−∞
exp

(
y − x

α

)
ρα(t, y) dy, (t, x) ∈ (0, T )× R.

Analogously, the results can be extended to non-positive initial data when changing the nonlocal term
accordingly. Furthermore, when assuming that V ′(ξ)ξ has a sign for all ξ ∈ R, the initial datum
can be chosen arbitrarily in L∞(R) ∩TV(R) (no sign restrictions). However, then we do not obtain
the convergence of ρα, but only of Wα, which remains essentially bounded and for which the total
variation bound derived in Theorem 3.2.1 below still holds. Compare also Remark 3.2.2.

In Section 3.1, we recall some preliminary results on the well-posedness of the nonlocal problem
(3.0.1). In Section 3.2, we deduce the key total variation bound on the nonlocal impact Wα which
is needed, in Section 3.3, to prove the nonlocal–to–local convergence theorem. Finally, in Section
3.4, we illustrate the results and further conjectures with some numerical simulations.

29
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3.1. Preliminary results

To start with, we recall some results on the existence and uniqueness of solutions and their
properties. The proof is essentially covered by the general theory of Chapter 2 (see also [167,
Theorem 2.20, Theorem 3.2, and Corollary 4.3]).

Theorem 3.1.1 (Existence and uniqueness of weak solutions and maximum principle). Let us
assume that

ρ0 ∈ L∞(R;R≥0) ∩ TV(R);(3.1.1)

V ∈W 1,∞
loc (R) and V ′(ξ) ≤ 0, ξ ∈ [ess inf ρ0, ess sup ρ0].(3.1.2)

Then, for every α > 0, there exists a unique weak solution ρα ∈ C
(
[0, T ];L1

loc(R)
)
∩

L∞((0, T );L∞(R)) ∩ L∞((0, T ); TV(R)) of the nonlocal conservation law (3.0.1). Moreover, the
following maximum principle is satisfied:

ess inf
x∈R

ρ0(x) ≤ ρα(t, x) ≤ ess sup
x∈R

ρ0(x), (t, x) ∈ (0, T )× R.(3.1.3)

For the arguments that follow, it is helpful to establish the following stability result, which
enables us to smooth the solution.

Lemma 3.1.1 (Stability of the nonlocal conservation law w.r.t. the initial datum). Given
C1, C2 > 0, let us consider the set

Q(C1, C2) :=
{
ρ ∈ BVloc(R) : ∥ρ∥L∞(R) ≤ C1 and |ρ|TV(R) ≤ C2

}
.

and suppose that ρ0 ∈ Q(C1, C2). Then the solution ρ of the corresponding nonlocal conservation law
(3.0.1) satisfies the following C([0, T ];L1(R)) stability estimate:

∀ε > 0 ∃δ > 0 s. t. ∀ρ̃0 ∈ Q(C1, C2) : ∥ρ0 − ρ̃0∥L1(R) ≤ δ =⇒ ∥ρ− ρ̃∥C([0,T ];L1(R)) ≤ ε,

where ρ̃ is the solution to the nonlocal conservation law with initial datum ρ̃0.

Proof. The result we need can be essentially found in [168, Theorem 4.17] for kernels with com-
pact support. Nevertheless, the modifications necessary for the argument to hold for the exponential
weight are minor; we will not go into further detail. □

3.2. Total variation bound on the nonlocal impact

We start our analysis by showing that the nonlocal impact Wα[ρα] satisfies a conservation law
(in advective form) with local velocity and a nonlocal source. This will enable us to study Wα[ρα]
without referring to ρα itself.

Lemma 3.2.1 (The transport equation with nonlocal source satisfied by the nonlocal impact).
The nonlocal impact Wα[ρα] is Lipschitz continuous and solves the following Cauchy problem in the
strong sense:

∂tWα(t, x) + V (Wα(t, x))∂xWα(t, x)

= − 1

α

∫ ∞

x
exp

(x−y
α

)
V ′(Wα(t, y))∂yWα(t, y)Wα(t, y) dy, (t, x) ∈ (0, T )× R

Wα(0, x) =
1

α

∫ +∞

x
exp

(x−y
α

)
ρ0(y) dy, x ∈ R.

(3.2.1)

Proof. We first show that Wα[ρα] is Lipschitz continuous and then that it solves the Cauchy
problem (3.2.1).

Step 1. Boundedness of the space derivative. We compute, for (t, x) ∈ (0, T )× R,

∂xWα[ρα](t, x) = ∂x
1

α

∫ ∞

x
exp

(
x− y

α

)
ρα(t, y) dy =

1

α
Wα[ρα](t, x)−

1

α
ρα(t, x).(3.2.2)

Since α > 0, Wα[ρα] ∈ L∞((0, T )×R), and ρα ∈ L∞((0, T )×R), owing to Theorem 3.1.1, we obtain
the uniform boundedness on the spatial derivative.
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Step 2. Boundedness of the time derivative. For the time derivative, we need to rely on the
method of characteristics analyzed in [167, Lemma 2.6] to write down the solution ρα and compute,
for (t, x) ∈ (0, T )× R,

∂tWα[ρα](t, x) = ∂t
1

α

∫ ∞

x
exp

(
x− y

α

)
ρα(t, y) dy

= ∂t
1

α

∫ ∞

x
exp

(
x− y

α

)
ρ0(ξ(t, y; 0))∂2ξ(t, y; 0) dy

= ∂t
1

α

∫ ∞

ξ(t,x;0)
exp

(x− ξ(0, z; t)

α

)
ρ0(z) dz

= − 1

α2

∫ ∞

ξ(t,x;0)
exp

(x− ξ(0, z; t)

α

)
ρ0(z)∂3ξ(0, z; t) dz −

1

α
ρ0(ξ(t, x; 0))∂1ξ(t, x; 0).(3.2.3)

Recalling, from [167, Lemma 2.6], that

∂3ξ(0, ξ(t, y; 0); t) = V (Wα[ρα](t, y)), (t, y) ∈ (0, T )× R,
∂1ξ(t, y; 0) = −∂2ξ(t, y; 0)V (Wα[ρα](t, y)), (t, y) ∈ (0, T )× R,

we obtain, by continuing Eq. (3.2.3),

∂tWα[ρα](t, x) = − 1

α2

∫ ∞

ξ(t,x;0)
exp

(x− ξ(0, z; t)

α

)
ρ0(z)∂3ξ(0, z; t) dz −

1

α
ρ0(ξ(t, x; 0))∂1ξ(t, x; 0)

= − 1

α2

∫ ∞

x
exp

(
x− y

α

)
ρ0(ξ(t, y; 0))∂3ξ(0, ξ(t, y; 0)∂2ξ(t, y; 0) dy

+
1

α
ρ0(ξ(t, x; 0))∂2ξ(t, x; 0)V (Wα[ρα](t, x)),

= − 1

α2

∫ ∞

x
exp

(
x− y

α

)
ρα(t, y)V (Wα[ρα](t, y)) dy +

1

α
ρα(t, x)V (Wα[ρα](t, x)).

Since this expression is essentially bounded for α > 0, we obtain the claimed Lipschitz continuity.
Step 3. Evolution equation. Next, we show that Wα[ρα] solves the Cauchy problem (3.2.1). For

(t, x) ∈ (0, T )× R, we compute

∂tWα[ρα](t, x) + V (Wα[ρα](t, x))∂xWα[ρα](t, x)

=
1

α
ρα(t, x)V (Wα[ρα](t, x))−

1

α2

∫ ∞

x
exp

(
x− y

α

)
ρα(t, y)V (Wα[ρα](t, y)) dy

+ V (Wα[ρα](t, x))

(
1

α
Wα[ρα](t, x)−

1

α
ρα(t, x)

)
= V (Wα[ρα](t, x))

1

α
Wα[ρα](t, x)

− 1

α2

∫ ∞

x
exp

(
x− y

α

)(
Wα[ρα]t, y)− α∂yWα[ρα](t, y))V (Wα[ρα](t, y)

)
dy

= V (Wα[ρα](t, x))
1

α
Wα[ρα](t, x)

− 1

α2

∫ ∞

x
exp

(
x− y

α

)
Wα[ρα]t, y)V (Wα[ρα](t, y)

)
dy

+
1

α

∫ ∞

x
exp

(
x− y

α

)
∂yWα[ρα](t, y)V (Wα[ρα](t, y)

)
dy

= − 1

α

∫ ∞

x
exp

(
x− y

α

)
V ′(Wα[ρα](t, x))∂yWα[ρα](t, y)Wα[ρα](t, y) dy,

where we have used the identity (3.2.2) two times and integration by parts. The last term is in
fact the right-hand side of the PDE in (3.2.1). The nonlocal impact Wα[ρα] also satisfies the initial
condition in (3.2.1) as a direct consequence of the definition ofWα[ρα] when plugging in t = 0, which
is possible as ρα ∈ C

(
[0, T ];L1

loc(R)
)
. □
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Remark 3.2.1 (Fully local equation in Wα). The nonlocal transport equation in (3.2.1) can
also be transformed into a fully local equation involving higher derivatives:

∂tWα(t, x) + ∂x
(
V (Wα(t, x))Wα(t, x)

)
= α∂2txWα(t, x) + ∂x

(
V (Wα(t, x))∂xWα(t, x)

)
, (t, x) ∈ (0, T )× R.

This formulation will be pivotal in Chapter 6.

The next theorem shows that the total variation of the nonlocal impact Wα cannot increase over
time and thus presents the key ingredient for the proof of our main result.

Theorem 3.2.1 (Total variation bound in the spatial component of Wα, uniform in α). The
nonlocal impact Wα, which solves the Cauchy problem (3.2.1), admits the following total variation
bound:

|Wα(t, ·)|TV(R) ≤ |Wα(0, ·)|TV(R) ≤ |ρ0|TV(R), t ∈ [0, T ],

for all α > 0.

Proof. We take advantage of the stability result in Theorem 3.1.1, which tells us that, when
smoothing ρ0 by ρε0 := ρ0 ∗ ηε (ηε being a standard mollifier with smoothing parameter ε > 0; see
[184, Appendix C.4]), the corresponding solution ρεα is close to ρα in the C([0, T ];L1(R)) topology.
Furthermore, since the initial datum is smooth, so is the corresponding solution (see [167, Corollary
5.3]).

We now prove the total variation bound. Since ρεα is smooth, the total variation coincides with
the L1-norm of the derivative and we can estimate it as follows for t ∈ [0, T ]:

d

dt

∫
R
|∂xW ε

α(t, x)|dx(3.2.4)

=

∫
R
sign (∂xW

ε
α(t, x)) ∂

2
txW

ε
α(t, x) dx

= −
∫
R
sign (∂xW

ε
α(t, x))V (W ε

α(t, x))∂
2
xxW

ε(t, x) dx

−
∫
R
sign (∂xW

ε
α(t, x))V

′(W ε
α(t, x))

(
∂xW

ε
α(t, x)

)2
dx

+
1

α

∫
R
sign (∂xW

ε
α(t, x))V

′(W ε
α(t, x))W

ε
α(t, x)∂xW

ε
α(t, x) dx

− 1

α2

∫
R
sign (∂xW

ε
α(t, x))

∫ ∞

x
exp

(
x− y

α

)
V ′(W ε

α(t, y))∂yW
ε
α(t, y)W

ε
α(t, y) dy dx

=

∫
R
2δ{∂xW ε

α(t,x)=0}V (W ε
α(t, x))∂xW

ε
α(t, x)∂

2
xxW

ε
α(t, x) dx

+

∫
R
sign (∂xW

ε
α(t, x))V

′(W ε
α(t, x))

(
∂xW

ε
α(t, x)

)2
dx

−
∫
R
sign (∂xW

ε
α(t, x))V

′(W ε
α(t, x))

(
∂xW

ε
α(t, x)

)2
dx

+
1

α

∫
R
sign (∂xW

ε
α(t, x))V

′(W ε
α(t, x))W

ε
α(t, x)∂xW

ε
α(t, x) dx

− 1

α2

∫
R
sign (∂xW

ε
α(t, x))

∫ ∞

x
exp

(
x− y

α

)
V ′(W ε

α(t, y))∂yW
ε
α(t, y)W

ε
α(t, y) dy dx

≤ 1

α

∫
R
|∂xW ε

α(t, x)|V ′(W ε
α(t, x))W

ε
α(t, x) dx

− 1

α2

∫
R
V ′(W ε

α(t, y))|∂yW ε
α(t, y)|W ε

α(t, y)

∫ y

−∞
exp

(
x− y

α

)
dx dy(3.2.5)

≤ 1

α

∫
R
|∂xW ε

α(t, x)|V ′(W ε
α(t, x))W

ε
α(t, x) dx
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− 1

α

∫
R
V ′(W ε

α(t, y))|∂yW ε
α(t, y)|W ε

α(t, y) exp

(
y − y

α

)
dy

= 0.

We thus obtain

|W ε
α(t, ·)|TV(R) ≤ |W ε

α(0, ·)|TV(R) ≤ |ρ0|TV(R),(3.2.6)

where the last inequality follows from the following computation:

|W ε
α(0, ·)|TV(R) = sup

ψ∈C1
c (R):

∥ψ∥L∞(R)≤1

∫
R
ψ′(x)W ε

α[ρ
ε
0](x) dx

= sup
ψ∈C1

c (R):
∥ψ∥L∞(R)≤1

∫
R
ψ′(x)

1

α

∫ +∞

0
exp

(
x− y

α

)
ρε0(y) dy dx

= sup
ψ∈C1

c (R):
∥ψ∥L∞(R)≤1

∫
R
ψ′(x)

1

α

∫ 0

−∞
exp

( z
α

)
ρε0(x− z) dy dx

= sup
ψ∈C1

c (R):
∥ψ∥L∞(R)≤1

sup
z∈(−∞,0)

∫
R
ψ′(x+ z)ρε0(x) dy

= sup
ψ∈C1

c (R):
∥ψ∥L∞(R)≤1

∫
R
ψ′(x)

∫
R
ηε(x− y)ρ0(x) dx dy

≤ sup
y∈R

∫
R
ηε(x− y) sup

ψ∈C1
c (R):

∥ψ∥L∞(R)≤1

∫
R
ψ′(z)ρ0(z) dz dx

≤ |ρ0|TV(R).

As the bound in (3.2.6) is uniform with respect to (ε, α) ∈ R2
>0, this concludes the proof. □

Remark 3.2.2 (Total variation bound and the required assumptions on the velocity V ). The key
step in the proof of the total variation bound stated in Theorem 3.2.1 can be located in the estimate
around Eq. (3.2.5). Reconnecting to Remark 3.0.1, it is enough to assume that the velocity satisfies
V ′(ξ)ξ ≤ 0 for ξ ∈ R to obtain the uniform total variation bound without any sign restriction on the
initial data.

3.3. Nonlocal–to–local convergence

Using the results in Section 3.2, we can show that the set of nonlocal terms is compact in the
canonical C

(
[0, T ];L1(K)

)
topology for a given compact set K ⋐ R.

Theorem 3.3.1 (Compactness of {Wα}α>0 in C
(
[0, T ];L1

loc(R)
)
). The set {Wα

}
α>0

⊆
C
(
[0, T ];L1(K)

)
of solutions to (3.0.2) is compactly embedded into C

(
[0, T ];L1(K)

)
for any compact

interval K ⋐ R:{
Wα ∈ C

(
[0, T ];L1(K)

)
: Wα satisfies (3.0.2), α > 0

}
c
↪→ C

(
[0, T ];L1(K)

)
.

Proof. The proof consists of applying the Ascoli–Arzelà-type theorem in [224, Lemma 1].
Given a Banach space B, a set F ⊂ C([0, T ];B) is relatively compact in C([0, T ];B) if

1. F (t) :=
{
f(t) ∈ B : f ∈ F} is relatively compact in B for all t ∈ [0, T ];

2. F is uniformly equi-continuous, i.e.

∀σ > 0 ∃δ > 0 s. t. ∀f ∈ F ∀(t1, t2) ∈ [0, T ]2 : |t1 − t2| ≤ δ =⇒ ∥f(t1)− f(t2)∥B ≤ σ.
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Given K ⋐ R, we start with setting B := L1(K) and F (t) := {Wα(t, ·) ∈ L1(K) : α > 0}. Thanks
to Theorem 3.2.1, we know that Wα(t, ·) satisfies a uniform total variation bound and, by Helly’s
compactness theorem (see [184, Theorem 13.35]),

F (t)
c
↪→ L1(K), t ∈ [0, T ].

To prove the uniform equi-continuity, we consider a smoothed initial datum ρε0 (for ε > 0) as in the
proof of Theorem 3.2.1 and call the corresponding smooth nonlocal impact W ε

α for an α > 0. Then,
we can estimate, by Theorem 3.2.1,∥∥W ε

α(t1, ·)−W ε
α(t2, ·)

∥∥
L1(R) =

∥∥∥∥∫ t1

t2

∂tW
ε
α(t, ·) dt

∥∥∥∥
L1(R)

≤
∥∥∥∥∫ t1

t2

V (W ε
α(t, ·))∂2W ε

α(t, ·) dt
∥∥∥∥
L1(R)

+

∥∥∥∥∫ t1

t2

1

α

∫ ∞

∗
exp

(
∗ − y

α

)
V ′(W ε

α(t, y))∂yW
ε
α(t, y)W

ε
α(t, y) dy dt

∥∥∥∥
L1(R)

≤ ∥V ∥L∞((0,∥ρ0∥L∞(R)))|W
ε
α|L∞((0,T );TV(R))|t1 − t2|

+ ∥V ′∥L∞((0,∥ρ0∥L∞(R)))∥W
ε
α∥L∞((0,T );L∞(R))|W ε

α|L∞((0,T );TV(R))|t1 − t2|

≤
(
∥V ∥L∞((0,∥ρ0∥L∞(R))) + ∥V ′∥L∞((0,∥ρ0∥L∞(R)))∥ρ0∥L∞(R)

)
|ρ0|TV(R)|t1 − t2|.

Since this is a uniform bound in α > 0 and ε > 0, we have the uniform equi-continuity. This
concludes the proof. □

From the strong convergence of Wα, we also deduce the strong convergence of ρα to a weak
solution of the local conservation law.

Corollary 3.3.1 (Limits of ρα and Wα are weak solutions of the local conservation law).
For every sequence {αk}k∈N≥1

⊂ R>0 with limk→∞ αk = 0, there exists a subsequence (for reasons

of convenience again denoted by αk) and a function ρ∗ ∈ C
(
[0, T ];L1

loc(R)
)
such that the solution

ραk
∈ C

(
[0, T ];L1

loc(R)
)
of the nonlocal conservation law (3.0.1) converges in C

(
[0, T ];L1

loc(R)
)
to

the limit point ρ∗ and so does the nonlocal weight Wαk
; moreover, ρ∗ is a weak solution of the local

conservation law (3.0.3). That is,

lim
α→0

∥ρα − ρ∗∥C([0,T ];L1
loc(R))

= 0 and lim
α→0

∥Wα − ρ∗∥C([0,T ];L1
loc(R))

= 0,

and ρ∗ satisfies, for all φ ∈ C1
c ([0, T )× R),

(3.3.1)

∫ T

0

∫
R
(∂tφ(t, x)ρ

∗(t, x) + ∂xφ(t, x)V (ρ∗(t, x))ρ∗(t, x)) dx dt+

∫
R
φ(0, x)ρ0(x) dx = 0.

Proof. Owing to Theorem 3.3.1, {Wαk
}k∈N≥1

c
↪→ C

(
[0, T ];L1

loc(R)
)
; thus, there exists a limit

point ρ∗ ∈ C
(
[0, T ];L1

loc(R)
)
such that

lim
k→∞

∥Wαk
− ρ∗∥C([0,T ];L1

loc(R))
= 0.

The identity (3.2.2) implies

∥Wαk
(t, ·)− ραk

(t, ·)∥L1(R) = αk|Wαk
(t, ·)|TV(R) ≤ αk|ρ0|TV(R),

which yields

lim
k→∞

∥ραk
− ρ∗∥C([0,T ];L1

loc(R))
= 0.

The fact that ρ∗ is indeed a weak solution follows from Lebesgue’s dominated convergence theorem,
owing to the strong convergence of ραk

to ρ∗ in C
(
[0, T ];L1

loc(R)
)
and the uniform bound on ρα

given in (3.1.3). □

To prove Theorem 3.0.1, it remains to show that every limit point ρ∗ is the (unique) entropy-
admissible solution of the local conservation law (3.0.3).
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Proof of Theorem 3.0.1. The result is a direct consequence of the convergence of Wα and
ρα to a weak solution of the local conservation law in C

(
[0, T ];L1

loc(R)
)
, as stated in Corollary 3.3.1,

and of the argument in [46]. Therein, the minimal entropy condition of [119, 208] (which requires
the additional assumption that the flux is strictly concave) is used to demonstrate that a solution
ρα of the nonlocal conservation law in (3.0.1), with uniform TV-bounds, converges to the entropy
solution of the local problem. When carefully examining the proof, it becomes apparent that it
suffices to assume that the solution ρα converges strongly to a weak solution ρ∗, which is the case.

For the sake of completeness, we provide the argument for any convex entropy η ∈ C2(R) and
associated entropy-flux q ∈ C2(R). We write the conservation law in (3.0.1) as

∂tρα(t, x) + ∂x(V (ρα(t, x))ρα(t, x))

= ∂x

(
ρα(t, x)

(
V (ρα(t, x))− V (Wα[ρα](t, x))

))
, (t, x) ∈ (0, T )× R.

Multiplying the equation by η′ and using the chain rule (here a smoothing argument can be used)
yields

∂tη(ρα(t, x)) + ∂x(q(ρα(t, x))

= η′(ρα(t, x))∂x

(
ρα(t, x)

(
V (ρα(t, x))− V (Wα[ρα](t, x))

))
, (t, x) ∈ (0, T )× R.

Multiplying by a test function φ ∈ C1
c ((0, T )×R;R+), integrating on (0, T )×R, and integrating by

parts yields ∫ T

0

∫
R
(∂tφ(t, x)ρα(t, x) + ∂xφ(t, x)q(ρα(t, x))) dx dt = −D,

where we estimate the entropy production as follows:

D :=

∫ T

0

∫
R
φη′(ρα)∂x(ρα(V (ρα)− V (Wα))) dx dt

=

∫ T

0

∫
R
φ
(
η′(ρα)∂xρα(V (ρα)− V (Wα)) + η′(ρα)ρα∂x(V (ρα)− V (Wα))

)
dx dt

=

∫ T

0

∫
R
φ
(
∂xη(ρα)(V (ρα)− V (Wα)) + η′(ρα)ρα∂x(V (ρα)− V (Wα))

)
dx dt

= −
∫ T

0

∫
R
∂xφ

(
η(ρα)(V (ρα)− V (Wα))

)
dx dt

+

∫ T

0

∫
R
φ(η′(ρα)ρα − η(ρα))∂x(V (ρα)− V (Wα)) dx dt

= −
∫ T

0

∫
R
∂xφ

(
η(ρα)(V (ρα)− V (Wα))

)
dx dt︸ ︷︷ ︸

=:D1

−
∫ T

0

∫
R
∂xφ

(
P (ρα)− P (Wα)

)
dx dt︸ ︷︷ ︸

=:D2

+

∫ T

0

∫
R
φ
(
(η′(Wα)Wα − η(Wα))− (η′(ρα)ρα − η(ρα))

)
V ′(Wα)

Wα − ρα
α

dx dt︸ ︷︷ ︸
=:D3

,

with P ′(ξ) =
(
η′(ξ)ξ − η(ξ)

)
V ′(ξ). By Lagrange’s mean-value theorem, we have

D3 =

∫
R
φ(η′(ξ̄)ξ̄ − η(ξ̄))′V ′(Wα)

(Wα − ρα)
2

α
dx ≤ 0.

where ξ̄ ∈
[
min{Wα(t, x), ρα(t, x)},max{Wα(t, x), ρα(t, x)}

]
.
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Since ραk
,Wαk

→ ρ∗ in C([0, T ];L1
loc(R)), as k → +∞, we conclude that D1, D2 → 0 and, thus,∫ T

0

∫
R
(∂tφ(t, x)ρ

∗(t, x) + ∂xφ(t, x)q(ρ
∗(t, x))) dx dt ≥ 0.

As every limit point is, by the previous argument, an entropy solution of the local conservation
law (3.0.3) and the entropy solution is unique, we conclude that the whole families {ρα}α>0 and
{Wα}α>0 converge to the same limit point by Urysohn’s subsequence principle (see [230]). □

3.4. Numerical experiments

We rely on a non-dissipative solver based on characteristics (see [173] and [213, Chapter 3]).
On the basis of a simple numerical example, we want to shed more light on the difference between
the total variation of ρα and the nonlocal counterpart Wα[ρα] (see Figure 3.1, top row). We consider
the LWR–Greenshields velocity V (ξ) := 1 − ξ (see [138, Chapter 3, Eq. (3.1.3)]) and the initial
datum

ρ0 :=
1

2
1(0, 13)

+ 1( 2
3
,+∞).(3.4.1)

The zeros of the initial datum, located in the interval
(
1
3 ,

2
3

)
, are moving along the evolution, but

are kept in the nonlocal solution ρα for all times (see Figure 3.2). This results in an increase in the
total variation. In the nonlocal impact Wα, on the other hand, there are no roots and, as proven in
Theorem 3.2.1, the total variation is non-increasing.

We also perform some experiments with a piecewise-constant weight and consider

Wα[ρα] :=
1

α

∫ x+α

x
ρα(t, y) dy, (t, x) ∈ (0, T )× R.(3.4.2)

For the initial datum mentioned above, it appears to be true that a total variation bound on the
nonlocal impact is maintained even in this case and that the solution still converges to the local
entropy solution (see Figure 3.1, bottom row). However, more recently, in [89] a particular initial
datum was built for which the total variation of the nonlocal impact defined in (3.4.2) can actually
increase.
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Figure 3.1. Solution of the nonlocal conservation law with exponential weight
(top) or piecewise-constant weight (bottom) and initial datum (3.4.1), plotted in
the space-time domain. From left to right, α is decreasing: α ∈

{
10−1, 10−2, 10−3

}
.

Colorbar: 0 1
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Figure 3.2. Left: Solution and nonlocal impact of the nonlocal conservation law
with exponential weight (top) or piecewise-constant weight (bottom) and initial
datum (3.4.1), plotted for t = 0.5 and α ∈ {10−1, 10−2, 10−3}. Right: Evolution
of the corresponding total variations. The nonlocal impact (dotted lines) has non-
increasing total variation; on the other hand, the total variation of the solution itself
(dashed-dotted lines) is not monotone and approaches 3 for large times (while the
solution of the local conservation law has total variation equal to 1 for t ∈ (1, T )).



CHAPTER 4

Olĕınik-type estimates and nonlocal–to–local singular limit for L∞

initial data

The main results of this Chapter are the following Olĕınik-type estimates involving the nonlocal
impact Wα. More precisely, under different sets of assumptions on the velocity function V , we show
that Wα satisfies a one-sided Lipschitz condition and that V ′(Wα)Wα∂xWα satisfies a one-sided
bound, respectively.

Theorem 4.0.1 (Olĕınik-type inequality for Wα). Let 0 < κ1 < κ2, ρ0 ∈ L∞(R;R≥0), and

V ∈W 2,∞
loc (R) a non-increasing velocity such that at least one of the following conditions is satisfied:

V ′(ξ) = −δ < 0, ξ ∈ [ess inf ρ0, ess sup ρ0];(4.0.1)

0 ≤ V ′(ξ) + V ′′(ξ)ξ ≤ κ1, V ′(ξ) ≤ −κ2, κ2 − κ1 > 0, ξ ∈ [ess inf ρ0, ess sup ρ0].(4.0.2)

Let ρα be the solution of the Cauchy problem associated to (3.0.1). Then the nonlocal impact Wα

satisfies the following inequality:

Wα(t, x)−Wα(t, y)

x− y
≥ − 1

κt
, for all t > 0 and x, y ∈ R with x ̸= y,(4.0.3)

with κ := δ (in case assumption (4.0.1) holds) or κ := κ2 − κ1 (in case assumption (4.0.2) holds).

Remark 4.0.1 (Convexity/concavity assumptions). If we assume that the flux is strictly convex
(instead of strictly concave as implied by the assumptions (4.0.1) or (4.0.2)), we can establish an
analogous result. We chose to prove the statement in the concave case because of its relevance
to traffic models. For the computation in the case of a convex flux with linear velocity (i.e., the
counterpart of the setting of (4.0.1)), we refer to Chapter 5.

Theorem 4.0.2 (Olĕınik-type inequality for V ′(Wα)Wα∂xWα). Let 0 < κ1, ρ0 ∈ L∞(R;R≥0),

and V ∈ W 2,∞
loc (R) a non-increasing velocity such that at least one of the following conditions is

satisfied:

0 ≤ (−V ′(ξ)− V ′′(ξ)ξ)(ess sup ρ0 − ess inf ρ0) ≤ −V ′(ξ)ξ, ξ ∈ [ess inf ρ0, ess sup ρ0];(4.0.4)

− V ′(ξ) ≤ V ′′(ξ)ξ ≤ −(2− κ1)V
′(ξ), ξ ∈ [ess inf ρ0, ess sup ρ0].(4.0.5)

Let ρα be the solution of the Cauchy problem associated to (3.0.1). Then,

(4.0.6) sup
R
V ′(Wα)Wα∂xWα ≤

∥ρ0∥L∞(R)

κt
, for all t > 0,

where κ := 1 (in case assumption (4.0.4) holds) or κ := κ1 (in case assumption (4.0.5) holds).

Remark 4.0.2 (Independence of the constant on |ρ0|TV(R)). In Theorems 4.0.1 and 4.0.2, the
initial datum is not required to be of bounded variation.

Remark 4.0.3 (Assumptions on the velocity function and traffic models). The assumptions
on the velocity function V in Theorems 4.0.1 and 4.0.2 may appear quite restrictive. In the proofs,
we exploit such conditions when manipulating the equations satisfied by ∂xWα and V ′(Wα)Wα∂xWα

to deduce a Riccati-type differential inequality. Despite their apparent intricacy, these assumptions
are satisfied by several classes of well-known traffic models, possibly under some restrictions on the
initial data.

1. The LWR–Greenshields model V (ξ) := vmax(1− ξ/ρmax), with vmax > 0 and ρmax > 0 (see
[138, Chapter 3, Eq. (3.1.3)]), satisfies assumption (4.0.1).

39
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2. The Underwood model V (ξ) := v0 exp
(
− ξ
ρmax

)
, with ρmax > 0 and v0 > 0 (see [138,

Chapter 3, Eq. (3.1.5)]), satisfies assumption (4.0.4) under the constraint ess inf ρ0 ≥
3−

√
8

2 ess sup ρ0.

3. The generalized Greenshields model V (ξ) := v0

(
1−

(
ξ

ρmax

)n)
, with ρmax > 0 and v0 >

0 (see [138, Chapter 3, Eq. (3.1.6)]), satisfies assumption (4.0.4) under the constraint
ess inf ρ0 ≥ n

n+1 ess sup ρ0.

4. The generalized California model Vµ(ξ) := v0

(
1
ξµ − 1

ρµmax

)
, with ρmax > 0, v0 > 0, and

µ ∈ (0, 1) (cf. [138, Chapter 3, Eq. (3.1.7)]), satisfies assumptions (4.0.2) and (4.0.5).
This velocity is not locally Lipschitz continuous at ξ = 0; however, its variant Vµ(ξ) :=

vmax

(
1

ξµ+ vµmax
vµmax+1

− 1
ρµmax

)
is and satisfies the same assumption; alternatively, we may just

assume ρ0 ≥ c0 > 0.

As a consequence of Theorems 4.0.1 and 4.0.2, we deduce the following nonlocal–to–local con-
vergence results. The key difference compared to Chapter 3 (and the more recent work [89]) is
the fact that we do not require the initial datum to have bounded total variation; on the other hand,
some extra assumptions on the velocity function are required.

Corollary 4.0.1 (Nonlocal–to–local singular limit problem). Let us suppose that either

– the assumptions of Theorem 4.0.1 hold;
– the assumptions of Theorem 4.0.2 hold, and additionally V ′ ≤ −κ2 < 0 for some κ2 > 0.

Let ρα be the unique weak solution of the nonlocal conservation law (3.0.1) and ρ be the unique
entropy admissible solution of the local conservation law (3.0.3). Then, both ρα and the corresponding
nonlocal impact Wα converge to ρ in L1

loc([0, T )× R).

In Section 4.3, these results are illustrated by several numerical simulations. Before diving into
the proof of our main results, which are contained in Section 4.1 and 4.2, we recall the well-posedness
result from Chapter 3 (in a slightly modified form) and the evolution equation satisfied by Wα.

Theorem 4.0.3 (Existence and uniqueness of weak solutions, maximum principle, and properties

of the nonlocal impact). Let ρ0 ∈ L∞(R;R≥0) and V ∈W 2,∞
loc (R) be a non-increasing velocity. Then,

for every α > 0, there exists a unique weak solution ρα ∈ C([0, T ];L1
loc(R)) ∩ L∞((0, T );L∞(R)) of

the nonlocal conservation law (3.0.1) and the following maximum principle holds:

ess inf
x∈R

ρ0(x) ≤ ρα(t, x) ≤ ess sup
x∈R

ρ0(x), for a.e. (t, x) ∈ (0, T )× R.(4.0.7)

Moreover, for the nonlocal impact Wα, the following properties hold:

(1) Wα ∈W 1,∞ ([0, T ]× R) and ess inf ρ0 ≤Wα ≤ ess sup ρ0;
(2) Wα ∈ C0

(
[0, T ];L1(R)

)
;

(3) if ρ0 ∈ Ck(R), then Wα ∈ Ck+1 ([0, T ]× R) for k ≥ 0.

In addition, for every t ∈ [0, T ], the map t 7→ Lip−(ρα(t, ·)) is a locally Lipschitz continuous function

from [0,+∞) to [0,+∞). Here, Lip−(ρα) := − inf
x<y

ρα(y)−ρα(x)
y−x .

Furthermore, Wα solves the following Cauchy problem in the strong sense:
∂tWα(t, x) + V (Wα(t, x))∂xWα(t, x)

= − 1
α

∫∞
x exp(x−yα )V ′(Wα(t, y))∂yWα(t, y)Wα(t, y) dy, (t, x) ∈ (0, T )× R,

Wα(0, x) =
1
α

∫∞
x exp(x−yα )ρ0(y) dy, x ∈ R.

(4.0.8)

We note that (4.0.8) can be equivalently rewritten as

(4.0.9) ∂tWα + ∂x(V (Wα)Wα) = gα − gα ∗ γα, where gα = V ′(Wα)Wα∂xWα

and we use the notations

γ(·) := 1(−∞,0](·) exp(·) and γα = α−1γ(·/α).(4.0.10)
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4.1. Proof of the Olĕınik estimates

In order to prove the Olĕınik estimates, it is helpful to regularize the initial data of the nonlocal
conservation law (3.0.1). To this end, we need the following stability result (see Chapters 3 and 5
for related results).

Lemma 4.1.1 (Approximation). Let us consider the Cauchy problem{
∂tρ(t, x) + ∂x(V (W [ρ](t, x))ρ(t, x)) = 0, (t, x) ∈ (0,+∞)× R,
ρ(0, x) = ρ0(x), x ∈ R,

(4.1.1)

where

W [ρ](t, x) :=

∫ +∞

x
exp(x− y)ρ(t, y) dy, (t, x) ∈ (0,+∞)× R.

Let us also consider the family of the Cauchy problems{
∂tρn(t, x) + ∂x (V (Wn(t, x)) ρn(t, x)) = 0, (t, x) ∈ (0,+∞)× R,
ρn(0, x) = ρ0,n(x), x ∈ R,

(4.1.2)

where n ∈ N and

Wn[ρn](t, x) :=

∫ +∞

x
exp(x− y)ρn(t, y) dy.

Let us furthermore assume that, for a suitable constant M > 0, it holds

0 ≤ ρ0,n ≤M a.e. for every n ∈ N, ρ0,n
∗
⇀ ρ0 weakly-∗ in L∞(R) for n→ +∞.(4.1.3)

Then,
Wn →W strongly in L1

loc (R+ × R) .

Remark 4.1.1 (More general kernels). The statement of Lemma 7.4.1 is still valid if we replace
the exponential weight with a more general kernel

γ ∈ Lip (R−) ,

∫
R−

γ(y) dy = 1, γ′ ≥ 0.

Proof of Lemma 7.4.1. By the maximum principle, the first condition in (4.1.3) yields

0 ≤ ρn,Wn ≤M a.e. and for every n ∈ N.(4.1.4)

Owing to (4.1.4), we have that, up to subsequences, ρn
∗
⇀ v in the weak-∗ topology of L∞ (R+ × R),

for some bounded limit function v. By Lebesgue’s dominated convergence theorem, this, in turn,
implies that Wn → v ∗ 1(−∞,0](·) exp(·) strongly in L1

loc (R+ × R). By passing to the limit in
the distributional formulation of (4.1.2), we conclude that v coincides with the unique bounded
distributional solution of (4.1.1). □

Remark 4.1.2 (Continuity in time). By using [116, Lemma 1.3.3], we can assume—with no
loss of generality—that the functions t 7→ ρα(t, ·) and t 7→Wα(t, ·) are continuous from R+ to L∞(R)
endowed with the L∞-weak-∗ and the strong L1

loc topology, respectively. In Section 4.2, we will use
this remark to pass to the limit in the nonlocal Olĕınik inequalities (4.0.3) or (4.0.6) for every t > 0.

4.1.1. Olĕınik-type estimate forWα. In this Section, we establish the Olĕınik-type inequality
in Theorem 4.0.1. The key idea is to use the transport equation with nonlocal source satisfied by
Wα, i.e. (4.0.8).

Proof of Theorem 4.0.1. Owing to Lemma 4.1.1, it suffices to prove the statement for
initial data ρ0 ∈ D ∩ C2(R) and thus for solutions ρα ∈ C2([0, T ]× R). Here,
(4.1.5) D :=

{
ρ0 ∈ L∞(R) : |ρ0|TV(R) <∞, ρ0(x) ∈ [0, ρmax] for a.e. x ∈ R

}
.

By differentiating (4.0.8) with respect to x, we get

∂2txWα =− V (Wα)∂
2
xxWα − V ′(Wα)(∂xWα)

2 +
1

α
V ′(Wα)Wα∂xWα

− 1

α2

∫ ∞

x
exp

(
x− y

α

)
V ′(Wα)Wα∂yWα dy.

(4.1.6)
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We now set m(t) := miny∈R ∂yWα(t, y) and assume without loss of generality that m(t) ≤ 0.
Case 1: we assume (4.0.2). We estimate the right-hand side of (4.1.6) from below as follows:

∂2txWα =− V (Wα)∂
2
xxWα − V ′(Wα)(∂xWα)

2 +
1

α
V ′(Wα)Wα∂xWα

− 1

α2

∫ ∞

x
exp

(
x− y

α

)
V ′(Wα)Wα∂yWα dy

≥− V (Wα)∂
2
xxWα − V ′(Wα)(∂xWα)

2 +
1

α
V ′(Wα)Wα∂xWα

− 1

α2
m

∫ ∞

x
exp

(
x− y

α

)
V ′(Wα)Wα dy

(integrating by parts in the last term)

=− V (Wα)∂
2
xxWα − V ′(Wα)(∂xWα)

2 +
1

α
V ′(Wα)Wα∂xWα

− 1

α
mV ′(Wα)Wα − 1

α
m

∫ ∞

x
exp

(
x− y

α

)(
V ′(Wα)∂yWα + V ′′(Wα)Wα∂yWα

)
dy.

We consider x̄ := x̄(t) ∈ R such that m(t) = ∂xWα(t, x̄) and evaluate the previous expression at
x = x̄. Due to (4.0.2), we have

− 1

α
m

∫ ∞

x
exp

(
x− y

α

)(
V ′(Wα) + V ′′(Wα)Wα

)
∂yWα dy ≥ −κ1m2

and, then, we deduce (using [98, Theorem 2.1])

d

dt
m(t) ≥ −V ′(Wα)m(t)2 − κ1m

2(t) ≥ (κ2 − κ1)m
2(t), t > 0.

Case 2: we assume (4.0.1). We estimate the right-hand side of (4.1.6) from below as follows:

∂2txWα = −V (Wα)∂
2
xxWα + δ(∂xWα)

2 − δ

α
Wα∂xWα

+
δ

α2

∫ ∞

x
exp

(
x− y

α

)
Wα∂yWα dy

= −V (Wα)∂
2
xxWα + δ(∂xWα)

2 − δ

α
Wα∂xWα

+
δ

α2

∫ ∞

x
exp

(
x− y

α

)(
α∂yWα(t, y) + ρα(t, y)

)
∂yWα dy

= −V (Wα)∂
2
xxWα + δ(∂xWα)

2 − δ

α
Wα∂xWα

+
δ

α

∫ ∞

x
exp

(
x− y

α

)
(∂yWα)

2 dy︸ ︷︷ ︸
≥0

+
δ

α2

∫ ∞

x
exp

(
x− y

α

)
ρα∂yWα dy

≥ −V (Wα)∂
2
xxWα + δ(∂xWα)

2 − δ

α
Wα∂xWα +

δ

α2
m

∫ ∞

x
exp

(
x− y

α

)
ρα dy

= −V (Wα)∂
2
xxWα + δ(∂xWα)

2 − δ

α
Wα∂xWα +

δ

α
mWα.

Using [98, Theorem 2.1], we fix x̄ = x̄(t) ∈ R such that m(t) = ∂xWα(t, x̄), evaluate the previous
expression at x = x̄, and deduce

d

dt
m(t) ≥ δm(t)2 − δ

α
Wα(t, x̄)m(t) +

δ

α
m(t)Wα(t, x̄) = δm(t)2, t > 0.

Conclusion. In both cases, we arrive at the Riccati-type differential inequality

d

dt
m(t) ≥ κm2(t), t > 0
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(with κ := (κ1 − κ2) or κ := δ, respectively), which yields

Wα(t, x)−Wα(t, y)

x− y
=

1

x− y

∫ x

y
∂xWα(t, ξ) dξ ≥ − 1

κt
, t > 0, x, y ∈ R, x ̸= y.

□

4.1.2. Olĕınik-type estimate for V ′(Wα)Wα∂xWα. The basic idea underpinning the proof
of the Olĕınik inequality for gα = V ′(Wα)Wα∂xWα is to observe that this quantity satisfies the
equation

∂tgα = (V ′′(Wα)Wα + V ′(Wα))∂xWα∂tWα + V ′(Wα)Wα∂
2
txWα.

Proof of Theorem 4.0.2. Owing to Lemma 4.1.1, it suffices to prove the statement for
initial data ρ0 ∈ D ∩ C2(R) and therefore for solutions ρα ∈ C2([0, T ] × R). The set D has been
defined in (4.1.5).

For the sake of brevity, we set zα := ∂xWα. By differentiating (4.0.9) with respect to x, we
obtain the following equation for zα:

(4.1.7) ∂tzα = −V (Wα)∂xz − V ′(Wα)z
2 − gα ∗ ∂xγα, (t, x) ∈ (0, T )× R.

From (4.0.9), (4.1.7), and the fact that

(4.1.8) ∂xγα =
1

α
(γα − δ0) ,

where γα is the same as in (4.0.10), we get

∂tgα = (V ′′(Wα)Wα + V ′(Wα))zα∂tWα + V ′(Wα)Wα∂tzα

= hαzα
(
− V (Wα)zα − gα ∗ γα

)
+ V ′(Wα)Wα

(
−V (Wα)∂xzα − V ′(Wα)z

2
α − 1

α
(gα ∗ γα − gα)

)
,

(4.1.9)

where

(4.1.10) hα := V ′′(Wα)Wα + V ′(Wα)

and

(4.1.11) ∂xgα = hαz
2
α + V ′(Wα)Wα∂xzα.

We now separately consider two cases:

1. for every t ∈ [0, T ], there exists x ∈ R such that gα(t, x) > 0;
2. there exists t ∈ [0, T ] such that gα(t, x) ≤ 0 for every x ∈ R.

Case 1. Owing to Lemma 4.1.1, we can assume, with no loss of generality, that, for every t̄ > 0,
we have ρα(t̄, ·) ∈ D ∩ C2(R) and hence Wα(t̄, ·) ∈ D ∩ C2(R). For every t̄ ∈ [0, T ), there exists a
maximum point x̄ of gα(t̄, ·). In particular, ∂xgα(t̄, x̄) = 0; by (4.1.11), we have

(4.1.12) ∂xzα(t̄, x̄) = − hα
V ′(Wα)Wα

z2α(t̄, x̄).

Evaluating (4.1.9) at (t̄, x̄), we get

∂tgα(t̄, x̄) =

(
−hαzαgα ∗ γα − (V ′(Wα))

2Wαz
2
α − V ′(Wα)Wα

α
(gα ∗ γα − gα)

)
(t̄, x̄)

=: I + II + III.

(4.1.13)

We observe that III ≤ 0 since V ′ ≤ 0, Wα ≥ 0, and x̄ is a maximum point of gα(t̄, ·). Moreover, by
using the definition of gα and the maximum principle, we get

(4.1.14) II = − g2α
Wα

≤ − 1

∥ρ0∥L∞(R)
g2α.

The term I is more delicate and can be controlled using the assumptions (4.0.4) or (4.0.5).
Case 1a. Under the assumption (4.0.4), we have hα ≤ 0. Therefore, if gα ∗ γα(t̄, x̄) ≥ 0, then I ≤ 0.
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Otherwise, let us assume that gα ∗ γα(t̄, x̄) < 0. Since zα = ρα ∗ ∂xγα, then, by recalling (4.1.8), we
arrive at

(4.1.15) |zα| =
∣∣∣∣ 1α (ρα ∗ γα − ρα)

∣∣∣∣ ≤ Osc ρα
α

;

therefore,

(4.1.16) |hαzαgα ∗ γα(t̄, x̄)| = |I| ≤ Osc ρα
α

|hαgα ∗ γα(t̄, x̄)| ≤
|V ′(Wα)Wα|

α
|gα ∗ γα(t̄, x̄)| ≤ |III|,

where we used (4.0.4) and hα ≤ 0 in the second inequality and gα ∗γα(t̄, x̄) < 0 in the last inequality.
In particular, this shows

(4.1.17) ∂tgα(t̄, x̄) ≤ − 1

∥ρ0∥L∞(R)
g2α(t̄, x̄),

which, by comparison, yields the desired claim.
Case 1b. Under the assumption (4.0.5), we have hα ≥ 0. In case gα ∗ γα(t̄, x̄) ≤ 0, then I ≤ 0. We
then focus on the case gα ∗ γα(t̄, x̄) > 0. Since x̄ is a maximum point for gα(t̄, ·), then gα ∗ γα(t̄, x̄) ≤
gα(t̄, x̄); hence

I + II ≤ −
[
hαzαgα + (V ′(Wα))

2Wαz
2
α

]
(t̄, x̄)

=−WαV
′(Wα)z

2
α(V

′′(Wα)Wα + 2V ′(Wα))(t̄, x̄)

≤ − κ1Wα(V
′(Wα))

2z2α(t̄, x̄)

= − κ1
Wα

gα(t̄, x̄)
2

≤ − κ1
∥ρ0∥L∞(R)

gα(t̄, x̄)
2,

where, in the second inequality, we used (4.0.5). This establishes (4.1.17) which, by comparison,
yields (4.0.6).
Case 2. We define t̄ ∈ [0, T ] by setting

(4.1.18) t̄ := inf{t ∈ [0, T ] : gα(t, x) ≤ 0 for every x ∈ R}.

Assuming that t̄ > 0, we can apply the same argument as in Case 1 on the interval [0, t̄). Since t 7→
Lip−ρα(t) is a continuous function, then also t 7→ max gα(t, ·) is continuous and this establishes (4.0.6)
on [0, t̄]. Note that gα(t, x) ≤ 0 for every x ∈ R if and only if ρα(t, ·) is non-decreasing. Therefore,
since (1.1.1) preserves the monotonicity of the initial datum (see [35, 167]), then, for every t ∈ (t̄, T ],
ρα(t, ·) is a monotone non-decreasing function, that is gα(t) ≤ 0. If t̄ = 0, then we can directly apply
the argument for the preservation of monotonicity. This concludes the proof. □

Remark 4.1.3 (The Greenberg model). Let us consider the velocity function V (ξ) :=
v0 ln (ρmax/ξ) with v0 > 0 and ρmax > 0, which corresponds to a traffic model proposed by Greenberg
and supported by experimental data (see [138, Chapter 3, Eq. (3.1.4)]). Formally, an Olĕınik-type
estimate still holds: indeed, going back to (4.1.13), we get hα ≡ 0; thus I = 0 therefore, since III ≤ 0
and (4.1.14), it follows from (4.1.13) that

∂tgα(t̄, x̄) ≤ − 1

∥ρ0∥L∞(R)
g2α(t̄, x̄),

which, by comparison, implies (4.0.6). Assuming that the initial density is bounded away from zero,
this remark can be made rigorous.

4.2. Proof of the nonlocal–to–local convergence

As a first step towards proving Theorem 4.0.1, we point out that the Olĕınik inequality in
Theorem 4.0.1 implies a uniform BVloc-estimate for t > 0 and, thus, compactness for {Wα}α>0.
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Lemma 4.2.1 (BVloc-regularization and compactness). Let us suppose that (4.0.3) holds. Then,
the function Wα(t, ·) belongs to BVloc(R) for every t > 0 uniformly with respect to α > 0: for every
compact interval K ⋐ R,

|Wα(t, ·)|TV(K) ≤ 2

(
|K|
2t

+ ∥Wα(t, ·)∥L∞(K)

)
.(4.2.1)

As a result, the set {Wα}α>0 of solutions to (4.0.8) is compactly embedded into L1
loc((0, T )× R).

Proof. The claim in (4.2.1) is contained in [38, Eq. (4.3)] or [39, Lemma 2.2 (ii) and Remark
2.3] (the proof is also presented in Chapter 5). The second follows an argument as in Theorem
3.3.1. □

With Lemma 4.2.1 in hand, we can directly establish Corollary 4.0.1 under assumptions (4.0.2) or
(4.0.1)—i.e. using the Olĕınik inequality from Theorem 4.0.1—by arguing similarly as in Chapter
3. In fact, more simply, to prove that the limit point of {Wα}α>0 is an entropy-admissible solution
of the local conservation law (3.0.3), it suffices to pass to the limit pointwise in (4.0.3).

The proof of Theorem 4.0.1 under assumptions (4.0.4) or (4.0.5)—i.e., using the Olĕınik inequality
from Theorem 4.0.2—is somewhat more delicate. Indeed, we cannot directly deduce a uniform TV
bound on {Wα}α>0. In Lemma 4.2.2 below, we rather show that {W 2

α}α>0 is equi-bounded in
BVloc((0, T ) × R) and, therefore, that the family {Wα}α>0 is precompact in L1

loc((0, T ) × R) and
that limit points W of {Wα}α>0 as α → 0+ are weak solutions of (3.0.3). The fact that the limit
point of {Wα}α>0 so constructed is an entropy-admissible solution of the local conservation law is
already known (see Chapter 3). In Lemma 4.2.3, we present, however, another proof. We point
out that the Olĕınik-type inequality for W 2

α rules out the presence of non-entropic shocks in the
limit W . When W does not have bounded variation it is not trivial to deduce that it is, in fact, the
entropy-admissible solution: we achieve this by exploiting the recent results of [139, 198] on Besov
regularity and on the structure of solutions of conservation laws with finite entropy production. This
seems to be of independent interest.

Finally, we need to show that ρα converges to the same limit as Wα. If we have a total variation
bound on Wα, this follows immediately from the identity (3.2.2). In case the bound holds only for
W 2
α, a more subtle analysis is needed, which we perform in Lemma 4.2.4.

Lemma 4.2.2 (Precompactness in L1). Let us assume that (4.0.6) holds. Then the sequence
{Wα}α>0 is precompact in L1

loc((0, T )×R) and every limit point of Wα is a weak solution of (3.0.3).

Proof. Step 1. Precompactness of Wα. Since V
′ ≤ −κ2 < 0, then, from gα(t, ·) ≤ 1

κt , we
deduce

(4.2.2) ∂xW
2
α(t, ·) ≤

2

κ2κt

and

∂tW
2
α(t, ·) = −V (Wα)∂xW

2
α − 2Wαgα ∗ γα ≥ −2V (0) + 2max ρ0

κκ2t

for t > 0. In particular, this yields the result that W 2
α is equi-bounded in BVloc((0, T ) × R). By

Helly’s compactness theorem, there is a subsequence W 2
αk

which converges a.e. to some function

W 2 as k → +∞. Therefore, Wαk
converges to W a.e. and, by Lebesgue’s dominated convergence

theorem, Wαk
→W in L1

loc((0, T )× R).
Step 2. W is a weak solution of (3.0.3). By (4.0.9), it suffices to show that gα− gα ∗ γα → 0 in

D′([0, T )× R). Let us first fix φ ∈ C∞
c ((0, T )× R), then∫ T

0

∫
R
φ(gα − gα ∗ γα) dx dt =

∫ T

0

∫
R
φgα ∗ (δ0 − γα) dx dt =

∫ T

0

∫
R
φ ∗ (δ0 − γ̃α)gα dx dt,

where γ̃α(x) := γα(−x). Since φ(t, ·) ∗ (δ0 − γ̃α) converges uniformly to 0 and decays exponentially
in space uniformly in α and∫ L

−L
|gα(t, x)| dx ≤ ∥V ′∥L∞(R)|W 2

α(t, ·)|TV([−L,L])
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grows at most linearly in L owing to (4.2.2), then, for every φ ∈ C∞
c ((0, T )× R), we have

lim
α→0

∫ T

0

∫
R
φ(gα − gα ∗ γα) dx dt = 0.

We now fix φ ∈ C∞
c ([0, T )× R); since ρα solves (3.0.1), then the map

t 7→
∫
R
ρα(t, x)φ(t, x) dx

is Lipschitz continuous with respect to t uniformly with respect to α on [0, T ). Therefore, the same
is true if we replace ρα by Wα := ρα ∗ γα. In particular, by (4.0.9), we have that

t 7→
∫
R
(gα − gα ∗ γα)φ(t, x) dx

is Lipschitz continuous with respect to t uniformly with respect to α on [0, T ). Hence gα−gα∗γα → 0
in D′([0, T )× R). □

Lemma 4.2.3 (Entropy admissibility of the limit point). If W is a limit point of {Wα}α>0 then
W is the entropy solution of (3.0.3).

Proof. We already know from Lemma 4.2.2 that W is a weak solution of (3.0.3). Moreover,
since W is a limit point of Wα, then W 2 ∈ BVloc((0, T ) × R). We check that this implies W ∈
B

1/3,3
∞,loc((0, T )×R): indeed, given Ω compactly contained in (0, T )×R and h ∈ R2 sufficiently small,

we have∫
Ω
|DhWα|3 dx ≤ ∥ρ0∥L∞(R)

∫
Ω
|DhWα|2 dx ≤ ∥ρ0∥L∞(R)

∫
Ωh

|DhW
2
α| ≤ ∥ρ0∥L∞(R)|h||W 2

α|TV(Ωh),

where Dh denotes the (first-order) forward-difference operator, Ωh := {(t, x) ∈ (0, T ) × R :
dist(x,Ω) ≤ |h|}, and we used 0 ≤ Wα ≤ ∥ρ0∥L∞(R). Weak solutions W to Burgers equation

belonging to B
1/3,3
∞,loc((0, T )× R) enjoy a kinetic formulation (see [139, Theorem 2.6]) and for every

weak solution enjoying a kinetic formulation there are countably many Lipschitz continuous curves
Xn : [0, T ) → R such that for every entropy–entropy-flux pair (η, q) and every φ ∈ C∞

c ((0, T )×R;R+)
we have ∫ T

0

∫
R
(η(W )∂tφ+ q(W )∂xφ) dx dt

=
∞∑
n=1

∫ T

0
φ
[
q(W+)− q(W−)− Ẋn(t)(η(W

+)− η(W−))
]
(t,Xn(t)) dt,

(4.2.3)

whereW± denotes the traces ofW along Xn (see [198]). The uniform one-sided bound on gα proven
in Proposition 4.0.2 implies that, for every n ∈ N and a.e. t ∈ (0, T ), we have W+(t,Xn(t)+) ≥
W−(t,Xn(t)−). Since ξ 7→ ξV (ξ) is concave, then it is well-known that the shocks with W+ ≥W−

are entropic: namely, for every convex entropy η and every W− ≤W+, we have

q(W+)− q(W−)− Ẋn(t)(η(W
+)− η(W−)) ≥ 0.

In particular, by (4.2.3), we have that W is the entropy solution of (3.0.3). □

Lemma 4.2.4 (Convergence of ρα). The family of functions {ρα}α>0 converges to W in
L1
loc((0, T )× R) as α→ 0+.

Proof. Owing to the specific choice of the weight γα, we have the relation

(4.2.4) ρα =Wα − αzα.

Therefore, by (4.2.2), we deduce

W 2
α −Wαρα =Wα(Wα − ρα) = αkWαzα =

α

2
∂xW

2
α → 0 in L1

loc((0, T )× R),

so that there exists a sequence αk → 0 such that ραk
converges to W a.e. in the set {W ̸= 0}.

We now discuss the convergence on the set {W = 0}. Given t̄, L > 0, let us define

A(t̄, L) := {(t, x) ∈ (0, T )× R : x ∈ (−L− Vmax(t̄− t), L+ Vmax(t̄− t))},
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where Vmax := maxV = V (0). Up to removing a negligible set of values for t̄ and L, we can assume
that H1-a.e. point in ∂A(t̄, L) ∩ (0, T ) × R is a Lebesgue point of Wαk

and ραk
for every k ∈ N.

Taking a further subsequence of αk, which we do not rename, we can assume that Wαk
converges to

W a.e. in (0, T )× R.
Given h > 0, let us consider an increasing function χh ∈ C∞(R) such that

χh(x) =

{
1 if x ≥ h,

0 if x ≤ 0,

and the approximation φh of the characteristic function of A(t̄, L) defined by

φh(t, x) = χh(t̄− t)χh(x+ L+ Vmax(t̄− t))χh(L+ Vmax(t̄− t)− x).

Testing (3.0.1) with φh and letting h→ 0, we get

(4.2.5)

∫ L+Vmax t̄

−L−Vmax t̄
ρ0(x) dx−

∫ L

−L
ρα(t̄, x) dx =

∫ t̄

0
F+(ρα)(t) dt+

∫ t̄

0
F−(ρα)(t) dt,

where

F+(ρα)(t) := (ραV (Wα) + Vmaxρα) (t, L+ Vmax(t̄− t)),

F−(ρα)(t) := (−ραV (Wα) + Vmaxρα) (t,−L− Vmax(t̄− t))

are the exiting fluxes of the quantity ρα across the lateral boundaries of A(t̄, L). Since ραk
→W in

the set {W ̸= 0} and ραk
≥ 0, then

(4.2.6) lim sup
k→∞

∫ L+Vmax t̄

−L−Vmax t̄
ρ0(x) dx−

∫ L

−L
ραk

(t̄, x) dx ≤
∫ L+Vmax t̄

−L−Vmax t̄
ρ0(x) dx−

∫ L

−L
W (t̄, x) dx.

Similarly, observing that ξ 7→ F±(ξ) is increasing, we have

(4.2.7) lim inf
k→∞

∫ t̄

0
F+(ραk

)(t) dt+

∫ t̄

0
F−(ραk

) dt ≥
∫ t̄

0
F+(W )(t) dt+

∫ t̄

0
F−(W )(t) dt.

Now let us test (4.0.9) with φh and let ε → 0: since gα − gα ∗ γα → 0 in the sense of distributions
on [0, T )× R, we get∫

(0,T )×R

(
W∂tφh +WV (W )∂xφh

)
dx dt+

∫
R
ρ0(x)φh(0, x) dx = 0.

Letting h→ 0, we thus obtain

(4.2.8)

∫ L+Vmax t̄

−L−Vmax t̄
ρ0(x) dx−

∫ L

−L
W (t̄, x) dx =

∫ t̄

0
F+(W )(t) dt+

∫ t̄

0
F−(W )(t) dt.

Comparing (4.2.5) and (4.2.8), we get that the two inequalities (4.2.6) and (4.2.7) are actually
equalities and the liminf and limsup are actually limits. In particular, since ραk

≥ 0, it follows from
(4.2.6) and ραk

→W in {W ̸= 0} that

lim
k→∞

∫
{W=0}∩[−L,L]

ραk
(t̄, x) dx = 0

and therefore ραk
(t̄, ·) →Wα(t̄, ·) in L1

loc(R). Since the limit W does not depend on the subsequence
αk we are considering, we conclude that

ρα →W in L1
loc((0, T )× R). □

Remark 4.2.1 (Effect of a lower-bound on the density). The proof of the convergence result is
easier and self-contained if we also assume a lower-bound on the density:

ess inf ρ0 ≥ c0 > 0.(4.2.9)

From (4.2.9), we can show

ess inf ρα ≥ ess inf ρ0 ≥ c0 > 0.(4.2.10)

Let us note that, in this case, the generalized California model and the Greenberg model mentioned
above (which are not Lipschitz continuous at zero density) are well-posed.
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From (4.0.6), (4.2.10), and the upper-bound V ′ ≤ −κ2, we deduce that, for every t > 0,

(4.2.11) sup
R
∂xWα(t, ·) ≥ − 1

κκ2c0t
.

This implies that Wα ∈ BVloc((0,+∞) × R) uniformly with respect to α > 0. In particular, let W
be an accumulation point of {Wα}α>0 as α→ 0+ in L1

loc((0,+∞)× R), then W solves (3.0.3) and,
since it is one-sided Lipschitz continuous, it coincides with the entropy solution ρ.

In order to complete the proof, we only need to show that ρα also converges to ρ. Since ρα =
Wα − α∂xWα and ∂xWα is equi-bounded in L1

loc, the two sequences {ρα}α>0 and {Wα}α>0 converge
to the same limit function ρ.

Proof of Corollary 4.0.1. We proceed according to the following steps.
Step 1. Proof using Theorem 4.0.1. We assume (4.0.3) and apply Lemma 4.2.1 to deduce that

{Wα}α>0 is compactly embedded in L1
loc((0, T )×R). Then, by arguing as in Chapter 3, we obtain

that {Wα}α>0 converges to the unique entropy solution of the local conservation law (3.0.3) and
so does {ρα}α>0. We only need to pay extra attention to the fact that the convergence holds on
every compact set contained in the open set t > 0. To this end, given a parameter n ∈ N and a
non-negative test function φ ∈ C∞

c ([0,+∞) × R;R+), as in Chapter 3, by the compactness of
{ρα}α>0 in L1

loc((0, T )×R), we can pass to the limit in the entropy inequality as α→ 0+ and deduce

0 ≤
∫ T

1/n

∫
R

(
η(ρ(t, x))∂tφ(t, x) + q(ρ(t, x))∂xφ(t, x)

)
dx dt︸ ︷︷ ︸

I1,n

+

∫ 1/n

0

∫
R

(
η̄(t, x)∂tφ(t, x) + q̄(t, x)∂xφ(t, x)

)
dx dt︸ ︷︷ ︸

I2,n

+

∫
R
η(ρ0(x))φ(0, x) dx,

where η(ρα)
∗
⇀ η̄ and q(ρα)

∗
⇀ q̄ in L∞(R) by the uniform L∞-bound on {ρα}α>0. By letting n→ ∞,

we then deduce

0 ≤
∫ T

0

∫
R

(
η(ρ(t, x))∂tφ(t, x) + q(ρ(t, x))∂xφ(t, x)

)
dx dt+

∫
R
η(ρ0(x))φ(0, x) dx,

where we used the fact that I2,n → 0 because of the L1-bound on the integrand.
Step 2. Proof using Theorem 4.0.2. We assume (4.0.6), then the claim follows by combining

Lemmas 4.2.2, 4.2.3, and 4.2.4, and the computation above. □

4.3. Numerical experiments

In this Section, we illustrate the results of Theorem 4.0.1 and Theorem 4.0.2 with some numerical
simulations. We rely on a non-dissipative solver based on characteristics (see [213, Chapter 3] and
[173]). In particular, we consider the LWR–Greenshields velocity function V (ξ) := 1−ξ; in Figure 4.1
and Figure 4.2 we show the behavior of t 7→ ∂xWα(t, ·) for two types of initial data, continuous (Figure
4.1) and with a jump discontinuity (Figure 4.2). We present simulations for both the exponential
weight (top row of Figures 4.1 and 4.2) and for a piecewise-constant weight γ := α−11(−α,0) (bottom
row of Figures 4.1 and 4.2) which is not covered by the results of this Chapter; the same result
appears to hold in this case too. Finally, in Figure 4.3, we highlight the BV-regularization effect on
Wα provided by the Olĕınik inequality.
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Figure 4.1. Illustration of − inf ∂xWα. Simulations for the initial datum ρ0(·) :=
1
21(−0.5,0.5)(·) and the LWR–Greenshields velocity V (ξ) := 1− ξ. Top row: weight

γα(·) := α−11(−∞,0](·) exp(·/α). Bottom row: weight γα(·) := α−11(−α,0)(·).
  





















































Figure 4.2. Illustration of − infx∈R ∂xWα(t, x). Simulations for the initial datum
ρ0(·) := (1 − 2| · |)1(−0.5,0.5)(·) and the LWR–Greenshields velocity V (ξ) := 1 − ξ.

Top row: weight γα(·) := α−11(−∞,0](·) exp(·/α). Bottom row: weight γα(·) :=
α−11(−α,0)(·).
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Figure 4.3. Illustration of |Wα(t, ·)|TV(R). Total variations of the nonlocal
impact Wα for an initial datum with unbounded total variation, i.e., ρ0(·) :=∑∞

n=1 1(1/n+1,1/n+1+1/(2n(n+1)))(·), LWR–Greenshields velocity V (ξ) := 1 − ξ, and

exponential weight, i.e., γα(·) := α−11(−∞,0](·) exp(·/α).



CHAPTER 5

Long-time convergence of a nonlocal Burgers equation toward the
local N-wave

This Chapter deals with the study of the long-time asymptotics for the nonlocal regularization
of the Burgers equation{

∂tρ(t, x) + ∂x
(
W [ρ](t, x)ρ(t, x)

)
= 0, (t, x) ∈ (0,+∞)× R,

ρ(0, x) = ρ0(x), x ∈ R,
(5.0.1)

with

W [ρ](t, x) :=

∫ x

−∞
exp(y − x)ρ(t, y) dy, (t, x) ∈ (0,+∞)× R,(5.0.2)

which also satisfies the identity

∂xW [ρ](t, x) = ρ(t, x)−W [ρ](t, x), (t, x) ∈ (0,+∞)× R.(5.0.3)

We assume that the initial data satisfies

ρ0 ∈ L1(R;R≥0) ∩ L∞(R;R≥0)(5.0.4)

and introduce the notation M :=
∫
R ρ0(x) dx for its L1-mass.

Our main theorem can be stated as follows.

Theorem 5.0.1 (Long-time asymptotics). Let ρ0 satisfy assumption (5.0.4). Let ρ be the unique
weak solution of the nonlocal Burgers equation (5.0.1) and let W be the corresponding nonlocal term.
Then, for p ∈ [1,+∞), we have

t
1
2

(
1− 1

p

)
∥ρ(t, ·)− w(t, ·)∥Lp(R) → 0,

t
1
2

(
1− 1

p

)
∥W (t, ·)− w(t, ·)∥Lp(R) → 0 as t→ +∞,

(5.0.5)

where w denotes the unique entropy solution (N -wave solution) of the Burgers equation{
∂tw(t, x) + ∂x(w

2(t, x)) = 0, (t, x) ∈ (0,+∞)× R,
w(0, x) =Mδ{x=0}, x ∈ R,

(5.0.6)

which is given explicitly by

w(t, x) =

{ x

2t
if x ∈ (0,

√
4Mt),

0 otherwise.
(5.0.7)

As outlined in the introductory Chapter 1, for a given λ > 0, we consider the rescaled function

ρλ(t, x) := λρ(λ2t, λx),(5.0.8)

which solves {
∂tρλ(t, x) + ∂x

(
Wλ[ρλ](t, x)ρλ(t, x)

)
= 0, (t, x) ∈ (0,+∞)× R,

ρλ(0, x) = ρ0,λ(x) := λρ0(λx), x ∈ R
(5.0.9)

with

Wλ[ρλ](t, x) := λ

∫ x

−∞
exp(λ(y − x))ρλ(t, y) dy, (t, x) ∈ (0,+∞)× R.(5.0.10)

We recall the following well-posedness result and some fundamental properties of the solution
from the previous Chapters.

51
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Theorem 5.0.2 (Existence and uniqueness of weak solutions and maximum principle). Let
assumptions (5.0.4) hold. Then, for every λ > 0, there exists a unique weak solution ρλ ∈
C
(
[0,+∞);L1(R)

)
∩L∞((0,+∞);L∞(R)) of the nonlocal Burgers equation (5.0.9) and the following

maximum principle holds:

ess inf
x∈R

ρ0,λ(x) ≤ ρλ(t, x) ≤ ∥ρ0,λ∥L∞(R), (t, x) ∈ (0,+∞)× R.(5.0.11)

Moreover, for the nonlocal impact Wλ, the following properties hold:

(1) Wλ ∈W 1,∞ ((0,+∞)× R) and ess inf
x∈R

ρ0,λ(x) ≤Wλ ≤ ∥ρ0,λ∥L∞(R);

(2) Wλ ∈ C0
(
(0,+∞);L1(R)

)
; in particular, if ∥ρλ(t, ·)∥L1(R) =M , then ∥Wλ(t, ·)∥L1(R) =M ;

(3) if ρ0,λ ∈ Ck(R), then Wλ ∈ Ck+1 ((0,+∞)× R) for k ≥ 0.

Furthermore, Wλ solves the following Cauchy problem in the strong sense:
∂tWλ(t, x) +Wλ(t, x)∂xWλ(t, x)

= λ

∫ x

−∞
exp(λ(y − x))Wλ(t, y)∂yWλ(t, y) dy, (t, x) ∈ (0,+∞)× R,

Wλ(0, x) = λ

∫ x

−∞
exp(λ(y − x))ρ0,λ(y) dy, x ∈ R.

(5.0.12)

For the limit problem (5.0.6), we rely on a more general well-posedness result from [192, Theorem
1.1 & Remark 1.1].

Theorem 5.0.3 (Non-negative entropy solutions with measure initial data). Let us consider
the local conservation law{

∂tu(t, x) + ∂xf(u(t, x)) = 0, (t, x) ∈ (0,+∞)× R,
u(0, x) = µ, x ∈ R.

(5.0.13)

Let us assume that f : R → R is locally Lipschitz continuous with f(0) = 0 and f([0,∞)) ⊂ [0,∞)
and that µ is a non-negative finite measure on R. Then there exists at most one non-negative solution
u ∈ C

(
(0,+∞);L1(R)

)
∩L∞((τ,+∞)×R), for all τ ∈ (0,+∞), which satisfies the Kružkov entropy

condition, i.e.

∀k ∈ R, ∀φ ∈ C∞
c ((0,+∞)× R;R+) :∫ +∞

0

∫
R
(|u− k|∂tφ+ sign(u− k)(f(u)− f(k))∂xφ) dx dt ≥ 0,

and achieves the initial datum in the narrow (or weak) sense of measures1,

lim
t→0

u(t, ·) = µ narrowly in R.

In particular, in our setting, Theorem 5.0.3 yields the uniqueness of the N -wave entropy solution
(5.0.7) of (5.0.6).

Remark 5.0.1 (Non-negativity condition and uniqueness). As noted in [192, Remark 1.2], the
uniqueness result in Theorem 5.0.3 fails without the assumption of non-negativity for the solutions.
This hypothesis can, however, be replaced by taking f(ξ) := sign(ξ)|ξ|q (with q > 1) or by f(ξ) := |ξ|q
and assuming that the initial datum is achieved in a stronger sense (as shown in [192, Theorem 1.2]
and [192, Theorem 1.3] respectively).

In Section 5.1, we obtain the key and a priori estimates on Wλ needed to prove Theorem 5.0.1.
Then, in Section 5.2, we combine them and establish the convergence of {Wλ}λ>0 and {ρλ}λ>0 to
the N -wave solution of the local Burgers equation as λ→ +∞; or, equivalently, of {W (t, ·)}t>0 and
{ρ(t, ·)}t>0 as t → +∞. This convergence result is illustrated by several numerical simulations in
Section 5.3.

1A sequence of signed Radon measures {µn}n∈N on R converges narrowly (or in the weak sense) to µ if, for all
bounded and continuous test functions φ ∈ Cb(R), we have

lim
n→+∞

∫
R
φdµn =

∫
R
φdµ.

See [37, Chapter 8].
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5.1. A priori estimates

Before presenting our key a priori estimates, let us recall the following stability result of the
nonlocal conservation law (5.0.1) with respect to the initial datum.

Lemma 5.1.1 (Stability of the nonlocal term with respect to the initial datum). Let ρ0,1, ρ0,2 ∈
L1(R) be given and denote by W1, W2 ∈ L∞((0, T );W 1,∞(R)) the nonlocal terms associated with
the corresponding solutions of (5.0.9). Then, the following stability result holds: for all t ∈ [0, T ],

∥W1(t, ·)−W2(t, ·)∥L∞(R) ≤ C(λ, ∥ρ0,1∥L∞(R), ∥ρ0,2∥L∞(R), ∥ρ0,1∥L1(R), ∥ρ0,2∥L1(R))∥ρ0,1 − ρ0,2∥L1(R),

where C is a suitable constant that depends only on the quantities mentioned above.

Proof. From the results in [167] (see also Chapter 2), we know that the solution of (5.0.9)
can be written as

ρ1(t, x) = ρ0,1 (ξW1(t, x; 0)) ∂2ξW1(t, x; 0) and ρ2(t, x) = ρ0,2 (ξW2(t, x; 0)) ∂2ξW2(t, x; 0),

where ξW1 and ξW2 solve the characteristic ODEs

ξW1(t, x; τ) = x+

∫ τ

t
W1(s, ξW1(t, x; s)) ds, τ ∈ [0, T ],

ξW2(t, x; τ) = x+

∫ τ

t
W2(s, ξW2(t, x; s)) ds, τ ∈ [0, T ].

(5.1.1)

In particular, we recall that the nonlocal terms corresponding to the initial data ρ0,1 and ρ0,2 satisfy
the following fixed-point equations for (t, x) ∈ (0, T )× R:

W1(t, x) = λ

∫ x

−∞
exp(λ(y − x))ρ1(t, y) dy

= λ

∫ x

−∞
exp(λ(y − x))ρ0,1(ξW1(t, y; 0))∂2ξW1(t, y; 0) dy

= λ

∫ ξW1
(t,x;0)

−∞
exp

(
λ(ξW1(0, z; t)− x)

)
ρ0,1(z) dz;

W2(t, x) = λ

∫ ξW2
(t,x;0)

−∞
exp

(
λ(ξW2(0, z; t)− x)

)
ρ0,2(z) dz.

Taking the absolute value of the difference, we have

λ−1
∣∣W1(t, x)−W2(t, x)

∣∣
=

∣∣∣∣∣
∫ ξW1

(t,x;0)

−∞
exp

(
λ(ξW1(0, z; t)− x)

)
ρ0(z) dz

−
∫ ξW2

(t,x;0)

−∞
exp

(
λ(ξW2(0, z; t)− x)

)
ρ0,2(z) dz

∣∣∣∣∣
≤
∫ max{ξW1

(t,x;0),ξW2
(t,x;0)}

min{ξW1
(t,x;0),ξW2

(t,x;0)}

(
|ρ0,1(y)|+ |ρ0,2(y)|

)
dy

+

∫ min{ξW1
(t,x;0),ξW2

(t,x;0)}

−∞

(
exp

(
λ(ξW1(0, z; t)− x)

)
ρ0,1(z)

− exp
(
λ(ξW2(0, z; t)− x)

)
ρ0,2(z)

)
dz

≤ |ξW1(t, x; 0)− ξW2(t, x; 0)|
(
∥ρ0,1∥L∞(R) + ∥ρ0,2∥L∞(R)

)
+ λ∥ξW1(0, ·; t)− ξW2(0, ·; t)∥L∞(R)

(
∥ρ0,1∥L1(R) + ∥ρ0,2∥L1(R)

)
+ ∥ρ0,1 − ρ0,2∥L1(R).

(5.1.2)

To conclude, we need to study the stability of the characteristics with respect to W1 and W2. For
(t, x, τ) ∈ (0, T )× R× (0, T ), we compute∣∣ξW1(t, x; τ)− ξW2(t, x; τ)

∣∣ = ∣∣∣∣∣
∫ τ

t
W1(s, ξW1(t, x; s))−W2(s, ξW2(t, x; s)) ds

∣∣∣∣∣
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=

∣∣∣∣∣
∫ τ

t
W1(s, ξW1(t, x; s))−W2(s, ξW1(t, x; s)) ds

∣∣∣∣∣
+

∣∣∣∣∣
∫ τ

t
W2(s, ξW1(t, x; s))−W2(s, ξW2(t, x; s)) ds

∣∣∣∣∣
≤
∫ max{t,τ}

min{t,τ}
∥W1(s, ·)−W2(s, ·)∥L∞(R) ds

+ ∥∂xW2∥L∞((0,T );L∞(R))

∫ max{t,τ}

min{t,τ}
∥ξW1(t, ·; s)− ξW2(t, ·; s)∥L∞(R) ds.

Gronwall’s inequality yields∥∥ξW1(t, ·; τ)− ξW2(t, ·; τ)
∥∥
L∞(R)

≤
∫ max{t,τ}

min{t,τ}
∥W1(s, ·)−W2(s, ·)∥L∞(R) ds exp

(
|t− τ |∥∂xW2∥L∞((0,T );L∞(R))

)
.

Plugging this into (5.1.2), we get

∥W1(t, ·)−W2(t, ·)∥L∞(R)

≤ λ
(
∥ρ0,1∥L∞(R) + ∥ρ0,2∥L∞(R)

) ∫ max{t,τ}

min{t,τ}
∥W1(s, ·)−W2(s, ·)∥L∞(R) ds

× exp
(
|t− τ |∥∂xW2∥L∞((0,T );L∞(R))

)
+ λ2

(
∥ρ0,1∥L1(R) + ∥ρ0,2∥L1(R)

) ∫ τ

t
∥W1(s, ·)−W2(s, ·)∥L∞(R) ds

× exp
(
|t− τ |∥∂xW2∥L∞((0,T );L∞(R))

)
+ ∥ρ0,1 − ρ0,2∥L1(R).

Applying again Gronwall’s inequality on W1 −W2 and recalling that

(5.1.3) ∂xW2 = λ(ρ2 −W2) =⇒ ∥∂xW2∥L∞((0,T );L∞(R)) ≤ 2λ∥ρ0,2∥L∞(R)

(thanks to the maximum principle in Theorem 5.0.2), we conclude the proof. □

As a first step, we prove an Olĕınik-type inequality on the nonlocal term Wλ. The result is
essentially contained in Chapter 4. We present the proof below for the sake of completeness.

Theorem 5.1.1 (Olĕınik-type inequality forWλ). Given ρ0 such that (5.0.4) holds, the solution
Wλ of (5.0.12) satisfies

Wλ(t, x)−Wλ(t, y)

x− y
≤ 1

t
, t > 0, x, y ∈ R, x ̸= y,(5.1.4)

for all λ > 0.

Proof of Theorem 5.1.1. We consider a smoothed initial datum ρε0,λ (for ε > 0) and call

the corresponding smooth nonlocal term W ε
λ . We then compute, differentiating the PDE in (5.0.12)

with respect to x,

∂2txW
ε
λ =−W ε

λ∂
2
xxW

ε
λ − (∂xW

ε
λ)

2 − λW ε
λ∂xW

ε
λ

+ λ2
∫ x

−∞
exp(λ(y − x))W ε

λ(t, y)∂yW
ε
λ(t, y) dy.

(5.1.5)

For t > 0 fixed, considering m(t) = sup
y∈R

∂yW
ε
λ(t, y) and assuming—without loss of generality—

that m(t) ≥ 0, we estimate the right-hand side of (5.1.5) as follows:

∂2txW
ε
λ = −W ε

λ∂
2
xxW

ε
λ − (∂xW

ε
λ)

2 − λW ε
λ∂xW

ε
λ + λ2

∫ x

−∞
exp(λ(y − x))W ε

λ(t, y)∂yW
ε
λ(t, y) dy
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= −W ε
λ∂

2
xxW

ε
λ − (∂xW

ε
λ)

2 − λW ε
λ∂xW

ε
λ

+ λ2
∫ x

−∞
exp(λ(y − x))

(
ρλ(t, y)− λ−1∂yW

ε
λ(t, y)

)
∂yW

ε
λ(t, y) dy

= −W ε
λ∂

2
xxW

ε
λ − (∂xW

ε
λ)

2 − λW ε
λ∂xW

ε
λ

+ λ2
∫ x

−∞
exp(λ(y − x))ρελ(t, y)∂yW

ε
λ(t, y) dy−λ

∫ x

−∞
exp(λ(y − x))|∂yW ε

λ(t, y)|2 dy︸ ︷︷ ︸
≤0

≤ −W ε
λ∂

2
xxW

ε
λ − (∂xW

ε
λ)

2 − λW ε
λ∂xW

ε
λ +m(t)λ2

∫ x

−∞
exp(λ(y − x))ρελ(t, y) dy︸ ︷︷ ︸

=λ−1W ε
λ(t,x)

We have that, for every t > 0, there exists a maximum point of ∂yW
ε
λ(t, y) (by choosing, e.g., a

compactly supported ρε0,λ and relying on the regularity results of [167]). Using [98, Theorem 2.1],

we consider x̄(t) ∈ R such that m(t) = ∂xW
ε
λ(t, x̄(t)), evaluate the previous expression at x = x̄(t),

and compute

d

dt
m(t) ≤ −m2(t).

Since m̃(t) = 1/t is a solution of the above Riccati-type differential inequality and m̃(0) = ∞, we
use the comparison principle for ODEs to conclude that m(t) ≤ 1/t and thus

W ε
λ(t, x)−W ε

λ(t, y)

x− y
=

1

x− y

∫ x

y
∂xW

ε
λ(t, ξ) dξ ≤

1

t
, t > 0, x, y ∈ R, x ̸= y.

Taking the limit ε→ 0+, thanks to Lemma 5.1.1, we conclude the proof. □

As a byproduct of (5.1.4), we prove (arguing as in [127, Lemma 1.2]) that an L∞-bound holds
for all t > 0 (which blows up as t→ 0+).

Lemma 5.1.2 (L∞-bound on Wλ). The following L∞-bounds on Wλ and ρλ hold:

0 ≤Wλ(t, x) ≤
√

2M

t
, (t, x) ∈ (0,+∞)× R,(5.1.6)

0 ≤ ρλ(t, x) ≤
√

2M

t
+

1

λt
, (t, x) ∈ (0,+∞)× R.(5.1.7)

Proof. The fact that, for all t > 0, Wλ(t, ·), ρλ(t, ·) ≥ 0 holds is contained in point (1) of
Theorem 5.0.2. To prove the upper-bound in (5.1.6), let us fix a time t > 0 and a point x̄ ∈ R. By
Lemma 5.1.1, we have

Wλ(t, x) ≥Wλ(t, x̄)−
1

t
(x̄− x), for all x ≤ x̄,

i.e.,

Wλ(t, x) ≥
1

t
(x− (x̄+Wλ(t, x̄)t)), for all 0 ≤ x− (x̄+Wλ(t, x̄)t) ≤Wλ(t, x̄)t.

Integrating over R, we deduce

M =

∫
R
Wλ(t, x) dx ≥

∫
R∩{x≥x̄+Wλ(t,x̄)t}

x− (x̄+Wλ(t, x̄)t)

t
dx

≥
∫ Wλ(t,x̄)t

0

(x
t

)
dx =

1

2
W 2
λ (t, x̄) t,

which implies

Wλ(t, x̄) ≤
√

2M

t
for all t > 0, x̄ ∈ R.
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The bound (5.1.7) follows from (5.1.6) and Theorem 5.1.1. Indeed, by (5.0.10), we have

0 ≤ ρλ(t, x) =Wλ(t, x) +
1

λ
∂xWλ(t, x)

≤
√

2M

t
+

1

λt
.

□

As a second corollary, from (5.1.4), we deduce the following BVloc-regularization result (see [38,
Eq. (4.3)] and [39, Lemma 2.2 (ii) & Remark 2.3] and Lemma 4.2.1).

Corollary 5.1.1 (BVloc-regularization effect). The function Wλ(t, ·) belongs to BVloc(R) for
every t > 0 and uniformly with respect to λ > 0: namely, for every compact interval K ⋐ R,

|Wλ(t, ·)|TV(K) ≤ 2

(
|K|
t

+ ∥Wλ(t, ·)∥L∞(K)

)
, t > 0.(5.1.8)

Proof. Let K := [a, b] ⋐ R be a compact interval of R and fix t > 0. SinceWλ(t, ·) ∈ L∞(K) ⊂
L1(K), we only need to prove, thanks to the characterization of BV functions in [228, Lemma 37.4]
(see also [8, Remark 2.5 & Exercise 3.3] or [184, Corollary 2.17]), that there exists C > 0 such that∫

Kh

|Wλ(x+ h)−Wλ(x)|
h

dx ≤ C, ∀h > 0, where Kh := {x ∈ K : x+ h ∈ K}.

Taking Lemma 5.1.1 into account, we note that

Wλ(t, x+ h)−Wλ(t, x)

h
=

1

t
−
(
1

t
− Wλ(t, x+ h)−Wλ(t, x)

h

)
︸ ︷︷ ︸

≥0

,(5.1.9)

which implies

Wλ(t, x+ h)−Wλ(t, x)

h
≤ 1

t
+

(
1

t
− Wλ(t, x+ h)−Wλ(t, x)

h

)
.

Integrating over Kh and taking the absolute values on both sides yields∫
Kh

|Wλ(t, x+ h)−Wλ(t, x)|
h

dx ≤
∫
Kh

(
1

t
+

(
1

t
− Wλ(t, x+ h)−Wλ(t, x)

h

))
dx

= 2

∫
Kh

1

t
dx+

∫
R
Wλ(t, x)

(
1K(x+ h)− 1K(x)

h

)
dx

≤ 2

∫
Kh

1

t
dx+ ∥Wλ(t, ·)∥L∞(K)

∫
R

(
|1K(x+ h)− 1K(x)|

h

)
dx︸ ︷︷ ︸

=TV(1K)=2

= 2

(
|K|
t

+ ∥Wλ(t, ·)∥L∞(K)

)
.

□

5.2. Long-time behavior

As a first step toward finishing the proof of Theorem 5.0.1, we show that {Wλ}λ>0 is compact
in the canonical C

(
[t0, T ];L

1
loc(R)

)
topology. We note that the time-interval does not include t = 0

because the L∞ estimate from Lemma 5.1.2 blows up as t→ 0+.

Lemma 5.2.1 (Compactness of {Wλ}λ>0 in C
(
[t0, T ];L

1
loc(R)

)
). Let t0, T > 0 be fixed. The set

{Wλ}λ>0 ⊆ C
(
[t0, T ];L

1
loc(R)

)
of solutions to (5.0.1) is compactly embedded into C

(
[t0, T ];L

1
loc(R)

)
,

i.e. {
Wλ ∈ C

(
[t0, T ];L

1
loc(R)

)
: Wλ satisfies (5.0.10), λ > 0

}
c
↪→ C

(
[t0, T ];L

1
loc(R)

)
.

Proof. Arguing as Chapter 3, we shall apply the compactness result in [224, Lemma 1]:
given a Banach space B, a set F ⊂ C([t0, T ];B) is relatively compact in C([t0, T ];B) if
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1. F (t) :=
{
f(t) ∈ B : f ∈ F} is relatively compact in B for all t ∈ [t0, T ];

2. F is uniformly equi-continuous, i.e.

∀σ > 0 ∃δ > 0 s. t. ∀f ∈ F ∀(t1, t2) ∈ [t0, T ]
2 : |t1 − t2| ≤ δ =⇒ ∥f(t1)− f(t2)∥B ≤ σ.

In our case, let us fix a compact interval K ⋐ R and define B := L1(K) and F (t) := {Wλ(t, ·) ∈
L1(K) : λ > 0}.

Thanks to Lemma 5.1.1, we know that Wλ(t, ·) has a uniform total variation bound and, by
Helly’s compactness theorem (see [184, Theorem 13.35]),

F (t)
c
↪→ L1(K), t ∈ [t0, T ].

It remains to show the second point, the uniform equi-continuity. To this end, we again smooth
the initial datum ρ0,λ as ρε0,λ, with ε > 0, and call the corresponding smooth nonlocal term W ε

λ .
Then, we can estimate∥∥W ε

λ(t1, ·)−W ε
λ(t2, ·)

∥∥
L1(R) =

∥∥∥∥∫ t1

t2

∂sW
ε
λ(s, ·) ds

∥∥∥∥
L1(R)

≤
∥∥∥∥∫ t1

t2

W ε
λ(s, ·)∂2W ε

λ(s, ·) ds
∥∥∥∥
L1(R)

+

∥∥∥∥∫ t1

t2

λ

∫ ∞

∗
exp(λ(∗ − y))∂yW

ε
λ(s, y)W

ε
λ(s, y) dy ds

∥∥∥∥
L1(R)

≤ ∥W ε
λ∥L∞((0,T );L∞(R))|W ε

λ |L∞((0,T );TV(R))|t1 − t2|
+ ∥W ε

λ∥L∞((0,T );L∞(R))|W ε
λ |L∞((0,T );TV(R))|t1 − t2|,

where we used Fubini–Tonelli’s theorem to exchange the order of integration and estimate the last
term. Thanks to Lemmas 5.1.1 and 5.1.2, we have that this is a uniform bound in λ > 0 and ε > 0.
This yields the uniform equi-continuity so that we obtain indeed the claimed compactness.

□

We can now complete the proof of Theorem 5.0.1 arguing as in [127, Section 2].

Proof of Theorem 5.0.1. The core of the proof consists in showing that the family {ρλ}λ>0

converges to the N -wave defined in (5.0.7). We shall divide the argument of this theorem in several
steps.

Step 1. Compactness of the family {Wλ}λ>0 in C
(
[t0, T ];L

1
loc(R)

)
. For any 0 < t0 < T , by

Lemma 5.2.1, we have that Wλ converges (up to extracting a subsequence) to a limit point w∗

strongly in C
(
[t0, T ];L

1
loc(R)

)
; hence, we also have Wλ(t, ·) → w∗(t, ·) in L1

loc(R) for all t ∈ [t0, T ]
and Wλ → w∗ pointwise (again up to subsequences) for all t ∈ [t0, T ] and a.e. x ∈ R.

Thanks to (5.0.10), we can deduce that ρλ also converges to w∗ along the same subsequence.
Indeed, first we observe that

∥Wλ(t, ·)− ρλ(t, ·)∥L1(R) = λ−1|Wλ(t, ·)|TV(R)

and thus we also obtain

lim
λ→+∞

∥ρλ − w∥C([t0,T ];L1
loc(R))

= 0.

Step 2a. Tail control and convergence of the family {ρλ}λ>0 in C([t0, T ], L
1(R)). In order to pass

from the convergence ρλ → w∗ strongly in C
(
[t0, T ];L

1
loc(R)

)
to the convergence in C

(
[t0, T ];L

1(R)
)
,

we need a uniform bound on the “tail” of the functions {ρλ}λ>1. We shall prove that there exists a
constant C = C(M) such that∫

{|x|>2R}
ρλ(t, x) dx ≤

∫
{|x|>R}

ρ0(x) dx+
C(M)

R
t1/2, t > 0.(5.2.1)

Since ρ0 ∈ L1(R), the right-hand side of (5.2.1) can be made arbitrarily small choosing R large
enough. Then, from (5.2.1), the convergence

ρλ → w∗ strongly in C([t0, T ], L
1(R)) as λ→ +∞
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follows by considering the splitting∫
R
|ρλ(t, x)− w∗(t, x)| dx =

∫
{x<2R}

|ρλ(t, x)− w∗(t, x)| dx+

∫
{x>2R}

|ρλ(t, x)− w∗(t, x)|dx.

In order to prove (5.2.1), let us consider a test function φ ∈ C∞(R) such that 0 ≤ φ ≤ 1,
φ ≡ 1 for |x| > 2, and φ ≡ 0 for |x| ≤ 1; we consider the rescaling φR := φ(·/R) which satisfies
∥∂xφR∥L∞(R) ≤ C/R for some C > 0. Let us multiply the PDE in (5.0.9) by φR, integrate in (0, t)×R
(for some t > 0), and perform an integration by parts (to rigorously justify this computation, we
can use a smoothing argument based on Lemma 5.1.1):∫

R
ρλ(t, x)φR(x) dx =

∫
R
ρλ(0, x)φR(x) dx+

∫ t

0

∫
R
ρλ(s, x)Wλ(s, x)∂xφR(x) dx ds.

We remark that ∫
R
ρλ(0, x)φR(x) dx =

∫
{|x|≥R}

ρλ(0, x) dx

=

∫
{|x|≥λR}

ρ(0, x) dx ≤
∫
{|x|>R}

ρ(0, x) dx,∫ t

0

∫
R
ρλ(s, x)Wλ(s, x)∂xφR(x) dx ds ≤ ∥∂xφR∥L∞(R)

∫ t

0
∥ρλ(s, ·)∥L1(R)∥Wλ(s, ·)∥L∞(R) ds

≤ C

R

∫ t

0
M

√
2M

s
ds ≤ C

R

1√
2
M3/2t1/2,

where we used Lemma 5.1.2 in the last line.
Step 2b. Tail control and convergence of the family {Wλ}λ>0 in C([t0, T ], L

1(R)). Since∫
{|x|>2R}

Wλ(t, x) dx = λ

∫
{|x|>2R}

∫ x

−∞
exp(λ(y − x))ρ(t, y) dy dx,

we use Fubini–Tonelli’s theorem to deduce∫
{|x|>2R}

Wλ(t, x) dx ≤
∫
{|x|>2R}

ρλ(t, x) dx, t > 0,

which yields, thanks to (5.2.1),∫
{|x|>2R}

Wλ(t, x) dx ≤
∫
{|x|>R}

ρ0(x) dx+
C(M)

R
t1/2, t > 0.(5.2.2)

As a byproduct of Steps 1 and 2, we note that the limit point w∗ satisfies

w∗ ∈ C((0,+∞);L1(R;R≥0)) ∩ L∞((τ,+∞);L∞(R;R≥0)) for all τ > 0,

∫
R
w∗(t, x) dx =M.

Step 3. Identification of the initial condition. We now identify the initial datum taken by
the limit point w∗, i.e., we verify that the initial condition Mδ0 is achieved in the weak sense of
non-negative measures on R. We need to prove that, for all φ ∈ Cb(R),

lim
t→0+

∫
R
w∗(t, x)φ(x) dx =Mφ(0).

To this end, arguing as in [127, pp. 52–54], we shall split the argument into two steps. First, we
consider a smaller class of test functions φ ∈ C∞

c (R; [0, 1]) and, secondly, φ ∈ Cb(R).
We start by estimating, for a test function φ ∈ C∞

c (R; [0, 1]),∣∣∣∣∫
R
ρλ(t, x)φ(x) dx−

∫
R
ρλ(0, x)φ(x) dx

∣∣∣∣
≤
∣∣∣∣∫ t

0

∫
R
∂xφ(x)Wλ(s, x)ρλ(s, x) dx ds

∣∣∣∣
≤ ∥∂xφ∥L∞(R)

∫ t

0
∥ρλ(s, ·)∥L1(R)∥Wλ(s, ·)∥L∞(R) ds
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≤ ∥∂xφ∥L∞(R)C(M)

∫ t

0
s−1/2 ds ≤ C(M)∥∂xφ∥L∞(R)

√
t.

Then, letting λ→ +∞, we obtain∣∣∣∣∫
R
w∗(t, x)−Mφ(0)

∣∣∣∣ ≤ C(M)∥∂xφ∥L∞(R)
√
t,

which, in turn, goes to zero as t→ 0+.
As a second step, let us consider the case of a bounded continuous function φ ∈ Cb(R). We

shall rely on an approximation argument and on the tail control of ρλ in (5.2.1). Let us consider
a regularized test function φε obtained as φε := φ ∗ ηε (where ηε denotes a standard mollifier; see
[128, Appendix C.4]), such that ∥φε∥L∞(R) ≤ ∥φ∥L∞(R), φε → φ uniformly on compact sets of R as

ε→ 0+, and ∥φε∥W 1,∞(R) ≤ C(ε). We then write∣∣∣∣∫
R
ρλ(t, x)φ(x) dx−Mφ(0)

∣∣∣∣ ≤ ∣∣∣∣∫
R
ρλ(t, x)φε(x) dx−Mφ(0)

∣∣∣∣
+

∣∣∣∣∣
∫
{|x|>2R}

ρλ(t, x) (φ(x)− φε(x)) dx

∣∣∣∣∣+
∣∣∣∣∣
∫
{|x|<2R}

ρλ(t, x) (φ(x)− φε(x)) dx

∣∣∣∣∣ .
The control of the first term follows by the same argument developed above. For the second and
third term, we estimate∣∣∣∣∣

∫
{|x|>2R}

ρλ(t, x) (φ(x)− φε(x)) dx

∣∣∣∣∣ ≤ 2∥φ∥L∞(R)

(∫
{|x|>R}

ρ0(x) dx+
C(M)

R
t1/2

)
,∣∣∣∣∣

∫
{|x|<2R}

ρλ(t, x) (φ(x)− φε(x)) dx

∣∣∣∣∣ ≤ ∥φ− φε∥L∞({|x|<2R})

∫
R
ρλ(t, x) dx

=M∥φ− φε∥L∞({|x|<2R}),

which can both be made arbitrarily small provided that ε > 0 is small enough and R > 0 is large
enough.

A similar argument can be used for {Wλ}λ>0. Indeed, for φ ∈ C∞
c (R; [0, 1]), we estimate∣∣∣∣∫

R
Wλ(t, x)φ(x) dx−

∫
R
Wλ(0, x)φ(x) dx

∣∣∣∣ = ∣∣∣∣∫ t

0

∫
R
∂sWλ(s, x)φ(x) dx ds

∣∣∣∣
≤
∫ t

0

∫
R
∂xφ(x) |Wλ(s, x)|2 dx ds︸ ︷︷ ︸

=:I1

+ λ

∣∣∣∣∫ t

0

∫
R
|φ(x)|

∫ x

−∞
exp(λ(y − x))Wλ(s, x) (∂xWλ(s, x)−Wλ(s, y)∂yWλ(s, y)) dy dx ds

∣∣∣∣︸ ︷︷ ︸
=:I2

.

For the term I1, we compute

I1 ≤ ∥∂xφ∥L∞(R)

∫ t

0
∥Wλ(s, ·)∥L1(R)∥Wλ(s, ·)∥L∞(R) ds

≤ ∥∂xφ∥L∞(R)C(M)

∫ t

0
s−1/2 ds ≤ C(M)∥∂xφ∥L∞(R)

√
t,

where, in the last line, we used Lemma 5.1.2.
For I2, using Fubini–Tonelli’s theorem,we compute

I2 =

∣∣∣∣∣
∫ t

0

∫
R
φ(x)Wλ(s, x)∂xWλ(s, x) dx ds

− λ

∫ t

0

∫
R
φ(x)

∫ x

−∞
exp(λ(y − x))Wλ(s, y)∂yWλ(s, y) dy dx ds

∣∣∣∣∣
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=

∣∣∣∣∣
∫ t

0

∫
R
φ(x)Wλ(s, x)∂xWλ(s, x) dx ds

− λ

∫ t

0

∫
R
Wλ(s, y)∂yWλ(s, y)

∫ ∞

y
φ(x) exp(λ(y − x)) dx dy ds

∣∣∣∣∣;
integrating by parts on the term x 7→ exp(λ(y − x)) yields

I2 =

∣∣∣∣∣
∫ t

0

∫
R
Wλ(s, y)∂yWλ(s, y)

∫ ∞

y
∂xφ(x) exp(λ(y − x)) dx dy ds

∣∣∣∣∣;
integrating by parts on the term y 7→Wλ(s, y)∂yWλ(s, y) and using the fact that limx→±∞Wλ(t, ·) =
0 (which is a consequence of the fact that Wλ(t, ·) ∈ L1(R)∩BVloc(R) for t > 0 and λ > 0), we then
get

I2 =

∣∣∣∣∣− λ
1

2

∫ t

0

∫
R
|Wλ(s, y)|2

∫ ∞

y
∂xφ(x) exp(λ(y − x)) dx dy ds+

1

2

∫ t

0

∫
R
|Wλ(s, y)|2∂yφ(y) dy ds

∣∣∣∣∣
≤ λ

2
∥∂xφ∥L∞(R)

∫ t

0

∫
R
|Wλ(s, y)|2

∫ ∞

y
exp(λ(y − x)) dx dy ds

+
1

2
∥∂xφ∥L∞(R)

∫ t

0

∫
R
|Wλ(s, y)|2 dy ds

= ∥∂xφ∥L∞(R)

∫ t

0

∫
R
|Wλ(s, y)|2 dy ds

≤ ∥∂xφ∥L∞(R)

∫ t

0
∥Wλ(s, ·)∥L1(R)∥Wλ(s, ·)∥L∞(R) ds

≤ ∥∂xφ∥L∞(R)C(M)

∫ t

0
s−1/2 ds ≤ C(M)∥∂xφ∥L∞(R)

√
t,

where, in the last line, we used Lemma 5.1.2. Thus, for any ε > 0, we can choose τ > 0 and λ0 > 0
such that ∣∣∣∣∫

R
Wλ(t, x)φ(x) dx−Mφ(0)

∣∣∣∣ ≤ ε for all 0 < t < τ, λ > λ0.

The rest of the argument for φ ∈ Cb(R) goes through as above.

Step 4. Entropy admissibility of the limit point. The limit point w∗ is actually the unique
entropy admissible N -wave solution w of the Burgers equation (5.0.6) defined in (5.0.7). This
follows immediately from passing to the limit pointwise in the Olĕınik inequality (5.1.4). Owing
to Urysohn’s subsequence principle, from the uniqueness of the entropy solution of (5.0.6), we also
deduce that the whole families {ρλ}λ>0 and {Wλ}λ>0 converge to w (not just up to extracting a
subsequence).

Step 5. Conclusion of the proof. From the steps above, we have that

∥Wλ(t, ·)− w(t, ·)∥L1(R) → 0 as λ→ +∞,

where w denotes the N -wave solution entropy of (5.0.6). For p = 1, (5.0.5) is a consequence of the
fact that

ρλ(1, x)− w(1, x) = λρ(λ2, λx)− w(1, x),

Wλ(1, x)− w(1, x) = λW (λ2, λx)− w(1, x),

(and that the same would hold true replacing t = 1 by any fixed t̄ > 0), i.e., letting λ→ +∞ for a
fixed time t̄ > 0 is equivalent to fixing λ = 1 and letting t→ +∞.

To prove the result also for p ∈ (1,+∞), we argue by interpolation. Indeed, we have that, for
t > 0, {ρλ}λ>0 and {Wλ}λ>0 are also uniformly bounded in Lq(R) (being in L1(R) ∩ L∞(R) for
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every t > 0) and w ∈ Lq(R), with q ∈ (1,+∞). Then, Hölder’s inequality yields

∥ρλ(t, ·)− w(t, ·)∥Lp(R) ≤ ∥ρλ(t, ·)− w(t, ·)∥
1

2p−1

L1(R)

(
∥ρλ(t, ·)∥L2p(R) + ∥w(t, ·)∥L2p(R)

) 2(p−1)
2p−1

,

∥Wλ(t, ·)− w(t, ·)∥Lp(R) ≤ ∥Wλ(t, ·)− w(t, ·)∥
1

2p−1

L1(R)

(
∥Wλ(t, ·)∥L2p(R) + ∥w(t, ·)∥L2p(R)

) 2(p−1)
2p−1

,

from which the result follows. □

5.3. Numerical experiments

In this Section, we showcase the result in Theorem 5.0.1 numerically. For the nonlocal problem,
we rely on a non-dissipative solver based on characteristics (see [173] and [213, Chapter 3]). More
precisely, the simulations illustrate the convergence

ρ̄(t, ·) → w̄ in L1(R) as t→ +∞,

for the rescaled variables

ρ̄ :=
√
tρ, w̄ :=

√
tw, y := x/

√
t,

in which the N -wave is stationary (i.e., time-independent) and given by

w̄(y) =

{y
2

if y ∈ (0,
√
4M),

0 otherwise.

To start with, in Figure 5.1, we present the evolution of the solution of (5.0.1) on long time
horizons for the following initial data:

(1) ρ0(x) := 1[0,1](x), (2) ρ0(x) := 2x1[0,1](x),

(3) ρ0(x) := 6x(1− x)1[0,1](x), (4) ρ0(x) := 2x1[0,0.5](x) + 1[0.5,1](x),

for x ∈ R. In all cases, we observe the convergence toward the N -wave profile of the (local) Burgers
equation (5.0.6).

For (left) continuous initial data (as is the case in (2),(3), and (4)), the N -wave is also approxi-
mated by left-continuous functions. This is a well-known fact, as nonlocal conservation laws preserve
regularity [167, Corollary 5.3] (see also Theorem 5.0.2). In particular, for case (4), there are two
jumps downwards in the initial datum and the first one is damped out over time (still observable
for t = 10 at x ≈ 1). This can be understood when recalling that around x ≈ 1 the velocity of the
dynamics is smaller than for x < 1 so that the density increases between both points and the jump
decreases (which is visible in particular for t = 1 and t = 10).

Secondly, in Figure 5.2, we consider γ(·) = 1(0,1)(·) instead of an exponential weight in (5.0.2),
i.e. we study

W [ρ](t, x) :=

∫ x

x−1
ρ(t, y) dy, (t, x) ∈ (0, T )× R.

The numerical simulation shows that, even in this case (which is not covered by the results of the
present paper or by the ones on the singular limit problem contained in Chapters 3 and 4), a
convergence result can be observed. However, the convergence seems to occur “less regularly” as the
constant kernel generates more and more points where the solution is not differentiable. Indeed, in
contrast to the exponential kernel case, the regularity of the solution for piece-wise constant kernels
depends points-wise and locally (on the trace of backward characteristics) on initial data, kernel,
and their interplay.

Finally, we present some simulations illustrating the case of a more general power-type velocity:
namely, {

∂tρ(t, x) + ∂x(W
q−1(t, x)ρ(t, x)) = 0, (t, x) ∈ (0,+∞)× R,

ρ(0, x) = ρ0(x), x ∈ R,
(5.3.1)
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Figure 5.1. Convergence to the N -wave profile for the nonlocal regularization
of the Burgers equation. Top left: ρ0(x) := 1[0,1](x). Top right: ρ0(x) :=
2x1[0,1](x). Bottom left: ρ0(x) := 6x(1−x)1[0,1](x). Bottom right: ρ0(x) :=
2x1[0,0.5](x) + 1[0.5,1](x).

for some for q ≥ 2. In this case, the explicit N -wave solution of the corresponding local conservation
law {

∂tρ(t, x) + ∂x(ρ
q(t, x)) = 0, (t, x) ∈ (0,+∞)× R,

ρ(0, x) = ρ0(x), x ∈ R,
(5.3.2)

is given by

wq(t, x) =


(
x

qt

) 1
q−1

if x ∈
(
0, q

(
M
q−1

) q−1
q
t
1
q

)
,

0 otherwise.

that is, in the rescaled variables

w̄q := t1/qwq, y := xt−1/q,
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Figure 5.2. Convergence to the N -wave profile for the nonlocal regularization
of the Burgers equation with the piecewise-constant weight γ(·) := 1(0,1)(·). Left:
ρ0(x) := 1[0,1](x). Right: ρ0(x) := 6x(1− x)1[0,1](x).

w̄q(y) =


(
y

q

) 1
q−1

if y ∈
(
0, q

(
M
q−1

) q−1
q

)
,

0 otherwise.

(see [192, Eq. (2.1)]). In particular, in Figure 5.3 (for q = 3), the convergence result seems to hold.

Figure 5.3. Convergence to the N -wave profile for the nonlocal regularization of
∂tρ+ ∂xρ

3 = 0 with exponential weight. Left: ρ0(x) := 1[0,1](x). Right: ρ0(x) :=
6x(1− x)1[0,1](x).

In this case, none of the previously established results holds. However, the numerical experiments
point to the fact that we may still observe the L1-convergence to the N -wave profile. The behavior
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of the rescaled solution, which explodes at x = 0 is particularly noteworthy. It can be explained as
follows. For the conservation law

∂tρ(t, x) + ∂x
(
W [ρ]2(t, x)ρ(t, x)

)
= 0, (t, x) ∈ (0, T )× R,

we can compute, along characteristics,

d

dt
ρ(t, ξ(0, x; t)) = ∂tρ(t, ξ(0, x; t)) + ∂2ρ(t, ξ(0, x; t))∂3ξ(0, x; t)

= −∂2ρ(t, ξ(0, x; t))W [ρ]2(t, ξ(0, x; t))

− 2ρ(t, ξ(0, x; t))W [ρ](t, ξ(0, x; t))∂2W [ρ](t, ξ(0, x; t))

+ ∂2ρ(t, ξ(0, x; t))W [ρ]2(t, ξ(0, x; t))

= −2ρ(t, ξ(0, x; t))W [ρ](t, ξ(0, x; t))∂2W [ρ](t, ξ(0, x; t)).

As W “looks” to the left and the solution vanishes on the left half space for all time t > 0, we
have that W [ρ](t, 0) = 0 for all t > 0; thus, the value of the solution at x = 0 never changes, i.e.
limx→0+ ρ(t, x) = ρ0(0) for all t > 0, which yields the long-time behavior at x = 0 observed in Figure
5.3 upon rescaling.



CHAPTER 6

Nonlocal–to–local singular limit problem with artificial viscosity

In this Chapter, we consider the nonlocal problem with artificial viscosity

(6.0.1)

{
∂tρα,ν(t, x) + ∂x(V (Wα[ρα,ν ](t, x))ρα,ν(t, x)) = ν∂2xxρα,ν(t, x), (t, x) ∈ (0, T )× R,
ρα,ν(0, x) = ρ0,ν(x), x ∈ R,

with

(6.0.2) Wα[ρα,ν ](t, x) :=
1

α

∫ ∞

x
exp

(
x− y

α

)
ρα,ν(t, y) dy, (t, x) ∈ (0, T )× R.

We assume the following natural conditions to be satisfied:

ρ0 ∈ L1(R) ∩ L∞(R), 0 ≤ ρ0 ≤ 1;(6.0.3)

V ∈W 1,∞(R) ∩ C2(R), V ≥ 0, V ′ ≤ 0;(6.0.4)

f : ξ 7→ ξV (ξ) is genuinely nonlinear, i.e. L({(ξV (ξ))′′ = 0}) = 0,(6.0.5)

where L denotes the (one-dimensional) Lebesgue measure.
We smooth initial datum in the following way:

{ρ0,ν}ν>0 ⊂ C∞
c (R),(6.0.6)

ρ0,ν
ν→0−→ ρ0 a.e. and in Lploc(R), p ∈ [1,∞),(6.0.7)

0 ≤ ρ0,ν ≤ 1, ν > 0,(6.0.8)

∥ρ0,ν∥L2(R) ≤ C,(6.0.9)

where C > 0 is a constant independent of α, ν > 0.
As outlined in Chapter 1, the reformulation of the problem as

∂tWα,ν + ∂x(V (Wα,ν)Wα,ν)

= α∂2txWα,ν + ν∂2xxWα,ν + α∂x(V (Wα,ν)∂xWα,ν)− αν∂3xxxWα,ν , (t, x) ∈ (0, T )× R,
Wα,ν(0, x) =

1
α

∫∞
x exp

(x−y
α

)
ρ0,ν(y) dy, x ∈ R,

(6.0.10)

is the key to obtaining the a priori estimates needed in the proof of our main result: we show that,
when the nonlocal term together with the viscosity approaches zero, the family {ρα,ν}α,ν>0 converges
to the entropy solution of the local conservation law{

∂tρ(t, x) + ∂x
(
V (ρ(t, x))ρ(t, x)

)
= 0, (t, x) ∈ (0, T )× R,

ρ(0, x) = ρ0(x), x ∈ R.
(6.0.11)

Theorem 6.0.1 (Nonlocal–to–local limit). Let {ρα,ν}α,ν be a family of classical solutions of the
Cauchy problem (6.0.1). Then, for all

(6.0.12) (α, ν) ⊂ R2
>0 such that (α, ν) → (0, 0) and

α

ν
→ 0,

there exists ρ ∈ L∞((0,+∞)× R) such that

ρα,ν → ρ a.e. and in Lploc((0, T )× R), with p ∈ [1,∞),

and ρ is the entropy solution of the Cauchy problem (6.0.11).

In Section 6.1, we prove the well-posedness of (6.0.1)—which, in turn, implies the rigorous
equivalence between (6.0.1) and (6.0.10)—and the a priori estimates required for the study of the
singular limit. More specifically, we establish L∞-bounds on ρα,ν and Wα,ν and an L2-estimate on
Wα,ν(t, ·) which also involves the H2-norm of Wα,ν(t, ·).

65
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In Section 6.2, we use the previous estimates to prove that the family {ρα,ν}α,ν>0 is compact in
Lp. To this end, we rely on Tartar’s compensated compactness technique and show that the family
{∂tη(ρα,ν)+∂xq(ρα,ν)}α,ν>0, for every convex entropy–entropy-flux pair, is compact inH−1

loc ((0,+∞)×
R). Finally, we check that the limit function ρ is the entropy solution of the local conservation law
(6.0.11). In the compactness estimates and the verification of the entropy condition, the assumption
α = o(ν) is crucial.

6.1. A priori estimates

We start by proving the well-posedness of classical solutions of (6.0.1), their non-negativity, and
an upper-bound in terms of the L∞ norm of the initial data. This, in turn, implies an L∞-estimate
on Wα,ν .

Lemma 6.1.1 (Well-posedness and L∞-estimate). For every α, ν > 0, there exists a unique
non-negative smooth solution ρα,ν ∈ C∞([0, T )×R)∩W 2,2((0, T )×R) of the Cauchy problem (6.0.1)
such that

0 ≤ ρα,ν , Wα,ν ≤ 1.

Proof. Since ρ0,ν ∈W 2,2(R), the existence and uniqueness of smooth solutions of (6.0.1) can
be proven arguing similarly to [90, Theorem 2.1] or [82, 75, 67, 180]: although in our case the
kernel is not smooth and compactly supported, a fixed-point argument based on the Duhamel’s
formula yields the well-posedness result. We focus on showing the L∞-bound on the solutions (these
are well-known in the literature as well; but we present a simple proof for the sake of completeness).
To prove ρα,ν ≥ 0, we consider the function

η(ξ) = −ξ1(−∞,0](ξ), ξ ∈ R,

which satisfies

(6.1.1) η′(ξ) = −1(−∞,0](ξ), η′′(ξ) = δ{ξ=0} ≥ 0, ξ ∈ R.

Multiplying (6.0.1) by η′(ρα,ν), integrating over R, and using [27, Lemma 2] yields

d

dt

∫
R
η(ρα,ν) dx =

∫
R
∂tρα,νη

′(ρα,ν) dx

= ν

∫
R
∂2xxρα,νη

′(ρα,ν) dx−
∫
R
∂x(V (Wα,ν)ρα,ν))η

′(ρα,ν) dx

= −ν
∫
R
(∂xρα,ν)

2η′′(ρα,ν)︸ ︷︷ ︸
≥0

dx+

∫
R
V (Wα,ν)∂xρα,ν ρα,νη

′′(ρα,ν)︸ ︷︷ ︸
=0 (see (6.1.1))

dx

≤ 0.

Integrating over (0, t) and using (6.0.8) and (6.1.1), we compute

0 ≤
∫
R
η(ρα,ν(t, x)) dx ≤

∫
R
η(ρ0,ν(x)) dx = 0.

Therefore, η(ρα,ν) ≡ 0 and thus

ρα,ν(t, x) ≥ 0.(6.1.2)

To prove ρα,ν ≤ 1, we follow the argument in [172, Corollary 5.9]. For t ≥ 0, let

Xmax(t) :=
{
x ∈ R : ρα,ν(t, x) = ∥ρα,ν(t, ·)∥L∞(R)

}
.

For x ∈ Xmax(t) and a.e. t > 0, we have (owing to [98, Theorem 2.1])

∂tρα,ν(t, x) = − ∂xρα,ν(t, x)V (Wα,ν(t, x))︸ ︷︷ ︸
=0

−ρα,ν(t, x)
α

V ′(Wα,ν(t, x))Wα,ν(t, x)

+
ρ2α,ν(t, x)

α
V ′(Wα,ν(t, x)) + ν∂2xxρα,ν(t, x)︸ ︷︷ ︸

≤0
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≤ ρα,ν(t, x)

α
V ′(Wα,ν(t, x))(ρα,ν(t, x)−Wα,ν(t, x))︸ ︷︷ ︸

≤0

,

where we have used (6.1.2), (6.0.4), and the fact that, for x ∈ Xmax(t),

∂xρα,ν(t, x) = 0,

Wα,ν(t, x)− ρα,ν(t, x) =
1

α

∫ ∞

x
exp

(
x− y

α

)(
ρα,ν(t, y)− ρα,ν(t, x)

)
dy ≤ 0.

We have thus shown that, for all points x ∈ Xmax(t),

∂tρα,ν(t, x) ≤ 0,

which implies

∥ρα,ν(t, ·)∥L∞(R) ≤ ∥ρα,ν(0, ·)∥L∞(R) ≤ 1.

The L∞-estimate for Wα,ν then follows from the one for ρα,ν thanks to (6.0.2). □

From the regularity of ρα,ν , we deduce that problems (6.0.1), (1.1.6), and (6.0.10) are indeed
equivalent and Wα,ν is also smooth.

Relying on (6.0.10), we obtain an energy estimate for Wα,ν . In the proof, a key role is played
by the assumption (6.0.12) on the ratio α/ν.

Lemma 6.1.2 (Energy estimate). If Wα,ν is the solution of (6.0.10), then the following estimate
holds:

∥Wα,ν(t, ·)∥2L2(R) + α2 ∥∂xWα,ν(t, ·)∥2L2(R)

+ ν

∫ t

0
∥∂xWα,ν(s, ·)∥2L2(R) ds+ α2ν

∫ t

0

∥∥∂2xxWα,ν(s, ·)
∥∥2
L2(R) ds ≤ C,

(6.1.3)

for some constant C > 0 independent from α and ν and for every t ≥ 0. In particular,

{Wα,ν}α,ν>0, {α∂xWα,ν}α,ν>0 are bounded in L∞((0,+∞);L2(R)),
{
√
ν∂xWα,ν}α,ν>0, {α

√
ν∂2xxWα,ν}α,ν>0 are bounded in L2((0,+∞)× R).

Proof. We differentiate the L2-norm 1
2∥Wα,ν(t, ·)∥L2(R) with respect to time and, using (6.0.10),

we obtain

d

dt

∫
R

W 2
α,ν

2
dx =

∫
R
Wα,ν∂tWα,ν dx

= −
∫
R
∂x(V (Wα,ν)Wα,ν)Wα,ν dx+ α

∫
R
Wα,ν∂

2
txWα,ν dx

+ ν

∫
R
Wα,ν∂

2
xxWα,ν dx+ α

∫
R
Wα,ν∂x(V (Wα,ν)∂xWα,ν) dx− αν

∫
R
Wα,ν∂

3
xxxWα,ν dx

=

∫
R
V (Wα,ν)Wα,ν∂xWα,ν dx+ α

∫
R
Wα,ν∂

2
txWα,ν dx

+ ν

∫
R
Wα,ν∂

2
xxWα,ν dx+ α

∫
R
Wα,ν∂x(V (Wα,ν)∂xWα,ν) dx+ αν

∫
R
∂xWα,ν∂

2
xxWα,ν dx

=

∫
R
∂x

(∫ Wα,ν

0
V (ξ)ξ dξ

)
dx︸ ︷︷ ︸

=0

−α
∫
R
∂tWα,ν∂xWα,ν dx

− ν

∫
R
(∂xWα,ν)

2 dx− α

∫
R
V (Wα,ν)(∂xWα,ν)

2 dx+ αν

∫
R
∂x

(
(∂xWα,ν)

2

2

)
dx︸ ︷︷ ︸

=0

= −α
∫
R
∂tWα,ν∂xWα,ν dx− ν

∫
R
(∂xWα,ν)

2 dx− α

∫
R
V (Wα,ν)(∂xWα,ν)

2 dx.



68 6. NONLOCAL–TO–LOCAL SINGULAR LIMIT PROBLEM WITH ARTIFICIAL VISCOSITY

Using again (6.0.10),

d

dt

∫
R

W 2
α,ν

2
dx+ ν

∫
R
(∂xWα,ν)

2 dx

= α

∫
R
∂x(V (Wα,ν)Wα,ν)∂xWα,ν dx− α2

∫
R
∂xWα,ν∂

2
txWα,ν dx

− αν

∫
R
∂xWα,ν∂

2
xxWα,ν dx︸ ︷︷ ︸

=0

−α2

∫
R
∂xWα,ν∂x(V (Wα,ν)∂xWα,ν) dx

+ α2ν

∫
R
∂xWα,ν∂

3
xxxWα,ν dx− α

∫
R
V (Wα,ν)(∂xWα,ν)

2 dx

= α

∫
R
V (Wα,ν)(∂xWα,ν)

2 dx+ α

∫
R
V ′(Wα,ν)Wα,ν(∂xWα,ν)

2 dx

− α2 d

dt

∫
R

(∂xWα,ν)
2

2
dx+ α2

∫
R
V (Wα,ν)∂xWα,ν∂

2
xxWα,ν dx

− α2ν

∫
R
(∂2xxWα,ν)

2 dx− α

∫
R
V (Wα,ν)(∂xWα,ν)

2 dx.

In the computation above, the decay of the solution at infinity and their regularity make the boundary
terms in the integration by parts vanish. Using the L∞-bound established in Lemma 6.1.1 and
Young’s inequality, we obtain

d

dt

∫
R

W 2
α,ν + α2(∂xWα,ν)

2

2
dx+ ν

∫
R
(∂xWα,ν)

2 dx+ α2ν

∫
R
(∂2xxWα,ν)

2 dx

= α

∫
R
V ′(Wα,ν)Wα,ν(∂xWα,ν)

2 dx+ α2

∫
R
V (Wα,ν)∂xWα,ν∂

2
xxWα,ν dx

≤ α

∫
R
V ′(Wα,ν)Wα,ν(∂xWα,ν)

2 dx

+
α2

2ν

∫
R
(V (Wα,ν)∂xWα,ν)

2 dx+
α2ν

2

∫
R
(∂2xxWα,ν)

2 dx

≤ α
(∥∥V ′∥∥

L∞(0,1)
+
α

ν
∥V ∥2L∞(0,1)

)∫
R
(∂xWα,ν)

2 dx+
α2ν

2

∫
R
(∂2xxWα,ν)

2 dx.

Thanks to (6.0.12), when α and ν are small, we have

d

dt

∫
R

W 2
α,ν + α2(∂xWα,ν)

2

2
dx+

ν

2

∫
R
(∂xWα,ν)

2 dx+
α2ν

2

∫
R
(∂2xxWα,ν)

2 dx ≤ 0.

Finally, due to (6.0.6), (6.0.7), and (6.0.8), we conclude the proof by integrating over (0, t).
We note that the constant C in (6.1.3) is independent of α, ν > 0, because (6.0.9) implies
∥α∂xWα,ν(0, ·)∥L2(R) = ∥Wα,ν(0, ·)− ρ0,ν∥L2(R) ≤ C. □

6.2. Compensated compactness framework and proof of the convergence result

In this Section, we use Tartar’s compensated compactness method (see [197, 227] and [116,
Lemma 17.4.1]) to obtain strong convergence of a subsequence of solutions of (6.0.1) to the unique
entropy solution of (6.0.11).

Lemma 6.2.1 (Tartar’s compensated compactness). Let f ∈ C2(R) be a genuinely nonlinear
function, i.e. L({f ′′ = 0}) = 0, and {ρδ}δ>0 be a measurable family of functions defined on R+ ×R
such that

∥ρδ∥L∞((0,T )×R) ≤MT , T, δ > 0,

and the family

{∂tη(ρδ) + ∂xq(ρδ)}δ>0
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is compact in H−1
loc (R+ ×R), for every convex η ∈ C2(R) and q′ = f ′η′. Then there exist a sequence

{δn}n∈N ⊂ (0,+∞), δn → 0, and a map ρ ∈ L∞((0, T )× R), T > 0, such that

ρδn −→ ρ a.e. and in Lploc((0,+∞)× R), 1 ≤ p <∞.

To check that the family {ρα,ν}α,ν>0 satisfies the assumptions of Lemma 6.2.1, we rely on Murat’s
compact embedding (see [200] and [116, Lemma 17.2.2]).

Lemma 6.2.2 (Murat’s compact embedding). Let Ω be a bounded open subset of RN , N ≥ 2. Let
us suppose that a sequence {Λn}n∈N of distributions is bounded in W−1,p(Ω), for some 2 < p ≤ ∞,
and that

Λn = Λ1,n + Λ2,n,

where {Λ1,n}n∈N lies in a compact subset of H−1(Ω) and {Λ2,n}n∈N lies in a bounded subset of

L1
loc(Ω). Then, {Λn}n∈N lies in a compact subset of H−1

loc (Ω).

Proof of Theorem 6.0.1. First, we observe that

∂tρα,ν + ∂x(V (ρα,ν)ρα,ν) = ν∂2xxρα,ν + ∂x
(
(V (ρα,ν)− V (Wα,ν))ρα,ν

)
= ν∂2xxρα,ν + ∂x

(
b(t, x)(ρα,ν −Wα,ν)ρα,ν

)
= ν∂2xxρα,ν − α∂x

(
b(t, x)∂xWα,νρα,ν

)
,

(6.2.1)

where

b(t, x) :=

∫ 1

0
V ′(θρα,ν(t, x) + (1− θ)Wα,ν(t, x)) dθ, (t, x) ∈ (0, T )× R.(6.2.2)

Let η, q : R → R be a C2 convex entropy–entropy-flux pair for the conservation law (6.0.11), i.e.
η, q ∈ C2(R), η′′ ≥ 0, η′f ′ = q′, where f : ξ 7→ V (ξ)ξ. Multiplying (6.2.1) by η′(ρα,ν) yields

∂tη(ρα,ν) + ∂xq(ρα,ν) = νη′(ρα,ν)∂
2
xxρα,ν − αη′(ρα,ν)∂x(b ∂xWα,νρα,ν)

= ν∂2xxη(ρα,ν)− νη′′(ρα,ν)(∂xρα,ν)
2 − α∂x(η

′(ρα,ν)b ∂xWα,νρα,ν)

+ αη′′(ρα,ν)b ∂xWα,νρα,ν∂xρα,ν .

To apply Tartar’s compensated compactness, we show that the right-hand side is compact in
H−1

loc ((0,+∞)× R). By Lemma 6.1.2 and Lemma 6.1.1, we have, for T > 0,

∥νη′(ρα,ν)∂xρα,ν∥L2((0,T )×R) = ∥νη′(ρα,ν)∂xWα,ν − ανη′(ρα,ν)∂
2
xxWα,ν∥L2((0,T )×R)

≤
√
ν
∥∥η′(ρα,ν)∥∥L∞((0,T )×R) ∥

√
ν∂xWα,ν − α

√
ν∂2xxWα,ν∥L2((0,T )×R)

≤
√
ν cT → 0.

Additionally, we obtain

∥νη′′(ρα,ν)(∂xρα,ν)2∥L1((0,T )×R)

=

∥∥∥∥νη′′(ρα,ν)(∂xWα,ν − α∂2xxWα,ν

)2∥∥∥∥
L1((0,T )×R)

=
∥∥∥η′′(ρα,ν)(ν(∂xWα,ν)

2 − 2αν∂xWα,ν∂
2
xxWα,ν + να2(∂2xxWα,ν)

2
)∥∥∥

L1((0,T )×R)

≤ cT

as well as

∥αη′(ρα,ν)b(t, x)∂xWα,νρα,ν∥L2((0,T )×R)

≤ α√
ν
∥η′(ρα,ν)b(t, x)ρα,ν∥L∞((0,T )×R)∥

√
ν∂xWα,ν∥L2((0,T )×R)

≤ α√
ν
cT → 0
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and

∥αη′′(ρα,ν)b ∂xWα,νρα,ν∂xρα,ν∥L1((0,T )×R)

= ∥αη′′(ρα,ν)b ρα,ν∂xWα,ν

(
∂xWα,ν − α∂2xxWα,ν

)
∥L1((0,T )×R)

= ∥η′′(ρα,ν)b ρα,ν
(
α(∂xWα,ν)

2 − α2∂xWα,ν∂
2
xxWα,ν

)
∥L1((0,T )×R)

≤ ∥η′′(ρα,ν)b ρα,ν
(
α(∂xWα,ν)

2 + α2|∂xWα,ν∂
2
xxWα,ν |

)
∥L1((0,T )×R)

≤ ∥η′′(ρα,ν)b ρα,ν∥L∞((0,T )×R)

∥∥∥∥αν ν(∂xWα,ν)
2 +

α2ν

2
(∂2xxWα,ν)

2 +
α2

2ν2
ν(∂xWα,ν)

2

∥∥∥∥
L1((0,T )×R)

≤ cT .

Then, by Lemma 6.2.2, we deduce that {∂tη(ρα,ν)+∂xq(ρα,ν)}α,ν>0 is compact in H−1
loc ((0,+∞)×

R). Therefore, by Lemma 6.2.1, we conclude that, given (6.0.12), there exists a function ρ ∈
L∞((0, T )× R), T > 0, such that

ραn,νn −→ ρ in Lploc((0,+∞)× R), p ∈ [1,∞), and a.e. in (0,+∞)× R.

By Lebesgue’s dominated convergence theorem, we have that ρ is a weak solution of (6.0.11). It
remains to show that ρ is an entropy solution. We start by observing that

∂tη(ραn,νn) + ∂xq(ραn,νn) = νn∂
2
xxη(ραn,νn)− νnη

′′(ραn,νn)(∂xραn,νn)
2︸ ︷︷ ︸

≥0

− αn∂x(η
′(ραn,νn)b(t, x)∂xWαn,νnραn,νn)

+ αnη
′′(ραn,νn)b(t, x)∂xWαn,νnραn,νn∂xραn,νn

≤ νn∂
2
xxη(ραn,νn)− αn∂x(η

′(ραn,νn)b(t, x)∂xWαn,νnραn,νn)

+ αnη
′′(ραn,νn)b(t, x)∂xWαn,νnραn,νn∂xραn,νn .

Let us consider a non-negative test function φ ∈ C∞
c ([0,∞)× R;R+). Then,∫ ∞

0

∫
R

(
η(ραn,νn)∂tφ+ q(ραn,νn)∂xφ

)
dtdx+

∫
R
η(ρ0,νn(x))φ(0, x) dx

≥ νn

∫ ∞

0

∫
R
η(ραn,νn)∂

2
xxφdx dt

+ αn

∫ ∞

0

∫
R

(
η′(ραn,νn)b(t, x)∂xWαn,νnραn,νn

)
∂xφdx dt

+ αn

∫ ∞

0

∫
R
η′′(ραn,νn)b(t, x)ραn,νn∂xWαn,νn

(
∂xWαn,νn − αn∂

2
xxWαn,νn

)
φdx dt

= νn

∫ ∞

0

∫
R
η(ραn,νn)∂

2
xxφdx dt︸ ︷︷ ︸

=:I1

+ αn

∫ ∞

0

∫
R

(
η′(ραn,νn)b(t, x)∂xWαn,νnραn,νn

)
∂xφdx dt︸ ︷︷ ︸

=:I2

+ αn

∫ ∞

0

∫
R
η′′(ραn,νn)b(t, x)ραn,νn(∂xWαn,νn)

2 dx︸ ︷︷ ︸
=:I3

− αn
νn

∫ ∞

0

∫
R
η′′(ραn,νn)b(t, x)ραn,νn

√
νn∂xWαn,νnαn

√
νn∂

2
xxWαn,νnφdx dt︸ ︷︷ ︸

=:I4

.

Due to the estimates done in the first part of the proof, we have

I1 ≤ νn∥η∥L∞(R)∥∂2xxφ∥L1(R2);
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I2 ≤
αn√
νn

∥η′(ραn,νn)b ραn,νn∥L∞((0,T )×R)∥
√
νn∂xWαn,νn∥L2((0,T )×R) ≤

αn√
νn
cT ;

I3 ≤
αn
νn

∥η′′(ραn,νn)b ραn,νn∥L∞((0,T )×R)
∥∥νn(∂xWαn,νn)

2
∥∥
L1((0,T )×R) ≤

αn
νn
cT ;

I4 ≤
αn
νn

∥η′′(ραn,νn)b ραn,νn∥L∞((0,T )×R)∥
√
νn∂xWαn,νn∥L2((0,T )×R)

× ∥αn
√
νn∂

2
xxWαn,νn∥L2((0,T )×R)∥φ∥L∞(R2) ≤

αn
νn
cT .

Passing to the limit, owing to assumption (6.0.12) and to Lebesgue’s dominated convergence
theorem, we conclude that ρ is the entropy solution of the local conservation law (6.0.11).

The fact that, in the statement of the theorem, the family {ρα,ν}α,ν>0 converges to ρ and not just
up to subsequences follows from the uniqueness of entropy solutions of (6.0.11) and from Urysohn’s
subsequence principle, i.e. ρα,ν → ρ if and only if for all subsequences {ραn,νn}n∈N, there exists a
subsubsequence {ραnk

,νnk
}k∈N such that ραnk

,νnk
→ ρ as k → +∞. □





CHAPTER 7

Boundary controllability and asymptotic stabilization of a nonlocal
traffic model

In this Chapter, we investigate the boundary controllability and stabilization for the following
nonlocal conservation law:

∂tρ(t, x) + ∂x(V (W[ρ](t, x))ρ(t, x)) = 0, (t, x) ∈ ΩT ,

ρ(0, x) = ρ0(x), x ∈ (0, 1),

V (W[ρ](t, 0))ρ(t, 0) = V (W[ρ](t, 0))u
ℓ
(t), t ∈ (0, T ),

(7.0.1)

with ΩT := (0, T )× (0, 1), supplemented by the nonlocal operator

W[ρ](t, x) :=
1

α

∫ ∞

x
exp

(
x− y

α

)({
ρ(t, y) if y < 1

ur(t) if y ≥ 1

)
dy, (t, x) ∈ ΩT .(7.0.2)

Here, ρ : ΩT → [0, 1] is the traffic density, ρ0 : (0, 1) → [0, 1] is the initial datum, u
ℓ
: (0, T ) → [0, 1] is

the in-flux boundary datum at x = 0, ur : (0, T ) → [0, 1] is the (nonlocal) right-hand side boundary
datum, V : [0, 1] → R is the velocity, and α > 0 is the nonlocal average parameter.

The choice of an exponential weight enables the boundary condition prescribed on the flux in
(7.0.1) to be given directly in terms of density, i.e. as

(7.0.3) ρ(t, 0) = u
ℓ
(t), t ∈ [0, T ],

provided min{∥ρ0∥L1((0,1)), ur(t)} < 1 for all t ∈ [0, T ]. Indeed, in this case, the velocity V is never
zero at the boundary (or anywhere else), so the boundary datum always enters the domain and is
thus always attained.

In Section 7.1, we recall some preliminary results on well-posedness for the IBVP (7.0.1).
In Section 7.2, we prove that any end-state can be reached from appropriately defined initial

and boundary datum on a sufficiently small time-horizon.
In Section 7.3, we discuss the exact controllability to a given end-state or out-flux of the nonlocal

model with boundary controls on the left (in-flux) and on the right (out-flux) of the domain. We
prove that this is equivalent to the existence of a solution of the corresponding backward-in-time
nonlocal conservation law.

Section 7.4 centers on the long-time behavior of solutions when constant boundary conditions
are prescribed and the initial condition is suitably chosen. We show that the solution converges to
the corresponding constant steady state. Some numerical simulations verify our results and suggest
that they should hold for every initial datum.

Finally, in Section 7.5, we state the existence and uniqueness of steady-state solutions for constant
u

ℓ
and ur .

7.1. Preliminaries

We first recall some well-known results on the existence and uniqueness of solutions to the IBVP
(7.0.1). To this end, we introduce the following (regularity) assumptions.

Assumption 1 (Assumption on the data of the IBVP). For T > 0, we assume

ρ0 ∈ L∞((0, 1); [0, 1]);

V ∈W 1,∞((0, 1);R≥0) : V
′ ≤ 0, V ′ ̸≡ 0,

(
V (ξ) = 0 ⇐⇒ ξ = 1

)
;

(u
ℓ
, ur) ∈ L∞((0, T ); [0, 1])2.

Following [172, Definition 2.4], we adopt the following notion of solution.

73
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0
x

τ

1x0 x1 x2 x3

t0

t1

t2

t3

T
ξ(t1, 0; ·) ξ(t0, 0; ·) ξ(0, 0; ·) ξ(0, x0; ·)

Figure 7.1. Characteristics in a bounded domain. Cf. [172, Figure 2].

Definition 7.1.1 (Weak solutions for the IBVP). We say that ρ ∈ C
(
[0, T ];L1((0, 1))

)
∩

L∞((0, T );L∞((0, 1))) is a weak solution to the IBVP (7.0.1) if, for every φ ∈W 1,∞((0, T )× (0, 1))
with φ(T, ·) = 0 and φ(·, 1) = 0, we have

0 =

∫∫
ΩT

(
∂tφ(t, x)ρ(t, x) + V (W[ρ](t, x))ρ(t, x)∂xφ(t, x)

)
dx dt

+

∫ 1

0
ρ0(x)φ(0, x) dx+

∫ T

0
φ(t, 0)V (W[ρ])(t, 0)u

ℓ
(t) dt.

(7.1.1)

The existence and uniqueness of weak solutions were investigated in [172]. We recall the principal
well-posedness result in the following theorem.

Theorem 7.1.1 (Existence, uniqueness, and maximum principle). Given Assumption 1, the
IBVP (7.0.1) admits a unique weak solution ρ ∈ C

(
[0, T ];L1((0, 1))

)
∩ L∞((0, T );L∞((0, 1))) in

the sense of Definition 7.1.1. Moreover, the solution can be written in terms of characteristics, for
(t, x) ∈ ΩT , as

(7.1.2) ρ(t, x)=

{
ρ0(ξw∗(t, x; 0)) ∂xξw∗(t, x; 0), x ≥ ξw∗(0, 0; t),

u(ξw∗ [t, x]−1
max(0)) ∂2ξw∗(t, x; ξw∗ [t, x]−1

max(0)), x ≤ ξw∗(0, 0; t),

where ξ : [0, T ] × [0, 1] × [0, T ] → R≥0 is the characteristic curve that satisfies the Volterra-type
integral equation

ξw∗(t, x; τ) = x+

∫ τ

t
V (w∗(s, ξw∗(t, x; s))) ds, (t, x, τ) ∈ ΩT × [0, T ],(7.1.3)

ξ−1
max[t, x] denotes the time-inverted characteristics tracing back the points (t, x) ∈ {(t, x) ∈ ΩT : x ≤
ξw∗(0, 0; t)} to the boundary ([172, Definition 2.5, Eq. (2.3)]) and w∗ ∈ L∞((0, T );W 1,∞((0, 1))

)
is

the unique solution of a fixed-point equation on (t, x) ∈ ΩT given in [172, Theorem 3.1, Eq. (3.2)].
In addition, the following maximum principle holds:

0 ≤ ρ(t, x) ≤ max{∥ρ0∥L∞((0,1)), ∥uℓ
∥L∞((0,T )), ∥ur∥L∞((0,T ))}, (t, x) ∈ ΩT .(7.1.4)

Proof. For a compactly supported nonlocal weight that is monotonically decreasing, the proof
can be found in [172, Theorem 3.1, Theorem 4.2, and Corollary 5.9]. The exponential weight
considered in (7.0.2) actually simplifies the analysis and the proof can be obtained analogously. We
omit the details. □
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7.2. Reachability for sufficiently small times

In this Section, we show that, for any given function in L∞((0, 1); [0, 1]), we can select a suitable
boundary and initial datum so that the solution of the corresponding nonlocal conservation law
reaches the target at a (sufficiently small) time T > 0. The key idea behind the proof is to consider
the backward-in-time problem, whose solvability is equivalent to the controllability of the given
forward problem. Owing to the results presented in [167], the backward problem is solvable for any
terminal data for a sufficiently small time-horizon. This is because the nonlocal velocity function
is Lipschitz continuous for a small time (independent of the specific nonlocal weight and area of
integration provided the initial datum is essentially bounded).

This result differs from that of local conservation laws, where the attainable set necessarily needs
to satisfy an Olĕınik inequality [205, 205], also for an arbitrarily small time.

Theorem 7.2.1 (Exact controllability on a small time-horizon). For every ρdes ∈
L∞((0, 1); [0, 1)) with ∥ρdes∥L∞((0,1)) < 1, there exists a time T > 0, controls u

ℓ
, ur ∈

L∞((0, T ); [0, 1)) and initial datum ρ0 ∈ L∞((0, 1); [0, 1)) such that the corresponding weak solu-
tion

ρ ∈ C
(
[0, T ];L1((0, 1))

)
∩ L∞ ((0, T );L∞((0, 1)))

to the IBVP (7.0.1) satisfies
ρ(T, x) := ρdes(x), x ∈ (0, 1).

Here, ρdes stands for the desired state we want to achieve.

Proof. For ur ≡ c ∈ [0, 1), as shown in [167, Theorem 2.20], there exists a sufficiently small
time-horizon T > 0 such that the auxiliary end-value problem

∂tp(t, x) + ∂x
(
V (W[p](t, x))p(t, x)

)
= 0, (t, x) ∈ (0, T )× R,

p(T, x) = ρdes(x), x ∈ (0, 1),

p(T, x) = c, x ∈ R \ (0, 1),
(7.2.1)

with

W[p](t, x) :=
1

α

∫ ∞

x
exp

(
x− y

α

)
p(t, y) dy,(7.2.2)

admits a unique solution p ∈ C
(
[0, T ];L1

loc(R)
)
. Moreover, by [167, Lemma 2.6, Item 2], there exists

d > 0 (depending on α,ρdes,c, and V ) such that

∥p(t, ·)∥L∞(R) ≤ max{∥ρdes∥L∞((0,1)) , c}ed(T−t).
The key idea of interpreting the control problem as a Cauchy problem on R backward in time is
illustrated in Figure 7.2. Thus, for

T ≤ 1

d
log
(
max{∥ρdes∥L∞((0,1)) , c}−1

)
,

we obtain ∥p(t, ·)∥L∞(R) ≤ 1 for all t ∈ [0, T ]. Consequently, by choosing

u
ℓ
(t) = p(t, 0), t ∈ (0, T ),

ur(t) = c, t ∈ (0, T ),

ρ0(x) = p(0, x), x ∈ (0, 1),

the boundary and initial data are admissible and the solution to the corresponding problem (7.0.1)
satisfies ρ(T, ·) = ρdes on (0, 1). We note that u

ℓ
is given by p(·, 0), which can be evaluated as an L1

function at x = 0 as the backward “velocity” is not zero.
□

Remark 7.2.1 (Surjectivity of state to control map on a small time-horizon). The statement
in Theorem 7.2.1 amounts to⋃

t∈(0,T ]

⋃
u
ℓ
∈L∞((0,T );[0,1))

ur∈L∞((0,T );[0,1))
ρ0∈L∞((0,1);[0,1))

ρ[ρ0, uℓ
, ur ](t, ·) = L∞((0, 1); [0, 1)),
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ρ0(x) 1(0, 0)−1 2

p(T ∗, x) = ρdes(x) p(T ∗, x) = cp(T ∗, x) = c

x

u
ℓ
(t)

(1, T ∗)(0, T ∗)

Figure 7.2. Transformation of the end boundary value problem into a backward-
in-time Cauchy problem on R. The desired state and the “boundary” data are in
gold; the corresponding ρ0 and u

ℓ
are in red, yielding—forward in time—the desired

state ρdes.

where ρ[ρ0, uℓ
, ur ] ∈ C

(
[0, T ];L1((0, 1))

)
∩ L∞((0, T );L∞((0, 1))) denotes the weak solution of the

IBVP (7.0.1), with initial datum ρ0, left-hand side boundary datum u
ℓ
, and nonlocal right-hand side

boundary datum ur .

Example 7.2.1 (Numerical example for exact controllability on a sufficiently small time-horizon).
We consider a target function

ρdes :=
1

2
+

1

4
1( 1

4
, 1
2)

− 1

4
1( 1

2
, 3
4)
.

We verify numerically that we can find suitable ρ0, uℓ
, and ur such that ρ(T, ·) = ρdes for the

sufficiently small time-horizon T = 0.6 (see Figure 7.3). We note that, for local conservation laws,
Olĕınik’s entropy condition would prevent the reachability of this state. The important role of the
nonlocal parameter α > 0 can also be observed. The smaller the α in the given example (here
α ∈ {1, 0.9, 0.8}), the more the solution increases backward in time. This is illustrated in the first
three rows of Figure 7.3 and, in particular, in the boundary datum; so, for α = 0.8, the backward
solution has already exceeded 1 and is thus not admissible for T = 0.6. The fourth row in Figure
7.3 represents the solution and control for a sufficiently small α (namely, α = 0.1). Here, the final
time needs to be chosen to be much smaller, T = 0.05, and even then the backward solution reaches
the bound 1 and would cease to exist if we were to consider it on a larger time-horizon. Due to the
short time-horizon in the fourth row, the significant changes in the desired datum ρdes are tackled
mainly through the initial datum, while the boundary datum is taken almost constant.

7.3. Exact boundary controllability and time-inverted dynamics

In this Section, we consider two control problems:

1. steering a given initial state toward a prescribed target end-state;
2. achieving a prescribed out-flux on the right-hand side of the road.

In both cases, we show that exact controllability holds if and only if the corresponding backward-in-
time dynamics admit a weak solution satisfying some bounds. This result is essentially due to the
fact that, for nonlocal conservation laws, there is no loss of information (with respect to initial and
boundary data).

Our approach is reminiscent of the strategy used to obtain an exact controllability result for the
linear transport equation (see [104, Section 2.1]):

∂tρ(t, x) + ∂xρ(t, x) = 0, (t, x) ∈ (0, T )× (0, 1),

ρ(0, x) = ρ0(x), x ∈ (0, 1),

ρ(t, 0) = u(t), t ∈ (0, T ).

Namely, given ρ0 ∈ Lp((0, 1)) with p ∈ R≥1 ∪ {∞} and a target profile ρdes ∈ Lp((0, 1)), a control
u ∈ Lp((0, 1)) exists so that ρ(T, ·) = ρdes if and only if T ≥ 1. The key to the proof is observing
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Figure 7.3. Illustration of Example 7.2.1 for different α ∈ {0.8, 0.9, 1, 0.1}. Left:
The solution with the proper boundary and initial datum to reach the desired state
ρdes :=

1
2 +

1
41(0.25,0.5) − 1

41(0.5,0.75) for T = 0.6. Middle: Desired state ρdes and the
corresponding initial state ρ0 to steer the system to ρdes. Right: Boundary data,
i.e. u

ℓ
and ur , to steer the system to ρdes. Color bar: 0 1

that the solution of the IBVP is given explicitly by

ρ(t, x) =

{
ρ0(x− t), (t, x) ∈ (0, 1)× (0, T ), t ≤ x,

u(t− x), (t, x) ∈ (0, 1)× (0, T ), t > x;

therefore, if T ≥ 1, we can choose

u(t) :=

{
ρdes(T − t), t ∈ (T − 1, T ),

0, t ∈ (0, T − 1),

and the solution then satisfies ρ(T, x) = u(T − x) = ρdes(x) for x ∈ (0, 1). In other words, after the
initial data (which moves along characteristics) leaves the domain, we can inject the solution of the
backward-in-time problem having ρdes as data into the left-hand side boundary. Since the waves of
hyperbolic equations have a finite speed of propagation and the control is applied at the boundary,
an exact controllability result requires that the time-horizon T must be sufficiently large.

In the study of our nonlocal model, the first crucial step is to know that the initial state leaves
the domain in a finite time as well. This seems very natural when prescribing a density ur ∈ [0, 1)
as the right-hand side boundary datum, which “pulls out” the initial data for non-zero velocities.
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However, in contrast to the linear case, for the nonlocal conservation law considered here, the initial
datum—even after leaving the domain—still influences the solution.

The result regarding the initial datum leaving the domain is detailed in the following lemma
and illustrated in Figure 7.4.

Lemma 7.3.1 (Initial datum leaving domain in finite time). Given Assumption 1 and a large
enough T > 0, let us assume that ∥ur∥L∞((0,T )) < 1. Then, the initial datum, evolving with the
dynamics in (7.0.1), leaves the domain in finite time, i.e. the corresponding characteristics ξ
emanating from (0, 0) (as defined in (7.1.3)) satisfy

(7.3.1) ∃!T ∗ ∈ (0, T ] s. t. ξw∗(0, 0;T ∗) = 1 with T ∗ ≤ V

(
1−

1− ∥ur∥L∞((0,T ))

ε

)−1

.

Proof. We show that the zero characteristics move with a positive speed bounded away from
zero. To this end, we use the maximum principle in Theorem 7.1.1 and estimate the nonlocal
operator in (7.0.2) as follows for (t, x) ∈ ΩT :

W[q](t, x) =
1

α

∫ ∞

x
exp

(
x− y

α

)({
ρ(t, y) if y < 1

ur(t) if y ≥ 1

)
dy

≤ 1

α

∫ ∞

0
exp

(
− y

α

)({1 if y < 1

ur(t) if y ≥ 1

)
dy

=
1

α

∫ 1

0
exp

(
− y

α

)
dy +

u
ℓ
(t)

α

∫ ∞

1
exp

(
− y

α

)
dy

= 1− e−1 + ur(t)e
−1 = 1− 1− ur(t)

e
≤ 1−

1− ∥ur∥L∞((0,T ))

e
.

Using this estimate, which is uniform in (t, x) ∈ ΩT , and the monotonicity of V , we can bound the
zero characteristics in (7.1.3) from below:

ξw∗(0, 0; t) =

∫ t

0
V (W[q](s, ξ(0, 0; s))) ds

≥
∫ t

0
V
(
1−

1− ∥ur∥L∞((0,T ))

e

)
ds = tV

(
1−

1− ∥ur∥L∞((0,T ))

e

)
.(7.3.2)

As V is non-zero at 1− 1−∥ur∥L∞((0,T ))

e , we have the upper-bound

(7.3.3) T̃ = V

(
1−

1− ∥ur∥L∞((0,T ))

e

)−1

on the time when the initial datum has necessarily left the domain ΩT . This also explains the

assumption of T being sufficiently large, as we require T ≥ T̃ . As ξw∗(0, 0; ·) ∈ C([0, T ]), a time
T ∗ ∈ (0, T ] satisfying ξw∗(0, 0;T ∗) = 1 indeed exists. As t 7→ ξw∗(0, 0; t) is also strictly monotone,
such a T ∗ is unique.

□

Remark 7.3.1 (Improved upper-bounds on T ∗ for linear velocities). In particular, in the case
of the LWR–Greenshields velocity function, i.e. V (ξ) := 1− ξ, we obtain an improved estimate on
the bound in (7.3.3). We make the same ansatz as in (7.3.2) and compute

d

dt
ξw∗(0, 0; t)

= V
(
W[ρ, ur ](t, ξw∗(0, 0; t))

)
= 1−W[ρ, ur ](t, ξw∗(0, 0; t))

= 1− 1

α

∫ ∞

ξw∗ (0,0;t)
exp

(
ξw∗(0, 0; t)− y

α

)({
ρ(t, y) if y ≤ 1

ur(t) if y ≥ 1

)
dy
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taking advantage of the maximum principle (7.1.4) in Theorem 7.1.1

≥ 1− 1

α

∫ ∞

ξw∗ (0,0;t)
exp

(
ξw∗(0, 0; t)− y

α

)({
max{∥ρ0∥L∞((0,1)), ur(t)} if y ≤ 1

ur(t) if y ≥ 1

)
dy

= 1−
max{∥ρ0∥L∞((0,1)), ur(t)}

α

∫ 1

ξw∗ (0,0;t)
exp

(
ξw∗(0, 0; t)− y

α

)
dy

− ur(t)

α

∫ ∞

1
exp

(
ξw∗(0, 0; t)− y

α

)
dy

= 1 +max{∥ρ0∥L∞((0,1)), ur(t)}
(
exp

(
ξw∗(0, 0; t)− 1

α

)
− 1
)

− ur(t) exp

(
ξw∗(0, 0; t)− 1

α

)
= exp

(
ξw∗(0, 0; t)− 1

α

)(
max{∥ρ0∥L∞((0,1)), ur(t)} − ur(t)

)
+ 1−max{∥ρ0∥L∞((0,1)), ur(t)}

≥ exp

(
ξw∗(0, 0; t)− 1

α

)
max{∥ρ0∥L∞((0,1)) − ∥ur∥L∞((0,T )), 0}

+ 1−max{∥ρ0∥L∞((0,1)), ∥ur∥L∞((0,T ))}.

Recalling that ξ(0, 0; 0) = 0 and solving the previous differential inequality in the case of equality, we
obtain the following expression for the corresponding solution:

yα(t) = 1 + bt− α ln
(
a
(
1− e

bt
α

)
+ be

1
α

)
+ α ln(b),(7.3.4)

a := max{∥ρ0∥L∞((0,1)) − ∥ur∥L∞((0,T )), 0},
b := 1−max{∥ρ0∥L∞((0,1)), ∥ur∥L∞((0,T ))}.

Solving for T ∗ > 0 such that y(T ∗) = 1 gives an upper-bound on T ∗:

T ∗
improved(α) =

α

b
ln

(
a+ b exp

(
1
α

)
a+ b

)
.(7.3.5)

Let us compare the results in Lemma 7.3.1 with the improved estimate in this remark. If we let
V (ξ) := 1 − ξ, ξ ∈ [0, 1], ρ0 := 1

2 , and ur
:= 0, then, for the estimate in (7.3.1), we obtain an

upper-bound on T ∗ (which we call T ∗
1 ) given by

T ∗
1 =

1

1−
(
1− 1

e

) = e.

From (7.3.5), we obtain, for α > 0,

T ∗
improved(α) ≤ 2α ln

(
1

2

(
1 + e

1
α

))
,

which is illustrated in Figure 7.4 for α ∈ (0, 2). The improved estimate on T ∗, i.e. T ∗
improved(α) for

α > 0, is sharper. It also depends on the nonlocal parameter α > 0. As the right-hand side boundary
datum is minimal here, it is expected that the nonlocal impact W[ρ, ur ](t, ξ(0, 0; t)) becomes smaller
with larger α as the nonlocal right-hand side datum ur has an increasingly powerful influence on
the nonlocal impact. Thus, the velocity is higher and the upper-bound on the time when the initial
datum has left becomes smaller.

Remark 7.3.2 (Limit α → 0+). The upper-bound T ∗
improved(α) (see (7.3.5)) on T ∗, the time

when the initial datum has left the domain (defined in (7.3.1)), is a function of α > 0. For α→ 0+,
we formally obtain the local conservation law. Although the results from Chapters 3 and 4
cannot be easily extended to the IBVP, it is still interesting to calculate the limit for α→ 0+ of the
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0 0.5 1
0

1

2

e

x

t
y2
y1
y0.5
y0.1

(7.3.3)

0.5 1 1.5 2 2.5 3
0

1

2

e

α

T ∗
improved(α)

T ∗
1

Figure 7.4. Illustration of the different upper-bounds for the initial datum leaving
the domain as defined in (7.3.4). Here, we chose ur

:= 0 and ρ0 := 1
2 . Left: The

different upper-bounds for the zero characteristics t 7→ ξ(0, 0; t). The dashed red
line is the—rather coarse—estimate uniform in α given in Lemma 7.3.1. The solid
lines, which represent the improved upper-bounds on T ∗ for the LWR–Greenshields
velocity functions, exhibit higher accuracy. Right: The improved bounds on T ∗ for
different values of the parameter α. As α becomes larger, the upper-bound becomes
smaller. This is because we have initialized the right-hand side ur as zero—so, for
larger α, this zero becomes “more and more dominant”, leading to an increased
velocity approaching 1 in the limit. We also have limα→0+ T

∗(α) = 1.

upper-bound T ∗
improved(α). We obtain

lim
α→0+

T ∗
improved(α) = lim

α→0

α

b
ln

(
a+ b exp( 1α)

a+ b

)
=

1

b
,

(compare also Figure 7.4 for b = 1
2). This is then an upper-bound for the time the local conservation

law needs to transport the mass of the initial datum out of the domain.

Having shown that, for a reasonable right-hand side boundary value ur , the initial datum leaves
the domain in finite time, we can state our main result in this Section.

Theorem 7.3.1 (Equivalence controllability/time-inverted dynamics). Let us suppose that
Assumption 1 holds, ρ0 ∈ L∞((0, 1); [0, 1]), ur ∈ L∞(R>0; [0, c]), c ∈ [0, 1), ρdes ∈ L∞((0, 1); [0, 1)),
and ρr ∈ L∞((0,∞); [0, 1]). Let us define

T ∗ := T ∗
ρ0,ur

:= argmin
t>0

{
ξ[ρ0, ur

](0, 0; t) = 1
}
,(7.3.6)

Ξρ0,ur
:= {(t, x) ∈ ΩT∗ : ξ[ρ0, ur

](0, 0; t) < x < 1},(7.3.7)

v[ρ, ur ](t, x) :=


ρ(t, x) if (t, x) ∈ Ξρ0,ur

,

u
r
(t) if x > 1,

0 otherwise,

(t, x) ∈ Ξ ∪ [0, T ∗]× R>1,(7.3.8)

W̃[p, v](t, x) :=
1

α

∫ ∞

x

exp

(
x− y

α

)({
p(t, y) if (t, y) ∈ ΩT∗\Ξρ0,ur

v[ρ, ur ](t, y) otherwise

)
dy, (t, x) ∈ΩT∗ .(7.3.9)

Then, the following two results hold.
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(1) There exists u
ℓ
∈ L∞((0, T ∗); [0, 1]) such that ρ(T ∗, ·) = ρdes if and only if the backward

nonlocal conservation law

∂tp(t, x) = −∂x
(
V (W̃[p, v[ρ, ur ]](t, x)p(t, x)

)
, (t, x) ∈ ΩT ∗ \ Ξρ0,ur ,(7.3.10)

p(T ∗, x) = ρdes(x), x ∈ (0, 1),(7.3.11)

with v[ρ, ur ] as in (7.3.8) and W̃ as in (7.3.9), admits a solution satisfying
∥p∥L∞((0,T ∗);L∞((0,1))) ≤ 1.

(2) There exists T ∈ [T ∗,∞) and u
ℓ
∈ L∞((0, T ); [0, 1]) such that ρ(t, 1) ≡ ρr(t) for a.e.

t ∈ (T ∗, T ) if and only if the backward nonlocal conservation law

∂tp(t, x) = −∂x
(
V (W̃[p, v[ρ, ur ]](t, x)p(t, x)

)
(7.3.12)

p(t, 1) = ρr(t), t ∈ (T ∗, T ),(7.3.13)

p(T, x) = 0, x ∈ [0, 1],(7.3.14)

admits a solution, satisfying ∥p∥L∞((0,T );L∞((0,1))) ≤ 1.

Proof. First, we mention that T ∗ as in (7.3.6) exists and is unique owing to Lemma 7.3.1. We
prove only Claim (1) as the second result can be obtained analogously.

Let us assume that we can control the system to the desired end-state/boundary-state. Then,
we can time-invert the dynamics; the solution to the corresponding backward-in-time system exists
and satisfies (7.3.10)–(7.3.11).

Conversely, let us assume that the backward system admits a weak solution. Then, we can
evaluate the solution at x = 0 to obtain the proper boundary data, which indeed serves as a
control to steer the system toward the desired state. The regularity required for this to hold is
C
(
[0, 1];L1((0, T ))

)
. Although such regularity is not guaranteed in general (compare also [172,

Remark 5.6]), it does hold provided the corresponding velocity is bounded away from zero. This is
true in the underlying case, as also illustrated in Lemma 7.3.1, as long as ∥ur∥L∞((0,T )) < 1.

□

The red lines indicate the data to be fitted, the blue areas illustrate the prescribed initial datum
and the right-hand side nonlocal impact. The backward problem is—in both cases—considered on
the grey area/domain.

Remark 7.3.3 (Controlling to target state and out-flux simultaneously). It is straightforward
to generalize the previous result to the case where we seek a left-hand side boundary datum u

ℓ
and

nonlocal right-hand side datum ur such that, for a large time T > T ∗, the end-state satisfies

ρ(T, ·) = ρdes

and the boundary value at x = 1 is
ρ(·, 1) = ρr.

We do not go into details.

As the previous result is not explicit in the sense that we cannot “a priori” determine which
final states we can control the system to, we show in the following that a constant state can always
be reached in a sufficiently large time when also controlling ur .

Proposition 7.3.1 (Controllability to constant state). Let ρdes ≡ c ∈ [0, 1) and ρ0 ∈
L∞((0, 1); [0, 1]) be given. Then, there exists T > 0 and (u

ℓ
, ur) ∈ L∞((0, T ); [0, 1])2 such that

ρ(T, ·) ≡ ρdes, where ρ denotes the solution of the IBVP (7.0.1) with boundary datum u
ℓ
, right-hand

side datum ur , and initial datum ρ0.

Proof. We prove this result by introducing different steps in which we control the solution to
a specific target.

Step 1. Control to zero. First, from Lemma 7.3.1, there exists T ∗ > 0 such that, if u
ℓ
(t) =

ur(t) = 0 for all t ∈ [0, T ∗], then the initial datum leaves the domain:

ρ(T ∗, ·) ≡ 0,

i.e. the road is fully evacuated at t = T ∗.
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1ρ0(x)

T ∗

(0, 0)

ur(t)

u
ℓ
(t)

p(T ∗, x) = ρdes(x)

ρ

v[ρ, ur ]

(1, T ∗)

x

t

ρ0(x)

u
ℓ
(t)

t

1

T ∗

(0, 0)

T

ur(t)

p(T ∗, x) = 0

p(t, 1) = ρr(t)

ρ

v[ρ, ur ]

(1, T )

(1, T ∗)

x

Figure 7.5. Left: Illustration of the statement in Theorem 7.3.1, (Claim (1)).
Red shows the desired end-value we wish to control the system to and blue shows the
known quantities. The green color indicates the boundary controls that we use. The
backward-in-time equation is considered in the grey area. Right: Illustration of the
statement in Theorem 7.3.1 (Claim (2)). Red again indicates (here) the out-flux we
would like to achieve and in blue we have the quantities that are given (in particular,
the end-value can be chosen arbitrarily). Green indicates the quantity we can use
to control the system, i.e. left and right-hand side boundary data. The backward
system is considered on the grey area with explicit boundary conditions from (1, T ∗)
to (1, T ).

Step 2. Control to a small constant target and iteration. Second, we show that the zero initial
state can be controlled in finite time to the steady state ε > 0 (for ε sufficiently small) and iterate
this process until we have reached the target constant state. We take advantage of Theorem
7.3.1 and consider the following sequences of surrogate backward-in-time problems on (t, x) ∈
ΩT ∗

n
\ Ξε(n−1),ε(n−1):

(7.3.15)
∂tpn(t, x) = −∂x

(
V (W̃[pn, v[ε(n− 1), ε(n− 1)]](t, x)pn(t, x)

)
,

pn(T
∗
n , x) = nε,

where n ∈ N≥1 and T ∗
n :=

∑n
k=1 T

∗
(k−1)ε,(k−1)ε as in (7.3.6). As we will stop when we find n∗ ∈ N≥1

such that n∗ε = c (we can always choose ε so that this holds), we can immediately provide a uniform
upper-bound on T ∗

n by invoking Lemma 7.3.1:

T ∗
(n−1)ε,(n−1)ε ≤

1

V
(
1− 1−c

ε

) and T ∗
n ≤ n

V
(
1− 1−c

ε

) , n ∈ N≥1,(7.3.16)

thanks to the monotonicity of V . Now, we show that, for a sufficiently small ε, the system (7.3.15)
admits a solution on the entire time-horizon 1

V (1− 1−c
ε

)
. To this end, we examine how at a given space-

time point (t, x) ∈ (T ∗
n−1, T

∗
n) \ Ξε(n−1),ε(n−1) a maximum evolves backward in time. Assuming that

at such a (t, x) the solution is maximal, parametrized on the characteristics, i.e., pn(t, ξ(T
∗, x; t)) =

∥pn(t, ·)∥L∞(R) (and thus also ∂2pn(t, ξ(T
∗, x; t)) = 0), we estimate (recalling the definition of the

operator v in (7.3.8))

− d

dt
pn(t, ξ(T

∗
n , x; t))

= V ′(W̃[pn, v[ε(n− 1), ε(n− 1)]](t, ξ(T ∗
n , x; t))

× ∂2W̃[p, v[ε(n− 1), ε(n− 1)]](t, ξ(T ∗
n , x; t))
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= V ′(W̃[pn, v[ε(n− 1), ε(n− 1)]](t, ξ(T ∗
n , x; t))

× 1

α
(W̃[pn, v[ε(n− 1), ε(n− 1)]](t, ξ(T ∗

n , x; t))− pn(t, ξ(T
∗
n , x; t)))

≤ 1

α
∥V ′∥L∞((0,1))pn(t, ξ(T

∗
n , x; t))

2.

Integrating the previous differential inequality backward in time from T ∗
n to t yields the upper-bound

∥pn(t, ·)∥L∞((0,1)) ≤
1

n
ε −

1
α∥V ′∥L∞((0,1))(T ∗

n − t)

!
≤ 1.

For admissibility, we need to ensure that ∥pn(t, ·)∥L∞((0,1)) ≤ 1, which is satisfied if

t ≥ T ∗
n − α

1− nε

ε∥V ′∥L∞((0,1))
≥ T ∗

n − α
1− κ

ε∥V ′∥L∞((0,1))
.

For ε > 0 sufficiently small, we obtain the well-posedness of the backward system (7.3.15) on every
time-horizon and thus, particularly, on the time-horizon required for the initial datum to leave, i.e.
(7.3.16). As the estimates are uniform in n ∈ N≥1, we can then pick as many sequences as needed to
iteratively control the zero initial datum to ε, 2ε,. . . until we have reached the constant state c. □

Remark 7.3.4 (Extensions of Proposition 7.3.1). Proposition 7.3.1 can be generalized. For
instance, the solution can also be steered to a monotonically increasing ρdes by first controlling it to
the sufficiently large constant state R ∋ c ≥ ∥ρdes∥L∞((0,1)) and then showing that the backward-in-
time system does not blow up (due to the assumed monotonicity). Another extension might consist
of slightly perturbing the constant ρdes with respect to the L∞-norm and still achieving controllability
(compare also Remark 7.2.1). We do not go into details.

Example 7.3.1 (Controllability and lack of controllability in minimal time). We present some
examples related to the state controllability result in Theorem 7.3.1. In Figure 7.6, we consider
three cases: ρdes(x) :=

1
2(1− x), ρdes(x) :=

1
2x, and ρdes :=

1
2 , with initial and right boundary data

given by ρ0(x) :=
1
2(1 + x) and ur

:= 1
2 . Figure 7.7 also shows the left-hand side boundary datum

u
ℓ
to achieve the desired final state ρdes in minimal time. In the three pictures on the left-hand

side in Figure 7.6, the initial datum leaves faster. This is due to the fact that α is larger, meaning
that the nonlocal right-hand side boundary datum ur = 1

2 has a higher impact on the velocity of the

entire road. Another noteworthy point is that, for smaller α and end-datum ρdes(x) =
1
2x (see the

fifth pictures in Figure 7.6 or the maximum of the yellow dotted curve in Figure 7.7), the solution
actually becomes larger than the desired state and then decreases. This indicates that, in general,
not every end-state can be tracked, as the corresponding control could exceed 1 and therefore would
not be admissible.

Finally, all the images indicate that the solution below the characteristics emanating from (0, 0),
i.e. the solution which only depends on the initial datum and the right-hand side nonlocal impact ur ,
stays the same regardless of the boundary datum. Thus, the time when the initial datum has left is
the same.

7.4. Long-time behavior

In this Section, we are concerned with the long-time behavior of the solution to the IBVP (7.0.1)
when prescribing constant boundary data (u

ℓ
, ur) ∈ [0, 1)2. Under the assumption that the initial

datum is uniformly less than or equal to, or greater than or equal to, u
ℓ
= ur , we can show that the

solution converges to a given constant.

Theorem 7.4.1 (Long-time behavior). Let us suppose that κ ∈ (0, 1) is given, Assumption 1
holds, α > 0, ur ≡ κ, u

ℓ
≡ κ, and V ′(ξ) < 0 for ξ ∈ [0, 1). In addition, let us assume that

(7.4.1)
(
ρ0 ≥ κ on (0, 1)

)
or

(
ρ0 ≤ κ on (0, 1)

)
.

Then, the corresponding solution ρ converges exponentially in time to κ:

∥ρ(t, ·)− κ∥L1((0,1)) ≤ α

(
exp

(∥ρ0 − κ∥L1((0,1))

α

)
− 1

)
exp

(
K(α)

α
t

)
, t ≥ 0,



84 7. BOUNDARY CONTROLLABILITY AND STABILIZATION

Figure 7.6. The three images on the left correspond to α = 1, the three on the
right to α = 0.1. In the leftmost images of both triples, ρdes(x) :=

1
2(1− x); in the

middle, ρdes(x) :=
1
2x; and, in the right images, ρdes(x) :=

1
2 . In all images, the initial

datum is given by ρ0(x) := 1
2(1 + x) and the right-hand side boundary datum by

ur(t) :=
1
2 . Color bar: 0 1

Figure 7.7. Corresponding to Figure 7.6 in Example 7.3.1, we illustrate the left-
hand side boundary datum u

ℓ
to achieve the desired final state ρdes in minimal time.

Solid lines represent the boundary datum for α = 1, dashed lines for α = 0.1. The
colors represent the related desired state ρdes that we wish to achieve: for x ∈ [0, 1],
we have in red ρdes(x) :=

1
2x, in blue ρdes(x) :=

1
2(1− x), and in yellow ρdes(x) :=

1
2 .

where

κ̄ := (1− κ)
(
1− exp

(
−α−1

))
,

K(α) := (1− κ)κ sup
ξ∈⟨κ,κ̄⟩

V ′(ξ) exp
(
−α−1

)
< 0,

⟨a, b⟩ :=
(
min{a, b},max{a, b}

)
, (a, b) ∈ R2.

Proof. Let us define the difference between ρ(t, ·) and κ in the integral sense for t ∈ [0, T ]:

M(t) :=

∫ 1

0
(ρ(t, x)− κ) dx.

As we want to compute the time-derivative of M(t), we first need to show that t 7→ M(t) is
differentiable. This can be achieved by taking advantage of the solution formula in terms of the
characteristics in (7.1.2). Assuming that T ∗ > 0 and ξ(0, 0;T ∗) = 1, we can write, for t ∈ [0, T ∗],

M(t) =

∫ ξ(0,0;t)

0
u(ξw∗ [t, x]−1

max(0)) ∂2ξw∗(t, x; ξw∗ [t, x]−1
max(0)) dx
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+

∫ 1

ξ(0,0;t)
ρ0(ξ(t, x; 0))∂2ξ(t, x; 0) dx− κ

=

∫ t

0
u(z)V (W[ρ](z, 0)) dz +

∫ ξ(t,1;0)

0
ρ0(z) dz − κ,

which is differentiable with respect to t sufficiently small. Taking the time derivative, we obtain

M ′(t) = u(t)V (W[ρ](t, 0)) + ρ0(ξ(t, 1; 0))∂1ξ(t, 1; 0)

= κV (W[ρ](t, 0))− ρ(t, 1)V (W[ρ](t, 1)),(7.4.2)

which actually holds for every time t > 0.
Let us assume for now that ρ0 ≥ κ. Then, owing to the maximum principle (7.1.4),

(7.4.3) ρ(t, x) ≥ κ, (t, x) ∈ [0, T ]× (0, 1),

which yields

(7.4.4) 1 ≥M(t) ≥ 0, t ∈ [0, T ].

The upper-bound 1 is a consequence of the maximum principle and the assumption κ ∈ [0, 1]. Then,
we estimate the nonlocal impact as follows:

W[ρ](t, 0) :=
1

α

∫ ∞

0
exp

(
− s

α

)({ρ(t, s) s < 1

κ s ≥ 1

)
ds,

(7.4.3)

≥ κ

α

∫ 1−M(t)

0
exp

(
− s

α

)
ds+

1

α

∫ 1

1−M(t)
exp

(
− s

α

)
ds+

κ

α

∫ ∞

1
exp

(
− s

α

)
ds

=
κ

α

∫ ∞

0
exp

(
− s

α

)
ds+

1− κ

α

∫ 1

1−M(t)
exp

(
− s

α

)
ds

= κ+ (1− κ)

(
exp

(
−1−M(t)

α

)
− exp

(
− 1

α

))
= κ+ exp

(
− 1

α

)
(1− κ)

(
exp

(
M(t)

α

)
− 1

)
,

from which we can continue the estimate on M(t) in (7.4.2). Recalling that ρ(t, 1) ≥ κ for all
t ∈ [0, T ] and that V ′ ≤ 0, we get

M ′(t) ≤ V
(
κ+ exp

(
− 1

α

)
(1− κ)

(
exp

(
M(t)

α

)
− 1
))
κ− V (κ)ρ(t, 1)︸ ︷︷ ︸

≥V (κ)κ

.

Using the mean-value theorem and defining κ̄ := (1− κ)(1− exp(−α−1)) < 1, we deduce

M ′(t) ≤ sup
ξ∈(κ,κ̄)

V ′(ξ)
(
exp

(
− 1

α

)
(1− κ)

(
exp

(
M(t)

α

)
− 1
))
κ

≤ (1− κ)κ sup
ξ∈(κ,κ̄)

V ′(ξ) exp

(
− 1

α

)(
exp

(
M(t)

α

)
− 1
)
.

We solve the previous differential inequality for equality, call the solution M=(t), and obtain

M=(t) = −α ln

((
exp

(
−M(0)

α

)
− 1

)
exp

(
K(α)t

α

)
+ 1

)
,

K(α) := (1− κ)κ sup
ξ∈(κ,κ̄)

V ′(ξ) exp

(
− 1

α

)
< 0.

(7.4.5)

From this, we conclude

(7.4.6) 0 ≤M(t) ≤M=(t), t > 0.
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Using the fact that ln(ξ) ≤ ξ − 1 for ξ > 0, we compute

M=(t) = α ln

((
1−

(
1− exp

(
−M(0)

α

))
exp

(
K(α)t

α

))−1
)

≤ α

(
1− exp

(
−M(0)

α

))
exp

(
K(α)t
α

)
1−

(
1− exp

(
−M(0)

α

))
exp

(
K(α)t
α

) ≤ α

(
exp

(
M(0)

α

)
− 1

)
exp

(
K(α)

α
t

)
.

For initial datum ρ0(x) ≤ κ for a.e. x ∈ (0, 1), the results follow by performing similar estimates
with the opposite sign.

□

Remark 7.4.1 (Theorem 7.4.1 for κ = 0 and κ = 1). The previous result does not provide
exponential stability for κ ∈ {0, 1} as then K(α) = 0 for α > 0.

However, for κ = 0, the boundary contribution to the solution is zero and, by Lemma 7.3.1,
we know that the initial data leaves the domain in finite time T ∗ > 0. Afterwards, the solution
remains identically zero so we have the stability to the zero solution in finite time and, in particular,
exponentially.

For κ = 1, the situation is slightly more delicate. We look at time-evolution of the L1-norm of
the solution:

d

dt
∥ρ(t, ·)∥L1((0,1)) = −

∫ 1

0
∂x
(
ρ(t, y)V (W[ρ, ur ](t, y))

)
dy

= ρ(t, 0)V (W[ρ, ur ](t, 0))− ρ(t, 1)V (W[ρ, ur ](t, 1))

= V (W[ρ, ur ](t, 0))

≥ V

(
1

α

∫ ∥ρ(t,·)∥L1((0,1))

0
1 · exp

(
−y
α

)
dy + exp

(
− 1

α

))

= V

(
1− exp

(−∥ρ(t, ·)∥L1((0,1))

α

)
+ exp

(
− 1

α

))
(7.4.7)

using the mean-value theorem, there exists ζ ∈ (0, 1) such that

= V (1)− V ′(ζ)

(
exp

(−∥ρ(t, ·)∥L1((0,1))

α

)
− exp

(
− 1

α

))
≥ − sup

ξ∈(0,1)
V ′(ξ)

(
exp

(−∥ρ(t, ·)∥L1((0,1))

α

)
− exp

(
− 1

α

))
and, consequently,

∥ρ(t, ·)∥L1((0,1)) ≥ 1 + α log

((
exp

(∥ρ0∥L1((0,1)) − 1

α

)
− 1

)
exp

(
t sup
ξ∈(0,1)

V ′(ξ)
exp

(
− 1
α

)
α

)
+ 1

)
.

As ln(ξ + 1) ≥ ξ(ξ + 1)−1 for ξ > −1, we can continue our estimate as

≥ 1 + α

(
exp

(
∥ρ0∥L1((0,1))−1

α

)
− 1

)
exp

(
t sup
ξ∈(0,1)

V ′(ξ)
exp(− 1

α)
α

)
(
exp

(
∥ρ0∥L1((0,1))−1

α

)
− 1

)
exp

(
t sup
ξ∈(0,1)

V ′(ξ)
exp(− 1

α)
α

)
+ 1

≥ 1 +
α

2

(
exp

(∥ρ0∥L1((0,1)) − 1

α

)
− 1

)
exp

(
t sup
ξ∈(0,1)

V ′(ξ)
exp

(
− 1
α

)
α

)
.

This is the exponential convergence to the steady-state solution in the case that κ = 1, i.e., in the
case the road is blocked on the right-hand side and u

ℓ
≡ 1. For the statement to hold, we require

sup
ξ∈(0,1)

V ′(ξ) < 0.
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In case this assumption does not hold and only Assumption 1 applies, we can still show that
the solution converges to the 1 solution for t → ∞, but without any order of convergence. The
convergence is then due to the fact that the mapping t 7→ ∥ρ(t, ·)∥L1((0,1)) is monotonically increasing
in t and bounded from above by 1. Then, we know that a limit point for this sequence exists, i.e.,
there exists A ∈ (0, 1] such that limt→+∞ ∥ρ(t, ·)∥L1((0,1)) = A. Thanks to (7.4.7), the time derivative
of ∥ρ(t, ·)∥L1((0,1)) is non-negative and only zero for ∥ρ(t, ·)∥L1((0,1)) = 1 which implies A = 1.

Example 7.4.1 (Long-time behavior and comparison to steady-state solutions). In Figure 7.8,
we present some numerical simulations related to Theorem 7.4.1. We assume that

V (ξ) := 1− ξ, ur
:=

1

2
, u

ℓ
∈
{
1

4
,
1

2
,
3

4

}
, α ∈ {0.1, 1} , ρ0 :=

1

2
1( 1

3
, 2
3
).

One remarkable feature which can be seen in all images is the fact that, after the initial datum has
left, the solution no longer changes substantially and appears to become stationary. Although we are
not able to show this in the general case, it appears that all solutions converge to the corresponding
steady state, anticipating the existence and uniqueness of steady-state solutions in Theorem 7.5.1.
Indeed, this is also illustrated in Figure 7.9: in the image on the left-hand side, the solutions are
plotted at t ∈ {2, 4, 8}; in the image on the right-hand side, we see the steady-state solution in
comparison to the corresponding solution at time t = 8.

It is worth mentioning the impact of the size of the nonlocal parameter α > 0. As the L1-mass
of the initial datum is smaller than ur = 1

2 , in the present case, the initial datum leaves more quickly
when α is larger.

Figure 7.8. The images are ordered from left to right. First: u
ℓ
≡ 1

4 , ur ≡ 1
2 ,

α = 1. Second: u
ℓ
≡ 1

4 , ur ≡ 1
2 , α = 0.1. Third: u

ℓ
≡ 1

2 , ur ≡ 1
2 , α = 1. Fourth:

u
ℓ
≡ 1

2 , ur ≡ 1
2 , α = 0.1. Fifth: u

ℓ
≡ 3

4 , ur ≡ 1
2 , α = 1. Sixth: u

ℓ
≡ 3

4 ,

ur ≡ 1
2 , α = 0.1. The initial datum is ρ0 := 1

21( 1
3
, 2
3)

in every case. Color bar:

0 1

7.5. Steady states

In the following theorem, we prove the existence and uniqueness of steady-state solutions on
a bounded domain when prescribing a constant left-hand side boundary datum and a constant
nonlocal right-hand side boundary datum.

Theorem 7.5.1 (Steady-state solutions on bounded domains). For every u
ℓ

≡
const ∈ [0, 1], ur ≡ const ∈ [0, 1), there exists a unique and monotone ρ̄ ∈
W 1,∞((0, 1); [min{u

ℓ
, ur},max{u

ℓ
, ur}]) satisfying

d

dx

(
ρ̄(x)V (W[ρ̄, ur ](x))

)
= 0, x ∈ [0, 1],(7.5.1)

W[ρ̄, ur ](x) =
1

α

∫ ∞

x
exp

(
x− y

α

)({
ρ̄(y) if y < 1

ur if y ≥ 1

)
dy, x ∈ [0, 1],(7.5.2)
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Figure 7.9. Left: Illustrations of the evolution of solutions at different time
snippets t ∈ {2, 4, 8} (dotted t = 2, dash-dotted t = 4, and dashed t = 8). The
different colors represent the six different cases in Figure 7.8 for different u

ℓ
and α (as

described in the legend) and ur ≡ 0.5. Right: Comparison of the different solutions
at t = 8 and the corresponding steady-state solutions as in Theorem 7.5.1.

ρ̄(0) = u
ℓ
.(7.5.3)

In addition, if V ∈ C∞([0, 1]), then ρ̄ ∈ C∞([0, 1]). The function ρ̄ is called the steady state
corresponding to the boundary data u

ℓ
and ur .

For u
ℓ
≡ ur a solution is given by ρ̄ ≡ ur , which can be checked by substituting it into (7.5.1)–

(7.5.3). However, we need to prove that this is the only solution and that one and only one solution
exists in the case ur ̸= u

ℓ
.

Proof. Step 1. Existence. As a first step, we show the existence of solutions using a Schauder-
type fixed-point argument. A solution of (7.5.1)–(7.5.3) can be interpreted as a fixed-point of the
mapping

F :

{
Ω → Ω,

ρ̄ 7→
(
x 7→ u

ℓ

V (W[ρ̄,ur ](0))
V (W[ρ̄,ur ](x))

)
,

(7.5.4)

with a suitable Ω ⊂ C([0, 1]) yet to be defined. We distinguish two different cases: u
ℓ
≥ u

ℓ
and

u
ℓ
≤ ur .
If u

ℓ
≥ ur , we define

Ω :=
{
ρ̄ ∈W 1,∞((0, 1)) :

(
ur ≤ ρ̄(x) ≤ u

ℓ

)
∧
(
A ≤ ρ̄′(x) ≤ 0

)
∀x ∈ [0, 1]

}
,

A := −u
ℓ

V (ur)∥V ′∥L∞(ur ,uℓ )
(u

ℓ
− ur)

αV (u
ℓ
)2

,
(7.5.5)

and show that F is a self-mapping on Ω, i.e. F [Ω] ⊆ Ω. To this end, we take ρ̄ ∈ Ω and compute,
for x ∈ [0, 1],

d

dx
F [ρ̄](x) = −u

ℓ

V (W[ρ̄, ur ](0))

V (W[ρ̄, ur ](x))
2
V ′(W[ρ̄, ur ](x))∂xW[ρ̄, ur ](x).(7.5.6)

Since V ′ ≤ 0, we need to show that ∂xW[ρ̄, ur ] ≤ 0, which we do with the following manipulations,
for x ∈ [0, 1],

∂xW[ρ̄, ur ](x) = ∂x

( 1
α

∫ 1

x
exp

(
x− y

α

)
ρ̄(y) dy

)
+ ∂x

( 1
α
ur

∫ ∞

1
exp

(
x− y

α

)
dy
)

(7.5.7)

= − 1

α
ρ̄(x) +

1

α2

∫ 1

x
exp

(
x− y

α

)
ρ̄(y) dy +

1

α2
ur

∫ ∞

1
exp

(
x− y

α

)
dy(7.5.8)
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=
1

α

(
W[ρ̄, ur ](x)− ρ̄(x)

)
.(7.5.9)

As ρ̄ is monotonically decreasing and ρ̄ ≥ ur , we obtain that W[ρ̄, ur ] ≤ ρ̄ and, consequently,

(7.5.10) ∂xW[ρ̄, ur ] ≤ 0;

thus ∂xF [ρ̄] ≤ 0. From the monotonicity, it also follows that F [ρ̄] ≤ u
ℓ
as, by the very definition in

(7.5.6), it holds that F [ρ̄](0) = u
ℓ
.

Next, we show that F [ρ̄] ≥ ur . To this end, let us assume, for the sake of finding a contradiction,
that there exists x∗ ∈ (0, 1) such that F [ρ̄](x∗) < ur . As F [ρ̄] is monotonically decreasing, we know
that F [ρ̄](x) < ur for all x ∈ (x∗, 1]. For x = 1, it holdsW[F [ρ̄], ur ](1) = ur , butW[F [ρ̄], ur ](x) < ur

for all x ∈ [x∗, 1); this is a contradiction to the monotonicity of W[ρ̄, ur ] as stated in (7.5.10). Thus,
we conclude that

F [ρ̄](x) ≥ ur , x ∈ [0, 1].

Next, we prove the lower-bound on d
dxF [ρ̄]. Recalling (7.5.6), we estimate

d

dx
F [ρ̄](x) ≥ −u

ℓ

V (W[ur , ur ](0))∥V ′∥L∞(ur ,uℓ )
(u

ℓ
−W[ur , ur ](0))

αV (W[u
ℓ
, ur ](0))

2

= −u
ℓ

V (ur)∥V ′∥L∞(ur ,uℓ )
(u

ℓ
− ur)

αV (u
ℓ
)2

= A.

Thus, we have shown that F [Ω] ⊂ Ω. To prove the existence of solutions, we apply Schauder’s
fixed-point theorem (see [232, Corollary 2.13]), which requires the following assumptions to be
satisfied.

1. F : Ω → Ω is continuous in a suitable topology. By choosing C([0, 1]) with the natural
maximum norm, F is indeed continuous.

2. The set Ω is closed in C([0, 1]) and it is convex. We have closedness as we have uniform
constraints on ρ̄ in the definition of Ω; the convexity is evident.

3. Ω is compact in C([0, 1]). We have this as the derivatives of functions in Ω have 0 as upper-
bound and A as lower-bound, which is uniform. Therefore, the functions in Ω are uniformly
Lipschitz continuous with Lipschitz constant A. Thus, they are also equi-continuous and
we can apply Ascoli–Arzelà’s theorem [48, Theorem 4.25], which guarantees the claimed

compactness, i.e. Ω
c
↪→ C([0, 1]).

Using Schauder’s fixed-point theorem, we conclude that there exists a solution of (7.5.4) lying in Ω
as defined in (7.5.5).

If ur ≤ u
ℓ
, the proof of existence is almost identical to the case ur ≥ u

ℓ
when exchanging the

monotonicity in Ω from decreasing to increasing. We do not go into details.
Step 2. Uniqueness. For the uniqueness, we reformulate the steady-state equation in (7.5.1) as

a system of ODEs: introducing g = W[ρ̄, ur ], we write

(7.5.11)
ρ̄′(x) = − 1

α

ρ̄(x)V ′(g(x))(g(x)− ρ̄(x))

V (g(x))
, ρ̄(0) = u

ℓ
, x ∈ (0, 1),

g′(x) =
1

α
(g(x)− ρ̄(x)), g(1) = ur , x ∈ (0, 1).

Let us consider now instead the following end-value problem for s ∈ [0, 1]

ρ′(x) = − 1

α

ρ(x)V ′(g(x))(g(x)− ρ(x))

V (g(x))
, x ∈ (0, 1),(7.5.12)

g′(x) =
1

α
(g(x)− ρ(x)), x ∈ (0, 1),(7.5.13)

ρ(1) = s,(7.5.14)

g(1) = ur .(7.5.15)

From the Lipschitz continuity of the right-hand side, we deduce that this end value problem has a
unique solution of corresponding regularity.
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Let us assume that ur < 1 and consider the following end-value problem in ρ̄:

ρ̄s(x) =
sV (ur)

V (W [ρ̄s, ur ](x))
, x ∈ [0, 1].(7.5.16)

We claim that the left-hand side boundary datum (which we want to prescribe) is strictly monotone
with respect to s ∈ [0, 1]. The differentiability of ρ̄s with respect to s follows by the implicit function
theorem (see [232, Theorem 4.B]); to obtain an expression for the derivative, we differentiate the
fixed-point problem in (7.5.16) with respect to s ∈ [0, 1] and deduce, for x ∈ [0, 1],

∂sρ̄s(x) =
V (ur)

V (W [ρ̄s, ur ](x))
− sV (ur)

V (W [ρ̄s, ur ](x))
2
∂sV (W [ρ̄s, ur ](x))

=
V (ur)

V (W [ρ̄s, ur ](x))
− sV (ur)

V (W [ρ̄s, ur ](x))
2
V ′(W [ρ̄s, ur ](x))W [∂sρ̄s, 0](x).

This is a Volterra integral equation of the second kind in ∂sρ̄s (where ρ̄s is given) and admits a
unique solution by classical fixed-point methods. Moreover, owing to the specific structure of the
right-hand side, we have ∂sρ̄s > 0 on [0, 1]; thus, we can conclude that left-hand side boundary
datum (which we would like to prescribe in our original problem (7.5.11)) is strictly monotone with
respect to s. As we have shown previously (by the Schauder-type argument) that we can achieve
all left-hand side boundary data, we have the existence and uniqueness of steady-state solutions for
ur < 1.

A similar proof can be made for u
ℓ
≥ ur by changing the IBVP to the corresponding end-

value problem and again using the existence of solutions as obtained by the previous Schauder-type
argument.

Step 3. Regularity. To establish the higher regularity of solutions, we recall the fixed-point
problem in (7.5.4) which has a unique solution by the argument above. Differentiating gives

(7.5.17) ρ̄′(x) = −u
ℓ

V (W[ρ̄, ur ](0))

V (W[ρ̄, ur ](x))
2
V ′(W[ρ̄, ur ](x))∂xW[ρ̄, ur ](x), x ∈ [0, 1].

We know that ρ̄ ∈W 1,∞((0, 1)); moreover, as ∂xW[ρ̄, ur ] is Lipschitz continuous by (7.5.7)–(7.5.9),
the entire right-hand side of (7.5.17) is Lipschitz continuous and thus also ρ̄′ is. This argument can
be iterated to deduce the claimed regularity. □

Remark 7.5.1 (The case ur ≡ 1 in Theorem 7.5.1). In Theorem 7.5.1, we assumed ur ̸= 1 to
avoid the need to write the boundary condition on the left-hand side in terms of flux and instead of
density (see (7.0.3) and the original description of the boundary values in (7.0.1)). For ur ≡ 1, the
boundary condition for the steady-state solution in (7.5.3) needs to be formulated in terms of flux,
i.e.

V (W[ρ̄, 1](0))ρ̄(0) = V (W[ρ̄, 1](0))u
ℓ

(7.5.18)

(and V (W[ρ̄, 1](0)) might be zero). In this case, we compute

ρ̄(x)V (W[ρ̄, 1](x)) = ρ̄(1)V (W[ρ̄, 1](1)) = ρ̄(1)V (1) = 0, x ∈ [0, 1].

For this equation to hold, the following needs to be satisfied:

ρ̄(x) = 0 or W[ρ̄, 1](x) = 1, x ∈ [0, 1].

As this also has to hold at x = 0, we deduce

ρ̄(0) = 0 or W[ρ̄, 1](0) = 0.

This can only hold if u
ℓ
≡ 0 (first case) or ρ̄ ≡ 1 for all u

ℓ
∈ (0, 1] (second case, the left-hand

side boundary datum is not necessarily attained, but the flux condition (7.5.18) holds). However, in
the first case, u

ℓ
≡ 0, the solution ρ̄ is not uniquely determined on (0, 1) and all solutions can be

parametrized, for a ∈ [0, 1], by

ρ̄ = 1[a,1], u
ℓ
≡ 0, ur ≡ 1.

In the description of traffic flow, this can be interpreted as a red light at the end of the road and no
entering cars. A traffic jam of any length at the traffic light is then a stationary solution.
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Conservation laws on networks





CHAPTER 8

Controllability of advection-diffusion equations on networks and
singular limits

In this Chapter, we prove the following results.

1. By leveraging the method of characteristics, we control the hyperbolic problem (1.2.2) to
zero (for sufficiently long times) by acting on the “input” boundary vertices and discuss
the optimal time for which (1.2.2) is null-controllable.

2. We estimate the cost of controllability for the parabolic problem (1.2.1), which depends
on the time-horizon: for small times, we prove the (exponential) blow-up of the cost of
controllability; for sufficiently long time horizon, we prove its decay.

In Section 8.1, we introduce some preliminary information on the function spaces used throughout
the Chapter and present the known results on the well-posedness of problems (1.2.2) and (1.2.1)
and on the convergence of (1.2.1) to (1.2.2).

In Section 8.2, we state our main theorems and present some pathological cases to illustrate the
sharpness of our results.

In Section 8.3, we prove the controllability result for the transport equation on a tree-shaped
network by relying on the classical method of characteristics: thanks to the flux conservation
condition in (1.2.2), we are able to argue analogously to the case of a bounded interval, where it
suffices to take zero boundary data as control.

Sections 8.4 and 8.5 are dedicated to the singular limit problem. In the first one, we prove the
blow-up of the cost of controllability for the parabolic problem (1.2.1) and, in the second one, we
prove the decay (for sufficently long time-horizon).

8.1. Preliminaries

8.1.1. Function spaces on a network and parametrization of the edges. As in [125],
we use the following notation for the space of square-integrable functions:

L2(E) := L2(e1)× · · · × L2(em) = {w : we ∈ L2(e), e ∈ E},

m = |E|, with the norm and scalar product

∥w∥2L2(E) :=
∑
e∈E

∥we∥2L2(e) and (w1, w2)L2(E) :=
∑
e∈E

(we1, w
e
2)L2(e).

Sometimes, we write also
∫
E w1w2 dx :=

∑
e∈E
∫
ew

e
1w

e
2 dx. We also use the (piecewise) Sobolev space

Hs
pw(E) := {w ∈ L2(E) : we ∈ Hs(e), e ∈ E},

with

∥w∥2Hs
pw(E) :=

∑
e∈E

∥we∥2Hs(e) and (w1, w2)Hs
pw(E) :=

∑
e∈E

(we1, w
e
2)Hs(e).

Similarly, we define the spaces of (piecewise) k-times differentiable functions Ckpw(E) and the Sobolev

spaecs W 1,p
pw (E). For s > 1

2 , the functions in Hs
pw(E) are continuous on e ∈ E , but may be discontin-

uous across the junction; we then denote by Hs(E) the subspace of functions belonging to Hs
pw(E)

which are also continuous across the junction. Every w ∈ H1(E) has a unique value w(v) at every
vertex v ∈ V and we use ℓ2(V) to denote the set of possible vertex values. That is, for a function

93
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w : V → R, we define the space ℓ2(V) endowed with the norm and scalar product

∥w∥ℓ2(V) :=
√∑
v∈V

|w(v)|2 and (w1, w2)ℓ2(V) :=
∑
v∈V

w1(v)w2(v).

Also, we define the distance between vertices and layers of a tree-shaped network as follows.

Definition 8.1.1 (Distance and layers on a graph). We define the distance dist(v1, v2) between
two vertices v1 and v2 in the graph G = (V, E) as the minimum number of edges contained in a path
joining them (if any exists—otherwise, dist(v1, v2) = ∞). In addition, if G is a tree-shaped network,
we fix a root vertex v ∈ V∂ and call i-th layer of the tree-shaped network (with respect to v) the
subset vertices at a distance i from v.

For future use, let us note that, given a piecewise-continuous function on a tree-shaped network,
we may make it continuous by adding a piecewise-constant function to it.

Lemma 8.1.1 (Continuity of functions in trees). Let G = (V, E) be a tree-shaped network and g
a piecewise-continuous function. Then, for every e ∈ E, there exists ce ∈ R such that the function g̃,
defined on each edge by g̃e := ge + ce, is continuous on E.

Proof. We argue by induction on the number of vertices. The base case, a tree-shaped network
with two vertices (i.e., one edge), is trivial. Let us then assume that the property is true for a tree-
shaped network with N vertices and prove that it holds for a tree-shaped network with N+1 vertices.
We have that there exists at least one vertex u with degree 1 and with an edge ẽ incident to some
vertex v ∈ V \ {u}. Then the graph (V \ {u}, E \ {ẽ}) satisfies the inductive hypothesis; thus, we can
define the constants ce for all e ∈ E \ {ẽ}. It just remains to find a suitable constant in ẽ; to this
end, it suffices to consider

cẽ = −ge(v) + g̃|(V\{u}, E\{ẽ})(v).

□

8.1.2. Well-posedness of the parabolic and hyperbolic problems. We start by recalling
a well-posedness result for the parabolic problem (1.2.1) (see [125, Theorem 3]), which follows from
Lumer-Phillips’ theorem (see [210, Chapter 1.4]).

Theorem 8.1.1 (Well-posedness for the parabolic problem). For any y0 ∈ H1(E)∩H2
pw(E) and

uε ∈ C2([0, T ]; ℓ2(V∂)), the parabolic problem (1.2.1) has a unique classical solution

yε ∈ C1([0, T ];L2(E)) ∩ C0([0, T ];H1(E) ∩H2
pw(E)).

Similarly, in [125, Theorem 6], a well-posedness result for the transport problem was obtained.

Theorem 8.1.2 (Well-posedness for the hyperbolic problem). For any y0 ∈ H1
pw(E) and uε ∈

C2([0, T ]; ℓ2(V in
∂ )), the hyperbolic problem (1.2.2) has a unique classical solution

y ∈ C1([0, T ];L2(E)) ∩ C0([0, T ];H1
pw(E)).

As the viscosity parameter tends to zero, the solution of (1.2.1) converges to the one of (1.2.2)
(see [125, Theorem 10]).

Theorem 8.1.3 (Error estimate for the vanishing viscosity approximation). For any y0 ∈
H1(E) ∩H2

pw(E) and u ∈ C2([0, T ]; ℓ2(V∂)), let

yε ∈ C1([0, T ];L2(E)) ∩ C0([0, T ];H1(E) ∩H2
pw(E))

be the solution of the parabolic problem (1.2.1) with uε = u and

y ∈ C1([0, T ];L2(E)) ∩ C0([0, T ];H1
pw(E))

be the solution of the hyperbolic problem (1.2.2) with boundary data u|V in
∂
. Let us suppose that (1.2.3)

holds. Then

∥yε − y∥L∞((0,T );L2(E)) ≤ C
√
ε,(8.1.1)

where the constant C depends on the time-horizon T but is independent of the diffusion parameter
ε ∈ (0, 1].
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Remark 8.1.1 (L2 data). If we only assume y0 ∈ L2(E) and uε ∈ L2((0, T ); ℓ2(V)), we can
still define the solution of (1.2.1) by transposition (as in [104, Section 2.5]), show that it belongs to
C0([0, T ];L2(E)), and prove a vanishing viscosity convergence result.

8.2. Main results

8.2.1. Control of the hyperbolic problem. Our first result concerns the null-controllability
of the system (1.2.2) on a tree-shaped network: in particular, we are interested in controlling the
flow across the network using controls placed at the inflow vertices V in

∂ .
To this end, we define an upper-bound and a lower-bound on the time in which information

propagates across the network (i.e., the maximal and minimal travel time of the characteristics
across the network).

Definition 8.2.1 (Propagation time on a network). Let G = (V, E) be a tree-shaped network.

We define recursively the functions T̂ , T̃ : V → R+ as follows:

T̂ (v) := 0, T̃ (v) := 0 if v ∈ V in
∂ ,

T̂ (v) := max
e=(ve,v)∈E in(v)

(
T̂ (ve) +

aeℓe

be

)
if v ∈ V0 ∪ Vout

∂ ,

T̃ (v) := min
e=(ve,v)∈E in(v)

(
T̃ (ve) +

aeℓe

be

)
if v ∈ V0 ∪ Vout

∂ .

The times T̂ (v) and T̃ (v) are respectively the maximal and minimal propagation time required for
information to reach v ∈ V from a node in V in

∂ .

Since the graph G has no loops (being a tree), we can prove inductively that T̂ and T̃ are
well-defined.

Example 8.2.1 (Propagation times). Let us consider the graph in Figure 8.1 with vertices
V = {v1, v2, v3, v4} and edges e1 = (v1, v3) ≃ (0, 2), e2 = (v2, v3) ≃ (0, 1), and e3 = (v3, v4) ≃ (0, 2).
We consider the system (1.2.2) with ae1 = ae2 = ae3 = be1 = be2 = 1 and be3 = 2. We can compute
the maximal travel time to reach v ∈ V as follows:

T̂ (v1) = T̂ (v2) = 0, T̂ (v3) = max
i∈{1,2}

(
T̂ (vi) + ℓei

)
= max{1, 2} = 2,

T̂ (v4) = T̂ (v3) +
ℓe3

b3
= 2 + 1 = 3.

Moreover, we compute the minimal travel time to reach v ∈ V as follows:

T̃ (v1) = T̃ (v2) = 0, T̃ (v3) = min
i∈{1,2}

(
T̃ (vi) + ℓei

)
= min{1, 2} = 1,

T̃ (v4) = T̃ (v3) +
ℓe3

b3
= 1 + 1 = 2.

By relying on this notion of propagation time and on the classical method of characteristics, we
can prove the following controllability result.

Theorem 8.2.1 (Null-controllability for the hyperbolic problem). Let G = (V, E) be a tree-
shaped network and let y be the solution of (1.2.2) for u = 0.

(1) For all T ≥ maxv∈Vout
∂
T̂ (v), we have y(T, ·) = 0. More precisely, ye(T, x) = 0 for all

x ∈ e = (v1, v2) ≃ (0, ℓe) and T ≥ T̂ (v1) +
aex
be .

(2) For T < maxv∈Vout
∂
T̃ (v), system (1.2.2) is not null-controllable.

The proof of Theorem 8.2.1 is given in Section 8.3.
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v1

v2

v3 v4

e1

e2

e3

Figure 8.1. Star-shaped graph
with edges e1 = (v1, v3), e2 =
(v2, v3), e3 = (v3, v4); inner vertex
V0 = {v3} (blue), and boundary
vertices V∂ = {v1, v2, v4}. We split
the set of boundary vertices into
inflow and outflow vertices: V in

∂ =
{v1, v2} (green) and Vout

∂ = {v4}
(red), respectively.

v1 v2

v3

v4

e1

e2

e3

Figure 8.2. Star-shaped graph
with edges e1 = (v1, v2), e2 =
(v2, v3), e3 = (v2, v4); inner vertex
V0 = {v2} (blue), and boundary
vertices V∂ = {v1, v3, v4}. We split
the set of boundary vertices into
inflow and outflow vertices: V in

∂ =
{v1} (green) and Vout

∂ = {v3, v4}
(red), respectively.

8.2.2. Control of the parabolic problem. Our next theorem provides the controllability of
the parabolic system (1.2.1) on tree-shaped networks by acting on the external vertices (except at
most one) without any further geometric constraint.

Theorem 8.2.2 (Controllability of parabolic systems of networks). Let G = (V, E) be a tree-
shaped network and y0 ∈ L2(E). Given T > 0, there exists u ∈ L2((0, T ); ℓ2(V∂)) such that the
solution of (1.2.1) satisfies y(T, ·) = 0.

Let us point out that it does not suffice to act on V in
∂ to drive the system (1.2.1) to zero (see

Proposition 8.2.2).
The proof of Theorem 8.2.2 essentially follows by using a Carleman inequality similar to [164,

Proposition 3.1]. However, in [164], the authors do not keep track of the viscosity parameter. We
can also prove Theorem 8.2.2 as a direct byproduct of our study on the cost of the controllability
(see Theorem 8.2.3 and Remark 8.5.1 below).

8.2.3. Cost of controllability in the singular limit. Our final main theorem provides
estimates on the cost of controllability of (1.2.1).

Theorem 8.2.3 (Estimates on the cost of controllability). Let G = (V, E) be a tree-shaped
network and let us assume that (1.2.3) holds.

(1) There exist T , c > 0 such that, for ε small enough and all T < T , the following lower-bound
holds:

K(ε, T, ae, be,G) ≥ cec/ε.(8.2.1)

(2) There exist T0, c, C > 0 such that, for ε small enough and all T ≥ T0, the following upper-
bound holds:

K(ε, T, ae, be,G) ≤ Ce−c/ε.(8.2.2)

The proof of Theorem 8.2.3 is given in Sections 8.4 and 8.5 and is based on estimating the cost
of observability of the adjoint variable. The duality between the cost of controllability and the cost
of observability is summarized in the following lemma (see [104, Chapter 2.3]).

Lemma 8.2.1 (Cost of observability). Let G = (V, E) be a tree-shaped network. Let us suppose
that

(8.2.3)

∫ T

0

∑
v∈V∂

|∂ne(v)φ
e
ε(t, v)|2 dt ̸= 0, ∀φT ̸= 0,
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and

(8.2.4) K̃(ε, T, ae, be,G) := 1√
ε

sup
φT∈L2(E)\{0}

∥aφε(0, ·)∥L2(E)(∫ T
0

∑
v∈V∂ |∂ne(v)φε(t, v)|2 dt

)1/2 < +∞,

where φε is solution of (1.2.4) with datum φT . Then (1.2.1) is null-controllable with cost

K(ε, T, ae, be,G) = K̃(ε, T, ae, be,G).(8.2.5)

In addition, if, for some φT ∈ L2(E), we have

(8.2.6)

∫ T

0

∑
v∈V∂

|∂ne(v)φ
e
ε(t, v)|2 dt = 0,

then system (1.2.1) is not approximately controllable.

We recall that (1.2.1) is approximately controllable in L2(E) at time T > 0 if the range of the
application u ∈ U 7→ yε(T, ·) ∈ L2(E) is dense in L2(E).

To simplify some computations in what follows, we define the function

(8.2.7) zeε(t, x) := φeε(t, x)e
(xbe+ce)/2ε,

where ce the constants given in Lemma 8.1.1 that makes the function xbe+ ce continuous on E . This
function satisfies the following symmetrized system (see [26, Section 2.1]):

(8.2.8)



−ae∂tzeε(t, x)− ε∂2xxz
e
ε(t, x) +

|be|2
4ε z

e
ε(t, x) = 0, (t, x) ∈ (0, T )× e, ∀e ∈ E ,

zeε(t, v) = 0, t ∈ (0, T ), v ∈ V∂ ,
ze1ε (t, v) = ze2ε (t, v), t ∈ (0, T ), v ∈ V0, ∀e1, e2 ∈ E(v),∑

e∈E(v) ε∂ne(v)z
e
ε(t, v) = 0, t ∈ (0, T ), v ∈ V0,

zeε(T, x) = zeT (x) := φeT (x)e
(xbe+ce)/2ε, x ∈ e, ∀e ∈ E .

Here, we relied on (1.2.3) to obtain (8.2.8)4.

8.2.4. Pathological examples and further remarks. For particular graphs and choices of
the coefficients in (1.2.1) and (1.2.2), we can build several pathological examples to illustrate the
scope of our controllability results.

Remark 8.2.1 (Counterexample to exact controllability of (1.2.2) to any target state
y(T, ·) ∈ C0

pw(E)). While we are able to prove null-controllability, and thus controllability to trajec-

tories because of linearity, we may not have exact controllability to any y ∈ C0
pw(E)—namely, when

|Vout
∂ | > |V in

∂ |, due to symmetry constraints. For example, let us consider the graph in Figure 8.2,
made of the vertices V = {v1, v2, v3, v4}, the edges e1 = (v1, v2) ≃ (0, 1), e2 = (v2, v3) ≃ (0, 1),
and e3 = (v2, v4) ≃ (0, 1), and with aei = bei = 1 for i ∈ {1, 2, 3, 4}. In (1.2.2), we take
ae1 = ae2 = ae3 = be1 = 1, be2 = 1/2, and be3 = 1/2. Then, for any y0 ∈ L2(E) and
u ∈ C2([0, T ]; ℓ2(v1)), the solution y of (1.2.2) satisfies ye2(t, x) = ye3(t, x) for t > 1.

Next, we illustrate some issues arising from networks with loops.

Remark 8.2.2 (Networks with loops and controls). Let us consider a graph with vertices V = {v1,
v2, v3, v4} and edges e1 = (v1, v2), e2 = (v2, v3), e3 = (v3, v4), and e4 = (v4, v2) (see the left-side
picture in Figure 8.3). In this case, for the free system (i.e., with Dirichlet boundary condition
u1 ≡ 0 at v1), we can prove that the total mass is constant, as

d

dt

∫
E
ay dx = be1∂ne1 (v1)y

e1(v1) = 0.

Here, the first equality is a consequence of (1.2.2)1 and (1.2.2)4; the second one holds because ye1 is
null in a neighborhood of v1 for all t > 0 by the method of characteristics. And yet, we can use the
method of characteristics to prove that the hyperbolic system is null-controllable with a control that
is non-zero.

A similar example consists of the same graph with an additional output vertex v5 and e5 = (v3, v5)
(see the right-side picture in Figure 8.3). In that case, the mass is not conserved, but the zero-control
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does not take the system to equilibrium. For example, if y0 ≡ 1, we can prove by contradiction that
y(t, x) > 0 for all t ≥ 0 and x ∈ e2 ∪ e3 ∪ e4. Moreover, as in the previous example, we can use the
method of characteristics to prove that the hyperbolic system is null controllable, with a control that
is non-zero.

v1 v2

v3

v4

e1

e2

e3
e4

v1 v2

v3

v5

v4

e1

e2

e3
e4

e5

Figure 8.3. Graphs with loops used in Remark 8.2.2. Left: graph with one input
vertex v1 (green) and loop made of vertices v2, v3, and v4 (gray). Right: graph with
input vertex v1 (green), output vertex v5 (red) and loop made of vertices v2, v3, and
v4 (gray).

We note that system (1.2.1) cannot be controlled for any ε > 0 by acting on fewer boundary
vertices. In the case without advection, this result can be found in [164, Remark 3.2].

Proposition 8.2.1 (Lack of null-controllability with fewer controls). Let G = (V, E) be the
graph in Figure 8.2, made of the vertices V = {v1, v2, v3, v4} and the edges e1 = (v1, v2) ≃ (0, 1),
e2 = (v2, v3) ≃ (0, 1), and e3 = (v2, v4) ≃ (0, 1) Then, system (1.2.1), with coefficients ae1 = ae2 =
ae3 = 1 and be1 = be2 = be3 = 0, is not approximately controllable by acting only on v1 (i.e., if
uv3 ≡ uv4 ≡ 0).

Heuristically, the motivation for such a result is that, by symmetry, the effect of the control on e2
and e3 is identical, so we cannot control both ye2 and ye3 simultaneously (unless some irrationality
condition on the length of the edges holds; compare [117, Corollary 8.6]).

In a similar way, we can prove the claim also for the system (1.2.1) with advection terms.

Proposition 8.2.2 (Lack of null-controllability with fewer controls). Let G = (V, E) be the
graph in Figure 8.2, made of the vertices V = {v1, v2, v3, v4} and the edges e1 = (v1, v2) ≃ (0, 1),
e2 = (v2, v3) ≃ (0, 1), and e3 = (v2, v4) ≃ (0, 1). Then, system (1.2.1) (with coefficients be1 = ae1 =
ae2 = ae3 = 1 and be2 = be3 = 1

2) is not approximately controllable in L2(E) by acting only on v1
(i.e., if uv3 ≡ uv4 ≡ 0) for any ε > 0.

Proof. By duality (see [104, Theorem 2.43]), it suffices to show that there are non-zero solu-
tions of (1.2.4) satisfying ∂ne(v1)φ(·, v1) = 0. Considering (8.2.7), this is equivalent to showing that
there are non-zero solutions of (8.2.8) satisfying ∂ne(v1)z(·, v1) = 0. From the spectral decomposition
of the Laplacian on the graph, we can construct such a solution as follows:

ze1 = 0, ze2 = exp

[(
επ2 +

1

16ε

)
t

]
sin(πx), ze3 = − exp

[(
επ2 +

1

16ε

)
t

]
sin(πx).

□

Finally, we note the relevance of (1.2.3) for our results.

Remark 8.2.3 (On the balance relation (1.2.3)). Without (1.2.3), we must replace (8.2.8)4 by∑
e∈E(v)

ε∂ne(v)z
e
ε(t, v) = −

∑
e∈E(v)

ne(v)be

2
zeε(t, v).(8.2.9)

or, equivalently, (1.2.4)4 by∑
e∈E(v)

ε∂ne(v)φ
e
ε(t, v) = −

∑
e∈E(v)

ne(v)be

2
φeε(t, v).(8.2.10)
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Also, without condition (1.2.3), the system (1.2.2) may not be dissipative at the junctions. Indeed,
from (1.2.2), we compute

d

dt

∫
E
ay2(t, x) dx = −

∑
v∈V

∑
e∈E(v)

ne(v)be|ye|2(t, v),(8.2.11)

which is not non-positive in general. For example, let us consider a simple 1–to–1 junction modeled
as follows: 

∂ty
−(t, x) + b−∂xy

−(t, x) = 0, t ∈ (0, T ), x ∈ (−1, 0),

∂ty
+(t, x) + b+∂xy

+(t, x) = 0, t ∈ (0, T ), x ∈ (0, 1),

y−(t,−1) = 0, t > 0,

b−y−(t, 0) = b+y+(t, 0), t > 0,

y−(0, x) = y−0 (x), x ∈ (−1, 0),

y+(0, x) = y+0 (x), x ∈ (0, 1),

(8.2.12)

for b−, b+ > 0. Here, the term in (8.2.11) is given by

−
∑
v∈V

∑
e∈E(v)

ne(v)be(ye)2(v) = −1 · b−|y−(t, 0)|2 − (−1)b+|y+(t, 0)|2

= b+|y+(t, 0)|2 − (b+)2

b−
|y+(t, 0)|2

= b+
(
1− b+

b−

)
|y+(t, 0)|2.

In the second equation, we have used (8.2.12)4. Consequently, if b− > b+, energy is added at the
junctions and the problem is not dissipative.

8.3. Controllability of the transport problem

We prove Theorem 8.2.1 by means of the method of characteristics, following [104, Chapter
2.1.2., p. 30]. More specifically, we use an induction argument over the layers of the tree.

Proof of Theorem 8.2.1. Step 1. Null-controllability. The proof of Claim (1) is based on
an induction of the distance of the vertex v1 to the exterior vertices (see Definition 8.1.1).

The base case is v1 ∈ V in
∂ . The equality y(v1) = 0 is satisfied because of the boundary condition

(recalling that u ≡ 0). Moreover, within each edge e ∈ Eout(v1), the function ye behaves like
the solution to a classical transport equation. Consequently, as in [104, Chapter 2.1.2., p. 30],
ye(t, x) = 0 for all x ∈ e = (v1, v2) ≃ (0, ℓe) and t ≥ aex

be , and in particular, ye(t, v2) = 0 for all

t ≥ T̂ (v2), as T̂ (v2) ≥ aeℓe

be .

Let us now continue with the inductive case v1 ∈ V0. For all e ∈ E in(v1), the equality y
e(t, v1) = 0

is satisfied for t ≥ T̂ (v1) by the inductive hypothesis. From the transmission conditions (1.2.2)3
and (1.2.2)4, we deduce that, for e ∈ Eout(v1), y

e(t, v1) = 0 as well, for all t ≥ T̂ (v1). Furthermore,
within the edge e ∈ Eout(v1), the function ye behaves like a transport equation in a segment; thus,

ye(t, x) = 0 for x ∈ (0, ℓe), where e ≃ (0, ℓe) and t ≥ T̂ (v1) +
aex
be , and in particular, ye(t, v2) = 0 for

all t ≥ T̂ (v2), as T̂ (v2) ≥ T̂ (v1) +
aeℓe

be . As a byproduct of the same argument, we can also deduce
the claim for v ∈ Vout

∂ .
Step 2. Minimal propagation time. To prove Claim (2), we consider the solution of (1.2.2) with

initial value y0 ≡ 1. Then, an inductive argument (as in the proof of Claim (1)) shows that, for any

control u, there exist v ∈ V0 ∪ Vout
∂ and e ∈ E(v) such that ye(t, v) > 0 on [0, T̃ (v)).

□

Remark 8.3.1 (Positivity assumption on a and b when they depend on the space variable).
The proof of Theorem 8.2.1 remains valid when ae and be depend on the space variable, assuming
a ∈ C1

pw([0, T ] × E), minE a > 0, b ∈ C1
pw([0, T ] × E), and minE b > 0. The positivity is needed

because, if the transport term vanishes at some point, then the characteristics may not leave the
domain.
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8.4. Blow-up of the cost of controllability

In this Section, we prove Claim (1) of Theorem 8.2.3.

8.4.1. Agmon-type inequality. We start by proving an Agmon-type inequality (see [5, The-
orem 5.9]), which gives an exponentially weighted energy estimate.

Lemma 8.4.1 (Agmon-type inequality). Let G = (V, E) be a tree-shaped network and let us
assume that (1.2.3) holds. Let ζ ∈ H2

pw(E) ∩H1(E) satisfy

ae∂tζ
e + be∂xζ

e − |∂xζe|2 ≥ 0, t ∈ (0, T ), x ∈ e, ∀e ∈ E .(8.4.1)

Then the solution φε of the adjoint system (1.2.4) satisfies the following Agmon-type inequality: for
t ∈ (0, T ), ∑

e∈E

ae

2

∫
e
|eζe(t,x)/εφeε(t, x)|2 dx+ ε

∑
e∈E

∫ T

t

∫
e
|∂x(eζ

e(s,x)/εφeε(s, x))|2 dx ds

≤
∑
e∈E

ae

2

∫
e
|eζe(T,x)/εφeε(T, x)|2 dx.

Proof. Let e ∈ E . Then,
d

dt

ae

2

∫
e
|eζe/εφeε|2 dx

= ae
∫
e
eζ

e/ε∂te
ζe/ε|φeε|2 dx+ ae

∫
e
e2ζ

e/εφ∂tφ
e
ε dx

= ae
∫
e
eζ

e/ε∂te
ζe/ε|φeε|2 dx+

∫
e
e2ζ

e/εφeε
(
− be∂xφ

e
ε − ε∂2xxφ

e
ε

)
dx

= ae
∫
e
eζ

e/ε∂te
ζe/ε|φeε|2 dx+

be

2

∫
e
(φeε)

2∂xe
2ζe/ε dx− be

2
[(φeε)

2e2ζ
e/ε]e

+ ε

∫
e
(∂xφ

e
ε)

2e2ζ
e/ε dx+ ε

∫
e
∂xφ

e
εφ

e
ε∂xe

2ζe/ε dx− ε[∂xφ
e
εφ

e
εe

2ζe/ε]e

=
1

ε

∫
e
e2ζ

e/ε(φeε)
2
(
ae∂tζ

e + be∂xζ
e − |∂xζe|2

)
dx+ ε

∫
e
(∂x(φ

e
εe
ζe/ε))2 dx

− be

2
[(φeε)

2e2ζ
e/ε]e − ε[φeε∂xφ

e
εe

2ζe/ε]e.

Summing up over e ∈ E and using the continuity of ζe, the Dirichlet boundary conditions, the
junction conditions, and the flux balance condition (1.2.3), we obtain

d

dt

∑
e∈E

ae

2

∫
e
|eζe/εφeε|2 dx =

1

ε

∑
e∈E

∫
e
|eζe/εφeε(t, x)|2

(
ae∂tζ

e + be∂xζ
e − |∂xζe|2

)
︸ ︷︷ ︸

≥0

dx

+ ε
∑
e∈E

∫
e
(∂x(φ

e
εe
ζe/ε))2 dx

≥ ε
∑
e∈E

∫
e
(∂x(φ

e
εe
ζe/ε))2 dx.

We conclude the proof by integrating this expression on (t, T ). □

8.4.2. Non-degeneracy of the solution. As a second preliminary tool, we show that the
mass of φε(0, ·) is bounded away from zero for small times.

Lemma 8.4.2 (Non-degeneracy of the solution). Let G = (V, E) be a tree-shaped network and
let us assume that (1.2.3) holds and consider ẽ ∈ E such that ẽ ≃ (0, ℓẽ) ∈ E. Let φT ≥ 0 be a
non-null C∞

pw(E) ∩ C0(E) function such that supp(φT ) ⋐ ẽ. Then, there exists c > 0 such that, for
all ε ∈ (0, 1] and T small enough,

(8.4.2) ∥φε(0, ·)∥L2(E) ≥ c,
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where φε is the solution of (1.2.4) with final value φT .

Proof. By Hölder’s inequality, there exists C > 0, depending on the length of the edges of the
graph, such that

∥φε(0, ·)∥L1(E) ≤ C∥φε(0, ·)∥L2(E).

Therefore, it suffices to prove that there exists c > 0 such that, for all ε ∈ (0, 1],∫
ẽ
|φẽε(0, x)| dx ≥ c.(8.4.3)

First, because of [125, Lemma 7], we have that φε ≥ 0 for all t ∈ (0, T ). To prove (8.4.3), it suffices
to use a comparison result with the solution of the following PDE posed on the edge ẽ:

(8.4.4)


−aẽ∂tφ̃ε(t, x)− bẽ∂xφ̃ε(t, x)− ε∂2xxφ̃ε(t, x) = 0, t ∈ (0, T ), x ∈ ẽ,

φ̃ε(t, 0) = φ̃ε(t, ℓ
ẽ) = 0, t ∈ (0, T ),

φ̃ε(T, x) = φẽT (x) x ∈ ẽ.

Indeed, by the non-negativity of φε, we have, for φ̂ε = φẽε − φ̃,
−aẽ∂tφ̂ε(t, x)− bẽ∂xφ̂ε(t, x)− ε∂2xxφ̂ε(t, x) = 0, t ∈ (0, T ), x ∈ ẽ,

φ̂ε(t, 0) ≥ 0, t ∈ (0, T ),

φ̂ε(t, ℓ
ẽ) ≥ 0, t ∈ (0, T ),

φ̂ε(T, x) = 0, x ∈ ẽ.

This yields φẽε ≥ φ̃ε in ẽ. Thus, it suffices to prove that there exists some c > 0 such that∫
ẽ
φ̃ε(0, x) dx ≥ c > 0

for all ε ∈ (0, 1]. Since ε 7→ φ̃ε(0, ·) is continuous from (0, 1] to L1(ẽ), it suffices to check that
the limit is not null when ε → 0+. This follows from the C0([0, T ];L2(E)) convergence result
stated in Theorem 8.1.3 and from the fact that, for the transport equation obtained passing to
the limit in (8.4.4), this holds true by finite speed of propagation as long as T is small enough

(T < aẽ

bẽ
(ℓẽ − inf{x : φẽT (x) > 0})).

□

8.4.3. Proof of Claim (1) of Theorem 8.2.3. Using the tools developed in the previous
Sections, we complete the proof of Claim (1) of Theorem 8.2.3. The main ideas of the proof are
as follows: choosing an initial datum supported away from the boundary vertices, we establish an
exponentially growing lower-bound on the cost of observability in (8.2.4) by relying on Lemmas 8.4.1
and 8.4.2.

Proof of Theorem 8.2.3, Claim (1). Let ẽ ≃ (0, ℓẽ) ∈ E and let φT be a non-zero smooth
function such that

(8.4.5) supp(φT ) ⊂ ẽ ∩
(
ℓẽ

4
,
3ℓẽ

4

)
⋐ ẽ.

Thanks to Lemma 8.4.2, we know that (8.4.2) is satisfied uniformly in ε; thus, it suffices to prove
that the observed mass decays exponentially. To this end, we define the auxiliary function

ζ ẽ(t, x) := bẽ
(
x− ℓẽ

2

)2

− (bẽ)2

aẽ
(T − t)(ℓẽ + (ℓẽ)2), (t, x) ∈ (0, T )× ẽ,

and ζ, which is its extension by two constant functions outside the edge ẽ (namely, ζ ẽ(t, 0) on the
left and by ζ ẽ(t, ℓẽ) on the right). We then compute

aẽ∂tζ
ẽ(t, x) + bẽ∂xζ

ẽ(t, x)− |∂xζ ẽ(t, x)|2 = (bẽ)2(ℓẽ + (ℓẽ)2) + (bẽ)2
(
2x− ℓẽ

)
− (bẽ)2

(
2x− ℓẽ

)2
≥ (bẽ)2(ℓẽ + (ℓẽ)2)− (bẽ)2ℓẽ − (bẽ)2

(
ℓẽ
)2

= 0, (t, x) ∈ (0, T )× ẽ,
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and

ae∂tζ
e(t, x) + be∂xζ

e(t, x)− |∂xζe(t, x)|2 = ae
(bẽ)2

aẽ
(ℓẽ + (ℓẽ)2) ≥ 0, (t, x) ∈ (0, T )× (E \ {ẽ}).

Using the assumption (8.4.5), we deduce the following estimate:∫
E
|eζ(T,x)/εφT (x)|2 dx ≤ exp

(
bẽ(ℓẽ)2

8ε

)∫
ẽ
|φẽT |2 dx.

We define a smooth cut-off function χ ∈ C∞(E) as follows: for every e = (u, v) ≃ (0, ℓe) ∈ E ,
– if u, v ∈ V∂ , we define χe as a function whose value is 1 in [0, ℓ

e

8 ]∪ [7ℓ
e

8 , ℓ
e] and 0 in [ ℓ

e

4 ,
3ℓe

4 ];

– if u ∈ V∂ and v ̸∈ V∂ , we define χe as a function whose value is 1 in [0, ℓ
e

8 ] and 0 in [ ℓ
e

4 , ℓ
e];

– if v ∈ V∂ and u ̸∈ V∂ , we define χe as a function whose value is 1 in [7ℓ
e

8 , ℓ
e] and 0 in [0, 3ℓ

e

4 ];
– if u, v ∈ V0, we let χe = 0.

Then, ψeε := χφeεe
ζe/ε satisfies the following system:

−ae∂tψeε(t, x)− be∂xψ
e
ε(t, x)− ε∂2xxψ

e
ε(t, x) = F [χ, φeε, e

ζe/ε], t ∈ (0, T ), x ∈ e, ∀e ∈ E ,
ψeε(t, v) = 0, t ∈ (0, T ), v ∈ V∂ , ∀e ∈ E(v),
ψeε(t, v) = 0, t ∈ (0, T ), v ∈ V0, ∀e ∈ E(v),
ψeε(T, x) = 0, x ∈ e, ∀e ∈ E ,

where we introduced

F [χ, φeε, e
ζe/ε] =− be∂xχφ

e
εe
ζe/ε − ε∂2xxχφ

e
εe
ζe/ε − 2∂xχ∂xζψ

e
ε

− ae

ε
∂tζ

eψeε −
be

ε
∂xζ

eψeε −
1

ε
(∂xζ

e)2ψeε − ∂2xxζ
eψeε

− 2ε∂xφ
e
ε∂xχe

ζe/ε − 2∂xζ
e∂xφ

e
εχe

ζe/ε

=− be∂xχφ
e
εe
ζe/ε − ε∂2xxχφ

e
εe
ζe/ε − 2∂xχ∂xζψ

e
ε

− ae

ε
∂tζ

eψeε −
be

ε
∂xζ

eψeε −
1

ε
(∂xζ

e)2ψeε − ∂2xxζ
eψeε

+ 2εφeε∂x(∂xχe
ζe/ε) + 2φeε∂x(∂xζ

eχeζ
e/ε)

− 2ε∂x(φ
e
ε∂xχe

ζe/ε)− 2∂x(∂xζ
eφeεχe

ζe/ε).

Moreover, using the Dirichlet boundary conditions and the fact that χ = 1 in a neighborhood of V∂ ,
we deduce

∂ne(v)ψ
e
ε(t, v) = eζ/ε∂ne(v)φ

e
ε(t, v), ∀v ∈ V∂ .

From classical regularity estimates for the heat equation (applied in every edge with an end in
V∂), we obtain∫ T

0

∑
v∈V∂

e2ζ
e(t,v)/ε|∂ne(v)φ

e
ε(t, v)|2 dt =

∫ T

0

∑
v∈V∂

|∂ne(v)ψ
e
ε(t, v)|2 dt

≤ Cε−2∥F [χ, φε, eζ/ε]∥2L2((0,T );H−1(E))

≤ Cε−4
∑
e∈E

∫ T

0

∫
e

∣∣∣eζe(t,x)/εφeε(t, x)∣∣∣2 dx dt,

which yields

exp

(
bẽ(ℓẽ)2

2ε
− 2(bẽ)2T (ℓẽ + (ℓẽ)2)

aẽε

)∫ T

0

∑
v∈V∂

|∂ne(v)φ
e
ε(t, v)|2 dt

≤
∫ T

0

∑
v∈V∂

e2ζ
e(t,v)/ε|∂ne(v)φ

e
ε(t, v)|2 dt

≤ C

ε4

∑
e∈E

∫ T

0

∫
e
|eζe(t,x)/εφeε(t, x)|2 dx dt.
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Combining these with Lemma 8.4.1, we deduce

(8.4.6)

∫ T

0

∑
v∈V∂

|∂ne(v)φ
e
ε(t, v)|2 dt

≤ CT

ε4
exp

(
−3bẽ(ℓẽ)2

8ε
+

2(bẽ)2T (ℓẽ + (ℓẽ)2)

aẽε

)
∥φT ∥2L2(E)

= exp

(
ln(CT ) + 4 ln(ε−1)− 3bẽ(ℓẽ)2

8ε
+

2(bẽ)2T (ℓẽ + (ℓẽ)2)

aẽε

)
∥φT ∥2L2(E).

Plugging (8.4.6) into (8.2.5), we conclude that (8.2.1) holds for T small enough.
□

8.5. Decay of the cost of controllability

8.5.1. The decay property for the parabolic problem. In order to prove Claim (2) of
Theorem 8.2.3, we start by deducing a decay property for the solution of (1.2.1).

Proposition 8.5.1 (Decay property). Let G = (V, E) be a tree-shaped network and let us
assume that (1.2.3) holds. Then, there exist c, C > 0 such that the solution of the parabolic problem
(1.2.4) satisfies the following decay property for all φT ∈ L2(E), ε ∈ (0, 1), and t ∈ (0, T ):

(8.5.1) ∥φε(t, ·)∥2L2(E) dx ≤ exp

(
C − c(T − t)

ε

)
∥φT ∥2L2(E).

Proof. In order to prove (8.5.1), we first obtain a decay property for the symmetrized system
(8.2.8). Multiplying the PDEs in (8.2.8) by zeε , integrating by parts, and summing up over all the
edges, we obtain (by using (8.2.8)3) that

− d

dt

1

2

(∫
E
a|zε(t, x)|2 dx

)
+ ε

∫
E
|∂xzε(t, x)|2 dx+

∫
E

|b|2

4ε
|zε(t, x)|2 dx = 0.

Consequently,

− d

dt

(∫
E
a|zε(t, x)|2 dx

)
= −2ε

∫
E
|∂xzε(t, x)|2 dx−

∫
E

|b|2

2ε
|zε(t, x)|2 dx

≤ −
∫
E

|b|2

2ε
|zε(t, x)|2 dx = −

∫
E

|b|2

2aε
a|zε(t, x)|2 dx.

Then, by using mine∈E a
e and mine∈E b

e > 0,

− d

dt

(∫
E
a|zε(t, x)|2 dx

)
≤ −c

ε

∫
E
a|zε(t, x)|2 dx,

for c := 1
2 mine∈E

|be|2
ae > 0. Using backward Gronwall’s inequality on (t, T ) yields

min
e∈E

ae
∫
E
|zε(t, x)|2 dx ≤

∫
E
a|zε(t, x)|2 dx ≤ exp

(
−c(T − t)

ε

)∫
E
a|zT (x)|2 dx

≤ max
e∈E

ae exp

(
−c(T − t)

ε

)∫
E
|zT (x)|2 dx.

Defining

C̃ := ln

(
maxe∈E a

e

mine∈E ae

)
≥ 0,

we obtain that ∫
E
|zε(t, x)|2 dx ≤ exp

(
C̃

ε
− c(T − t)

ε

)∫
E
|zT (x)|2 dx.

Finally, reverting the change of variables (8.2.7), we obtain the decay property (8.5.1) for c > 0
defined as before and

C := max
e∈E

sup
x∈e

(xbe + ce)−min
e∈E

inf
x∈e

(xbe + ce) + C̃.

□
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8.5.2. A Carleman inequality. The main technical tool needed for the proof of the decay
of the cost of controllability is a Carleman inequality. The difficulty in the proof arises from the
boundary terms at the junctions. To suitably deal with them, we define the Fursikov–Imanuvilov
weights (see [136]) with a piecewise C2 auxiliary function. Piecewise-C2 weights were first used for
proving Carleman inequalities for the heat equation with discontinuous coefficients in [31]; more
recently, similar functions were used to study coupled systems with Kirchhoff-type conditions in [164]
and in [34]. We cannot use the results in [164, Proposition 3.1] directly to deduce Proposition 8.5.2
because we need to keep track of the dependence of s and τ on the viscosity parameter ε. To this end,
we also propose a more general construction of the auxiliary functions in the Fursikov–Imanuvilov
weights.

We define an auxiliary function η ∈ C2
pw (E)∩C0

(
E
)
recursively by the edges joining the i-th and

(i+ 1)-th layer of the tree. In the construction of η, a parameter δ > 0 intervenes. This parameter
is sufficiently small (depending on (ae)e∈E and (be)e∈E), and its exact value will be chosen later on
in Step 2 of the proof of the Carleman inequality. For now, the only assumption is δ ∈ (0, 1].

To construct the function, let us start with the base case: the edge e = (v1, v2) ≃ (0, ℓe), where
v1 is the root of the tree:

ηe(x) := 1 + x− 1− δ

2ℓe
x2.

As for the inductive case, let us consider ẽ = (ṽ1, ṽ2) ≃ (xẽ, xẽ + ℓẽ) with ṽ1 is on the i-th layer and
ṽ2 on the (i+ 1)-th layer for i ≥ 1. Given k, the value taken by η at ṽ1, we define ηẽ as follows:

ηẽ(x) := k + (x− xẽ)− 1− δ

2ℓe
(x− xẽ)2.

An example on the construction of η can be found in Figure 8.4. We highlight that the function η
satisfies the following properties:

(1) η ∈ C2
pw (E) ∩ C0

(
E
)
; moreover, ∥η∥

W 2,∞
pw (E) is bounded uniformly in δ for all δ ∈ (0, 1);

(2) ∂2xxη
e = −1−δ

2ℓe and |∂xη| ∈ [δ, 1] on E ;
(3) given a vertex v ∈ V0, there exists an edge ẽ ∈ E(v) such that ∂nẽ(v)η

ẽ(v) = δ and

∂ne(v)η
e(v) = −1 for all e ∈ E(v) \ {ẽ}.

This auxiliary function allows us to define usual Fursikov–Imanuvilov weights:

(8.5.2) α(t, x) :=
e8τ∥η∥∞ − eτ(6∥η∥∞+η(x))

t(T − t)
, ξ(t, x) :=

eτ(6∥η∥∞+η(x))

t(T − t)
,

where τ ∈ R is a fixed parameter (and in particular independent of the edge) that will be chosen
later. For future use, we note that there exists C > 0 such that, for sufficiently large τ ,

(8.5.3) |∂tα| ≤ Tξ2, |∂2xtα| ≤ CTτξ2, |∂2ttα| ≤ 2(ξ2 + T 2ξ3) ≤ 4T 2ξ3, |∂tξ| ≤ Tξ2.

Now we are ready to state the following Carleman inequality.

Proposition 8.5.2 (Carleman inequality). Let G = (V, E) be a tree-shaped network and let us
assume that (1.2.3) holds. Let zε be the solution of (8.2.8). Then, for δ small enough, there exists
a positive constant C = C(G, a, b, δ) such that, for all zT ∈ L2(E), the solution zε of (8.2.8) satisfies
the following Carleman inequality:

(8.5.4)

sτ2
∫∫

Q
e−2sαξ|∂xzε|2 dx dt+ s3τ4

∫∫
Q
e−2sαξ3|zε|2 dx dt

≤ C
∑
v∈V∂

sτ

∫ T

0
e−2sαξ(t, v)|∂ne(v)z

e
ε(t, v)|2 dt,

where Q := (0, T )× E, α, and ξ are the Fursikov–Imanuvilov weights defined in (8.5.2), ε ∈ (0, 1],
τ ≥ C, and s ≥ C(T + T 2)ε−1.

Throughout the proof, to simplify the notation, all the constants may change from line to line
and will be denoted by Cδ > 0 when they depend on δ and by C > 0 when they do not.



8.5. DECAY OF THE COST OF CONTROLLABILITY 105

v1

v4

v2 v3 v5

v6 v7

e1

e2 e3
e4

e5 e6

1 2

ηe1(0)

ηe1(1)

= ηe2(1)
−

ηe2(2)−

∂xη
e1(1) = δ

∂xη
e2(1) = 1

∂xη
e1(0) = 1

∂xη
e2(2) = δ

0 e1 e2

Figure 8.4. Construction of the auxiliary function η ∈ C2
pw(E)∩C0(Ē). In the tree-

shaped network in the left picture, we distinguish four layers: the first (magenta)
is {v1}; the second (yellow) is {v4}, the third (cyan) is {v2, v3, v5}; and the fourth
(brown) is {v6, v7}. Let us identify e1 := (v1, v4) ≃ (0, 1), e2 := (v4, v2) ≃ (1, 2), e3 :=
(v4, v3) ≃ (1, 2), e4 := (v4, v5) ≃ (1, 2), e5 := (v5, v6) ≃ (2, 3), e6 := (v5, v6) ≃ (2, 5/2).
The auxiliary function η may be defined as follows: ηe1(x) = 1+x− 1−δ

2 x2, ηe2(x) =

ηe3(x) = ηe4(x) = 3+δ
2 +(x− 1)− 1−δ

2 (x− 1)2, ηe5(x) = ηe4(2)+(x−2)− 1−δ
2 (x−2)2,

ηe6(x) = ηe4(2) + (x − 2) − (1 − δ)(x − 2)2. As an example, in the right picture,
we plot ηe1 and ηe2 with δ = 1

4 . In the proof of Proposition 8.5.2, if G is the graph
illustrated above, we observe the vertex v1 with v4; v4 with v2, v3, v5; and v5 with
v6, v7. So, by transitivity, we actually only need to observe using v2, v3, v6, and v7
(i.e., we do not need the vertex in the 1st layer).

Proof. Step 0. Strategy of the proof and choice of the auxiliary functions. The main idea is
to observe the nodes of the i-th layer with the nodes of the (i+ 1)-th layer (see Definition 8.1.1).

With the weights defined in (8.5.2) we consider the change of variable ψ = e−sαzε, for zε given
in (8.2.8). It is important to remark that

(8.5.5) ψ(T, x) = ψ(0, x) = ∂xψ(0, x) = ∂xψ(T, x) = 0,

which will allow us to integrate by parts in the time variable without having to worry about the
boundary terms.

From (8.2.8), we obtain that ψ satisfies

(8.5.6) L1ψ + L2ψ = L3ψ,

where

(8.5.7)


L1ψ := −2εsτ2a−1/2|∂xη|2ξψ − 2εsτa−1/2ξ∂xη∂xψ + a1/2∂tψ,

L2ψ := εs2τ2a−1/2|∂xη|2ξ2ψ + εa−1/2∂2xxψ + sa1/2∂tαψ − |b|2
4ε a

−1/2ψ,

L3ψ := εsτa−1/2∂2xxηξψ − εsτ2a−1/2|∂xη|2ξψ.

Indeed, from (8.2.8), we compute

(8.5.8)
a∂tψ + ε∂2xxψ − |b|2

4ε
ψ

= −as∂tαψ + εsτ∂2xxηξψ + εsτ2|∂xη|2ξψ + εs2τ2|∂xη|2ξ2ψ + 2εsτ∂xηξe
−sα∂xz.

Combining (8.5.8) with the fact that

2εsτ∂xηξe
−sα∂xz = 2εsτ∂xηξ∂xψ − 2εs2τ2|∂xη|2ξ2ψ,

we deduce that ψ satisfies (8.5.6).
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We now argue as in [26, 150], but paying extra attention to keep track of the boundary terms
at junctions. In what follows, we use the notation (Liψ)j for the j-th term in the expression of Liψ
given above. From (8.5.6), we have

∥L1ψ + L2ψ∥2L2(Q) = ∥L1ψ∥2L2(Q) + ∥L2ψ∥2L2(Q) + 2(L1ψ,L2ψ)L2(Q) = ∥L3ψ∥2L2(Q).

In the next two steps, we estimate the product

(L1ψ,L2ψ)L2(Q) =
∑
e∈E

((L1ψ)
e, (L2ψ)

e)L2((0,T )×e).

In particular, we show that, for a suitable choice of the parameters τ and s, the choice of the weights
in (8.5.2) makes it positive up to a term depending on the normal derivative.

Step 1. Estimates in the interior. In this step, we perform integrations by parts in the spirit of
[26, 150], but keeping track of the boundary terms appearing at the vertices of the graph.

First, we note that

(8.5.9) ((L1ψ)1, (L2ψ)1)L2(Q) = −2ε2s3τ4
∫∫

Q
a−1|∂xη|4ξ3|ψ|2 dx dt.

Secondly, we compute

((L1ψ)2,(L2ψ)1)L2(Q)

= −2ε2s3τ3
∫∫

Q
a−1|∂xη|2∂xηξ3ψ∂xψ dx dt

= 3ε2s3τ4
∫∫

Q
a−1|∂xη|4ξ3|ψ|2 dx dt

+ ε2s3τ3
∫∫

Q
a−1∂x((∂xη)

3)ξ3|ψ|2 dx dt

− ε2s3τ3
∑
v∈V

∑
e∈E(v)

∫ T

0
(ae)−1|∂ne(v)η

e|2∂ne(v)η
e(ξe)3|ψe|2(t, v) dt

= 3ε2s3τ4
∫∫

Q
a−1|∂xη|4ξ3|ψ|2 dx dt

+ o

(
ε2s3τ4

∫∫
Q
ξ3|ψ|2 dx dt

)
−ε2s3τ3

∑
v∈V

∑
e∈E(v)

∫ T

0
(ae)−1|∂ne(v)η

e|2∂ne(v)η
e(ξe)3|ψe|2(t, v) dt

︸ ︷︷ ︸
=:J1

.

(8.5.10)

Here, we introduced the o(·) notation because, for all ε > 0, we have that, if τ ≥
ε−1maxe∈E{3(ae)−1}∥∂2xxη(∂xη)2∥L∞(E), then

ε2s3τ3
∫∫

Q
a−1∂x((∂xη)

3)ξ3|ψ|2 dx dt ≤ εε2s3τ4
∫∫

Q
ξ3|ψ|2 dx dt

Thirdly, integration by parts (with respect to the time variable) yields, using (8.5.5), for τ ≥ C
and s ≥ C(T + T 2)ε−1,

(8.5.11)

((L1ψ)3, (L2ψ)1)L2(Q) = εs2τ2
∫∫

Q
|∂xη|2ξ2ψ∂tψ dx dt

= −εs2τ2
∫∫

Q
|∂xη|2∂tξξ|ψ|2 dx dt

= o

(
ε2s3τ4

∫∫
Q
ξ3|ψ|2 dx dt

)
.
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Indeed, because of |∂xη| ∈ [δ, 1] and the properties of the weights, we have that s ≥ ε−1ε−1T and
τ ≥ 1 imply

εs2τ2
∫∫

Q
|∂xη|2|∂tξ|ξ|ψ|2 dx dt ≤ εε2s3τ4

∫∫
Q
ξ3|ψ|2 dx dt.

Next, we have

((L1ψ)1, (L2ψ)2)L2(Q) = −2ε2sτ2
∫∫

Q
a−1|∂xη|2ξψ∂2xxψ dx dt

= 2ε2sτ2
∫∫

Q
a−1|∂xη|2ξ|∂xψ|2 dx dt

+ 2ε2sτ2
∫∫

Q
a−1∂x(|∂xη|2ξ)ψ∂xψ dx dt

−
∑
v∈V

∑
e∈E(v)

2ε2sτ2
∫ T

0
(ae)−1|∂ne(v)η

e|2ξeψe∂ne(v)ψ
e(t, v) dt

︸ ︷︷ ︸
=:J2

.

(8.5.12)

Using Cauchy-Schwarz’ inequality, owing to the properties of η and the weights, we obtain that∣∣∣∣2ε2sτ2 ∫∫
Q
a−1∂x(|∂xη|2ξ)ψ∂xψ dx dt

∣∣∣∣ = ∣∣∣∣2ε2sτ3 ∫∫
Q
a−1|∂xη|2∂xηξψ∂xψ dx dt

+ 2ε2sτ2
∫∫

Q
a−1∂x(|∂xη|2)ξψ∂xψ dx dt

∣∣∣∣
≤ Cε2τ2

∫∫
Q
|∂xψ|2 dx dt+ Cε2s2τ4

∫∫
Q
ξ2|ψ|2 dx dt;

and thus

(8.5.13)

2ε2sτ2
∫∫

Q
a−1∂x(|∂xη|2ξ)ψ∂xψ dx dt

= o

(
ε2sτ2

∫∫
Q
ξ|∂xψ|2 dx dt

)
+ o

(
ε2s3τ4

∫∫
Q
ξ3|ψ|2 dx dt

)
,

where we have used the fact 1 ≤ T 2ξ.
In addition, we compute

((L1ψ)2, (L2ψ)2)L2(Q) = −2ε2sτ

∫∫
Q
a−1∂xηξ∂

2
xxψ∂xψ dx dt

= ε2sτ2
∫∫

Q
a−1|∂xη|2ξ|∂xψ|2 dx dt+ o

(
ε2sτ2

∫∫
Q
ξ|∂xψ|2 dx dt

)
−
∑
v∈V

∑
e∈E(v)

ε2sτ

∫ T

0
(ae)−1∂ne(v)η

eξe|∂ne(v)ψ
e|2(t, v) dt

︸ ︷︷ ︸
=:J3

.

(8.5.14)

Moreover, with (8.5.5), we can prove that

(8.5.15)

((L1ψ)3, (L2ψ)2)L2(Q) = ε

∫∫
Q
∂2xxψ∂tψ dx dt

= −ε
2

∫∫
Q
∂t(|∂xψ|2) +

∑
v∈V

∑
e∈E(v)

ε

∫ T

0
∂ne(v)ψ

e∂tψ
e(t, v) dt

︸ ︷︷ ︸
=:J4

= J4.
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Finally, with analogous computations, using (8.5.3), we obtain that

(L1ψ, (L2ψ)3 + (L2ψ)4)L2(Q)

= o

(
ε2s3τ4

∫∫
Q
ξ3|ψ|2 dx dt

)
+
∑
v∈V

∑
e∈E(v)

sτ

∫ T

0
ξe∂ne(v)η

e

(
sε∂tα

e − |be|2

4

)
|ψe|2(t, v) dt

︸ ︷︷ ︸
=:J5

.
(8.5.16)

Summing up, we have proved that

3ε2sτ2
∫∫

Q
a−1|∂xη|2ξ|∂xψ|2 dx dt+ ε2s3τ4

∫∫
Q
a−1|∂xη|4ξ3|ψ|2 dx dt+

5∑
i=1

Ji

= (L1ψ,L2ψ)L2(Q) + o

(
ε2s3τ4

∫∫
Q
ξ3|ψ|2 dx dt

)
+ o

(
ε2sτ2

∫∫
Q
ξ|∂xψ|2 dx dt

)
.

From here, we obtain that, for all ε > 0, λ ≥ Cδ, and s ≥ Cδ(T + T 2)ε−1,

(8.5.17) C−1
δ

(
ε2sτ2

∫∫
Q
ξ|∂xψ|2 dx dt+ ε2s3τ4

∫∫
Q
ξ3|ψ|2 dx dt

)
+

5∑
i=1

Ji ≤ (L1ψ,L2ψ)L2(Q).

Step 2. Estimation of the boundary terms. In this part of the proof, we estimate the boundary
terms J1, . . . , J5. In particular, we need to make a distinction between exterior vertices, which can
be treated as in [26, 150] (since they correspond to the boundary terms appearing in a classical
IBVP), and junctions, which require new more precise computations. As we are going to see, the
terms corresponding to the exterior vertices v ∈ V∂ either vanish (due to the zero Dirichlet boundary
condition in (8.2.8)) or can be moved to the right-hand side of the Carleman estimate (corresponding
to the “classical” boundary terms that appear in [150]). The interior junction terms at v ∈ V0 are
more critical: they are on the left-hand side of the Carleman estimate and we need to show that
they are non-negative. To this end, we will rely on the properties of the auxiliary function η and
on the Kirchhoff junction condition (8.2.8)4 (which, in turn, was formulated thanks to (1.2.3)). At
the end of the computations, all these boundary terms at the junction can be absorbed into the
expression on the right-hand side of (8.5.26), which is non-negative.

To begin with, let us deal with the boundary term J1 in (8.5.10). If v ∈ V∂ , we get that ψ(t, v) = 0
from the Dirichlet boundary conditions. Otherwise, for each interior node v ∈ V0, we use property
(3) of η and choose δ small enough to get

(8.5.18)

− ε2s3τ3
∫ T

0

 ∑
e∈E(v)

(ae)−1|∂ne(v)η
e|2∂ne(v)η

e

 (ξe)3|ψe|2(t, v) dt

≥ C−1ε2s3τ3
∫ T

0
(ξe)3|ψe|2(t, v) dt.

Taking into account (8.5.3) and ξT 2 ≥ 1, we obtain

J5 = o

(
ε2s3τ3

∫ T

0
(ξe)3|ψe|2(t, v) dt

)
.

Next, let us study the boundary term J3 given in (8.5.14) for each v ∈ V, i.e.

−ε2sτ
∫ T

0

∑
e∈E(v)

(ae)−1ξe∂ne(v)η
e|∂ne(v)ψ

e|2(t, v) dt.

If v ∈ V∂ , then there exists only one edge e ∈ E(v) and

−ε2sτ
∫ T

0
ξe(ae)−1∂ne(v)η

e|∂ne(v)ψ
e|2(t, v) dt ≥ −Cε2sτ

∫ T

0
ξe|∂ne(v)ψ

e|2(t, v) dt.
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On the other hand, if v ∈ V0, by the construction of η, there exists an edge ẽ ∈ E(v) (the edge
joining the previous layer to v) for which ∂nẽη

ẽ(v) = δ and ∂neηe(v) = −1 for all e ∈ E(v) \ {ẽ}.
Then,

− ε2sτ

∫ T

0

∑
e∈E(v)

(ae)−1ξe∂ne(v)η
e|∂ne(v)ψ

e|2(t, v) dt

= ε2sτ

∫ T

0

∑
e∈E(v)\{ẽ}

(ae)−1ξe|∂ne(v)ψ
e|2(t, v) dt− δε2sτ

(
aẽ
)−1

∫ T

0
ξẽ|∂nẽψẽ|2(t, v) dt.

(8.5.19)

We then have to absorb the boundary term of the edge ẽ; to this end, we use the fact that ψ = zεe
−sα

to get

δε2sτ
(
aẽ
)−1

∫ T

0
ξẽ|∂nẽ(v)ψ

ẽ|2(t, v) dt

≤ 2δε2s3τ
(
aẽ
)−1

∫ T

0
ξẽ|∂nẽ(v)α

ẽ|2|ψẽ|2(t, v) dt

+ 2δsτ
(
aẽ
)−1

∫ T

0
ξẽe−2sαẽ |ε∂nẽ(v)z

ẽ
ε |2(t, v) dt

= o

(
ε2s3τ3

∫ T

0
(ξẽ)3|ψẽ|2(t, v) dt

)
+ 2δsτ

(
aẽ
)−1

∫ T

0
ξẽe−2sαẽ |ε∂nẽ(v)z

ẽ
ε |2(t, v) dt.

(8.5.20)

Since ∂ne(v)z
e
ε = ∂ne(v)ψ

eesα + s∂ne(v)α
eψeesα

e
, we compute (using the fact that α and ξ are contin-

uous at the junctions)

δε2sτ

∫ T

0
ξẽe−2sαẽ

∣∣∣∣∣∣
∑

e∈E(v)\{ẽ}

(ae)−1∂ne(v)z
e
ε

∣∣∣∣∣∣
2

(t, v) dt

≤ δε2sτ

∫ T

0

∑
e∈E(v)\{ẽ}

(ae)−1ξe
∣∣∂ne(v)ψ

e
∣∣2 (t, v) dt+ Cδε2s3τ3

∫ T

0
(ξe)3|ψe|2(t, v) dt.

(8.5.21)

Summing up, taking δ small enough, we obtain

(8.5.22)

J1 + J3 + J5 ≥ C−1
∑
v∈V0

ε2s3τ3
∫ T

0
(ξe)3|ψe|2(t, v) dt

+ C−1
∑
v∈V0

ε2sτ

∫ T

0

∑
e∈E(v)\{ẽ}

ξe|∂ne(v)ψ
e|2(t, v) dt

− C
∑
v∈V∂

ε2sτ

∫ T

0
ξe|∂ne(v)ψ

e|2(t, v) dt.

With these considerations, we can also absorb J2, using (8.5.22) by Cauchy-Schwarz’ inequality, for
s ≥ C(T + T 2)ε−1 large enough and δ > 0 small enough. Notably, we have to estimate∫ T

0
(ae)−1|∂ne(v)η

e|2ξeψe∂ne(v)ψ
e(t, v) dt,

for all v ∈ V and e ∈ E(v). If v ∈ V0, this term is null by the Dirichlet boundary conditions. If
v ∈ V∂ , we take into account that, by the property (3) of η, there exists an edge ẽ ∈ E(v) (the
edge joining the previous layer to v) for which ∂nẽη

ẽ(v) = δ and such that ∂neηe(v) = −1 for all
e ∈ E(v) \ {ẽ}. If e ∈ E(v) \ {ẽ}, as T 2ξ ≥ 1, we have

2ε2sτ2
∫ T

0
(ae)−1|∂xηe|2ξeψe∂ne(v)ψ

e(t, v) dt
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≤ Cε2τ

∫ T

0
|∂ne(v)ψ

e(t, v)|2 dt+ Cε2s2τ3
∫ T

0
(ξe)2|ψe(t, v)|2 dt

= o

(
ε2sτ

∫ T

0
ξe|∂ne(v)ψ

e|2(t, v) dt
)
+ o

(
ε2s3τ3

∫ T

0
(ξe)3|ψe|2(t, v) dt

)
.

Moreover, as δ ∈ (0, 1], using the continuity at the junctions, we estimate the boundary term of the
edge ẽ as follows:

2ε2sτ2
∫ T

0
(aẽ)−1|∂xηẽ|2ξẽψẽ∂nẽ(v)ψ

ẽ(t, v) dt = 2δ2ε2sτ2
∫ T

0
(ãe)−1ξẽψẽ∂nẽ(v)ψ

ẽ(t, v) dt

= o

(
ε2s3τ3

∫ T

0
(ξe)3|ψe|2(t, v) dt

)
+ o

ε2sτ ∫ T

0

∑
e∈E(v)\{ẽ}

ξe|∂ne(v)ψ
e|2(t, v) dt

 .

This is done with Cauchy-Schwarz’ inequality, being the normal derivative estimated with the help
of (8.5.20) and (8.5.21). Consequently, for δ small enough,
(8.5.23)

J2 = o

∑
v∈V0

ε2s3τ3
∫ T

0
ξ3|ψe|2(t, v) dt

+ o

∑
v∈V0

ε2sτ

∫ T

0

∑
e∈E(v)\{ẽ}

ξe|∂ne(v)ψ
e|2(t, v) dt

 .

To conclude, let us study the boundary term J4 in (8.5.15). If v ∈ V∂ , then ∂tψ = 0 because of
the Dirichlet boundary conditions. Otherwise, if v ∈ V0, from (8.2.8)4, we obtain

ε
∑
e∈E(v)

∫ T

0
∂ne(v)ψ

e∂tψ
e(t, v) dt

= εs
∑
e∈E(v)

∫ T

0
∂ne(v)ξ

ee−sα
e
zeε∂t(e

−sαe
zeε)(t, v) dt

= −εs2
∑
e∈E(v)

∫ T

0
∂ne(v)ξ

e∂tα
ee−2sαe |zeε |2(t, v) dt

+ εs
∑
e∈E(v)

∫ T

0
∂ne(v)ξ

ee−2sαe ∂t(|zeε |2)
2

(t, v) dt

= −εs2
∑
e∈E(v)

∫ T

0
∂ne(v)ξ

e∂tα
e|ψe|2(t, v) dt

− εs
∑
e∈E(v)

∫ T

0

[
∂t(∂ne(v)ξ

e)− 2s∂tα
e
] |ψe|2

2
(t, v) dt

= o

(
ε2s3τ3

∫ T

0
(ξe)3|ψe|2(t, v) dt

)
.

(8.5.24)

To sum up the results of this step, we have proved that, for ε > 0, τ ≥ C, s ≥ C(T + T 2)ε−1,
and δ small enough, the following estimate holds:

5∑
ℓ=1

Jℓ ≥ C−1
∑
v∈V0

ε2s3τ3
∫ T

0
(ξe)3|ψe|2(t, v) dt

+ C−1
∑
v∈V0

ε2sτ

∫ T

0

∑
e∈E(v)\{ẽ}

ξe|∂ne(v)ψ
e|2(t, v) dt

− Cε2sτ

∫ T

0

∑
v∈V∂

ξe|∂ne(v)ψ
e|2(t, v) dt.

(8.5.25)
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Thus, if we fix δ = δ0 sufficiently small such that (8.5.25) holds, combining (8.5.17) and (8.5.25), we
get

(8.5.26)

ε2s3τ4
∫∫

Q
ξ3|ψ|2 dx dt+ ε2sτ2

∫∫
Q
ξ|∂xψ|2 dx dt

+
∑
v∈V0

ε2s3τ3
∫ T

0
(ξe)3|ψe|2(t, v) dt+

∑
v∈V0

ε2sτ

∫ T

0

∑
e∈E(v)\{ẽ}

ξe|∂ne(v)ψ
e|2(t, v) dt

≤ Cδ0

(L1ψ,L2ψ)L2(Q) + ε2sτ

∫ T

0

∑
v∈V∂

ξe|∂ne(v)ψ
e|2(t, v) dt

 .

Step 3. Conclusion of the proof. From (8.5.26), it is classical to obtain (8.5.4) as in [26, 150]: we
add C

2 (∥L1ψ∥2L2(Q)+∥L2ψ∥2L2(Q)) to both sides of (8.5.26); we write ∥L1ψ+L2ψ∥2L2(Q) = ∥L3ψ∥2L2(Q),

whose right-hand side can be estimated as

∥L3ψ∥2L2(Q) =

∫∫
Q

∣∣∣εsτa−1/2∂2xxηξψ − εsτ2a−1/2|∂xη|2ξψ
∣∣∣2 dx dt

= o

(
ε2s3τ4

∫∫
Q
ξ3|ψ|2 dx dt

)
;

and we thus deduce that

ε2s3τ4
∫∫

Q
ξ3|ψ|2 dx dt+ ε2sτ2

∫∫
Q
ξ|∂xψ|2 dx dt ≤ Cδ0ε

2sτ

∫ T

0

∑
v∈V∂

ξe|∂ne(v)ψ
e|2(t, v) dt.

From this inequality, by recalling the identity zε = esαψ and the Dirichlet boundary conditions
satisfied by zε, we conclude

ε2s3τ4
∫∫

Q
e−2sαξ3|zε|2 dx dt+ ε2sτ2

∫∫
Q
e−2sαξ|∂xzε|2 dx dt+ o

(
ε2s3τ4

∫∫
Q
e−2sαξ3|zε|2 dx dt

)
≤ Cδ0

∑
v∈V∂

ε2sτ

∫ T

0
e−2sαe

ξe|∂ne(v)z
e
ε |2(t, v) dt,

which yields (8.5.4). □

As a consequence of Proposition 8.5.2, we deduce the following observability inequality.

Corollary 8.5.1 (Observability inequality in one unit of time). Let G = (V, E) be a tree-shaped
network and let us assume that (1.2.3) holds. Let us fix T > 1. Then, there exists a constant C > 0
(independent of T ) such that, for all φT ∈ L2(E), the solution φε of (1.2.4) satisfies

(8.5.27) ∥φε(T − 1, ·)∥2L2(E) ≤ eC/ε
∑
v∈V∂

∫ T

T−1
|∂ne(v)φ

e
ε(t, v)|2 dt.

Proof. It suffices to prove that, for all T > 1, there exists C > 0 (independent of T ) such that,
for all zT ∈ L2(E), the solution zε of (8.2.8) satisfies

∥zε(T − 1, ·)∥2L2(E) ≤ eC/ε
∑
v∈V∂

∫ T

T−1
|∂ne(v)z

e
ε(t, v)|2 dt.

Indeed, taking into account (8.2.7) and the Dirichlet boundary conditions of φε, we can then compute

∥φε(T − 1, ·)∥2L2(E) ≤ eC1/ε∥zε(T − 1, ·)∥2L2(E)

≤ e(C1+C)/ε
∑
v∈V∂

∫ T

T−1
|∂ne(v)z

e
ε(t, v)|2 dt

≤ e(C1+C+C2)/ε
∑
v∈V∂

∫ T

T−1
|∂ne(v)φ

e
ε(t, v)|2 dt.
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Let χ be a smooth cut-off function supported in (−∞, 3/4] such that χ(ξ) = 1 for all ξ ≤ 1/4.
The function ψε(t, ·) = zε(t, ·)χ(t− T + 1) satisfies

−ae∂tψeε(t, x)− ε∂2xxψ
e
ε(t, x) +

|be|2
4ε ψ

e
ε(t, x)

= −aezε(t)χ′(t− T + 1), t ∈ (0, T ), x ∈ e, ∀e ∈ E ,
ψeε(t, v) = 0, t ∈ (0, T ), v ∈ V∂ ,
ψe1ε (t, v) = ψe2ε (t, v), t ∈ (0, T ), v ∈ V0, ∀e1, e2 ∈ E(v),∑

e∈E(v) ε∂ne(v)ψ
e
ε(t, v) = 0, t ∈ (0, T ), v ∈ V0,

ψeε(T, x) = 0, x ∈ e, e ∈ E .
Thus, multiplying the first equation by ψeε and integrating in (T − 1, T )× E yields

1

2

∫
E
a|ψε(T − 1, x)|2 dx+

∫∫
(T−1,T )×E

|b|2

4ε
|ψε|2 dx dt+ ε

∫∫
(T−1,T )×E

|∂xψε|2 dx dt

= −
∫∫

(T−1,T )×E
a|zε|2χ′(t− T + 1)χ(t− T + 1) dtdx.

Consequently, since ψε(T − 1, ·) = zε(T − 1, ·)χ(0) = zε(T − 1, ·) and the support of χ′ is in
[
1
4 ,

3
4

]
,

we deduce∫
E
a|ψε(T − 1, x)|2 dx ≤ −2

∫∫
(T−3/4,T−1/4)×E

a|zε|2χ′(t− T + 1)χ(t− T + 1) dx dt

≤ C

∫∫
(T−3/4,T−1/4)×E

|zε|2 dx dt.

It thus remains to prove that∫∫
(T−3/4,T−1/4)×E

|zε|2 dx dt =
∫∫

(1/4,3/4)×E
|zε(t̃+ T − 1, x)|2 dx dt̃

≤ eC/ε
∑
v∈V∂

∫ 1

0
|∂ne(v)z

e
ε(t̃+ T − 1, v)|2 dt̃

= eC/ε
∑
v∈V∂

∫ T

T−1
|∂ne(v)z

e
ε(t, v)|2 dt,

which follows from Proposition 8.5.2—used with T = 1, δ sufficiently small, τ = C̃, and s = C̃ε−1

(where C̃ is a sufficiently large constant). □

8.5.3. Proof of Claim (2) of Theorem 8.2.3. Using the observability inequality in Corollary
8.5.1, we now conclude the proof of the main result.

Proof of Theorem 8.2.3, Claim (2). This claim is a direct consequence of Corollary 8.5.1
and Proposition 8.5.1. In fact, combining the decay estimate (8.5.1) and the observability inequality
(8.5.27), we conclude that

∥φε(0, ·)∥2L2(E) ≤ e(C−cT )/ε∥φε(T − 1, ·)∥2L2(E) ≤
∑
v∈V∂

e(C−cT )/ε
∫ T

T−1
|∂ne(v)φ

e
ε(t, v)|2 dt.

(recalling that the constants C > 0 may change from term to term). As a consequence, we obtain
that (8.2.2) holds for a sufficiently large time T > 0. □

Remark 8.5.1 (On the controllability of (1.2.1)). We may prove the controllability of (1.2.1)
as a byproduct of Proposition 8.5.2. Reasoning as Corollary 8.5.1, we obtain that there exists a
constant CT > 0, depending on the time variable, such that

∥φε(0, ·)∥2L2(E) ≤ eCT /ε
∑
v∈V∂

∫ T

0
|∂ne(v)φ

e
ε(t, v)|2 dt,

where φε is the of (1.2.4) with φT ∈ L2(E). With this observability inequality, Lemma 8.2.1 yields
the claimed controllability result.
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Remark 8.5.2 (The case of non-constant coefficients). The same techniques that we have
developed in this Chapter apply to prove analogous results if the coefficients depend on the time and
space variables as long as a ∈ C1

pw([0, T ] × E), minE a > 0, b ∈ C1
pw([0, T ] × E), minE b > 0, and∑

e∈E(v) n
e(v)be(v) = 0 for all v ∈ V0 (see Remark 8.3.1 for the necessity of the positivity of b). In

fact, the decay property is proved with the transformation

(8.5.28) zeε := φeε exp


∫ x

0
be(ξ) dξ + ce

2ε

 ,

where ce are the right constants given by Lemma 8.1.1 so that
∫ x
0 b(ξ) dξ + ce is continuous and we

used the parametrization of each edge e as a segment. With this change of variables, we obtain the
system

(8.5.29)



−ae∂tzeε(t, x) +
(
|be|2
4ε − ∂xbe

2

)
zeε(t, x)

= ε∂2xxz
e
ε(t, x), t ∈ (0, T ), x ∈ e, ∀e ∈ E ,

zeε(t, v) = 0, t ∈ (0, T ), v ∈ V∂ ,
ze1ε (t, v) = ze2ε (t, v), t ∈ (0, T ), v ∈ V0, ∀e1, e2 ∈ Eout(v),∑

e∈E(v) ε∂ne(v)z
e
ε(t, v) = 0 t ∈ (0, T ), v ∈ V0,

zε(0, x) = z0(x), x ∈ e, ∀e ∈ E .
Then, the computations for decay and Carleman estimates are still valid; indeed, we just get some
lower-order terms that can be easily absorbed.





CHAPTER 9

Controllability of entropy solutions of scalar conservation laws at a
junction via Lyapunov methods

The main result of this Chapter concerns the controllability of entropy solutions of (1.1.18) to a
prescribed trajectory by means of a Lyapunov-type approach based on [122].

Theorem 9.0.1 (Controllability of entropy solutions on star-shaped graphs). Let us assume that
hypotheses (F1)–(F3) are satisfied and let v = (v1, . . . , vn+m) be the entropy solutions of (1.2.5) (in
the sense of Definition 9.1.1) with initial data v0,ℓ ∈ L∞(Iℓ;R+) for ℓ ∈ {1, . . . , n+m} and boundary
data vb,i ∈ L∞((0,+∞);R+) for i ∈ {1, . . . , n} (v is a target trajectory). Let us consider any other
initial data u0,ℓ ∈ L∞(Iℓ;R+) for ℓ ∈ {1, . . . , n+m}. Then, the entropy solution u = (u1, . . . , un+m)
of (1.2.5) corresponding to initial data u0,ℓ and the in-flux boundary data of v, i.e. ub,i ≡ vb,i for all
i ∈ {1, . . . , n}, satisfies

uℓ(t, x) = vℓ(t, x), t > T̂ , a.e. x ∈ Iℓ, ∀ℓ ∈ {1, . . . , n+m},

where the control time T̂ is given by T̂ := maxi∈{1,...,n}{Li/ci}+maxj∈{n+1,...,n+m}{Lj/cj}.

Remark 9.0.1 (Null-controllability). If we assume
∑n

i=1 fi(0) =
∑n+m

j=n+1 fj(0) (or, alternatively,

fℓ(0) = 0 for all ℓ ∈ {1, . . . , n+m}), then 0 is an admissible entropy solution of (1.2.5) with u0 ≡ 0
and ub,i ≡ fi(0) (or ub,i ≡ 0, respectively). Then, considering v(t, ·) ≡ 0 for all t ≥ 0, Theorem 9.0.1
can be seen as a null-controllability result: we steer the system to the zero state by considering the
boundary control ub,i ≡ fi(0) (or ub,i ≡ 0, respectively).

Remark 9.0.2 (Controllability of entropy solutions on tree-shaped graphs). We can prove a
similar result on a tree-shaped network arguing by induction as in Chapter 8. In that case, in the
statement of Theorem 9.0.1, we need to introduce a suitable notion of maximal propagation time
required for information to flow out of the tree (similarly to Chapter 8).

Finally, we prove a stabilization result that provides some robustness estimate for Theorem
9.0.1 and is the first step towards the analysis of the cost of controllability for conservation laws on
networks in the vanishing viscosity singular limit (cf. Chapter 8 for the corresponding result in
the linear setting).

Theorem 9.0.2 (Exponential stabilization for the viscous problem). Let us assume that hypothe-
ses (F1) and (F3) are satisfied and n ≤ m. Let uε = (uε,1, . . . , uε,n+m) and vε = (vε,1, . . . , vε,n+m) be
classical solutions of (1.2.6) (in the sense of [79, Theorem 1.2]) with initial data u0,ε,ℓ ∈ C∞(Iℓ;R+)
and v0,ε,ℓ ∈ C∞(Iℓ;R+), respectively, and same boundary data ub,ℓ ≡ vb,ℓ ∈ L∞((0,+∞);R+) for all
ℓ ∈ {1, . . . , n+m}. Then,

n+m∑
ℓ=1

∥uε,ℓ(t, ·)− vε,ℓ(t, ·)∥L1(Iℓ) ≤ e−
cα
2ε ((1−

α
2 )ct−L)

n+m∑
ℓ=1

∥uε,0,ℓ − vε,0,ℓ∥L1(Iℓ), t > 0,

for any α ∈ (0, 1], c := minℓ∈{1,...,n+m} cℓ, and L := maxi∈{1,...,n} Li +maxj∈{n+1,...,n+m} Lj.

We remark that the role of the assumption n ≤ m in the energy dissipation mechanism for
viscous conservation laws at a junction is also discussed in [57].

9.1. Entropy admissible solutions for scalar conservation laws on networks

In this Section, following [19], we review some known results on the entropy formulation for
conservation laws at a junction. We remark that the theory of [19] was developed in the case of

115
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bell-shaped fluxes; however, the results still apply under the assumption (F3), which is the setting
of the more recent works [202, 129].

Let us start by considering an IBVP on the half-line for a scalar conservation law with Lipschitz
continuous flux: 

∂tu(t, x) + ∂xf(u(t, x)) = 0, t > 0, x > 0,

u(0, x) = u0(x), x > 0,

u(t, 0) = ub(t), t > 0,

(9.1.1)

We say that u is an entropy solution of (9.1.1) if it is a Kružkov entropy solution in the interior of
the half-plane R+ × R+, i.e.

∂t|u− k|+ ∂x (sign(u− k)(f(u)− f(k))) ≤ 0

holds in the sense of distributions for every k ∈ R, and if it satisfies the boundary condition in the
sense of Bardos–LeRoux–Nédélec (see [27, 22]), i.e. the strong trace u(t, 0+) satisfies

f(u(t, 0+)) = G(ub(t), u(t, 0+)),

where G denotes the Godunov numerical flux associated to f (see [161, Eq. (3.8)]), which is given
by

G(a, b) :=


min
ξ∈[a,b]

f(ξ) if a ≤ b,

max
ξ∈[b,a]

f(ξ) if a ≥ b.

Due to the results in [209, 231], for a Lipschitz continuous flux f such that f ′ is not identically
zero on any interval (cf. assumptions (F1)–(F2)), the function u(t, ·) possesses one-sided limits; in
particular, we can define the strong trace of u on R+ × {0} which is mentioned above. The Bardos–
LeRoux–Nédélec condition is generally recognized as the correct interpretation of the Dirichlet
boundary condition for hyperbolic conservation laws. This is justified in particular by convergence
of vanishing viscosity or numerical approximations of the boundary value problem: indeed, it may
happen that the limit (hyperbolic) problem satisfies an effective boundary condition that may
differ from the formal boundary condition prescribed for the approximation level due to viscous or
numerical boundary layer effects (see [22, 219] for a more detailed discussion of boundary conditions
for hyperbolic conservation laws).

With these preliminary notions, we can present the notions of entropy-admissible solutions for
conservation laws on networks studied in [19]. We remark that there the authors considered Ii = R−
and Ij = R+, so we need to extend [19, Definition 1.2] slightly to deal with the case of Iℓ being
segments. On the other hand, we restrict ourselves to the setting of assumptions (F1)–(F3).

Definition 9.1.1 (Entropy admissible solution: formulation using Godunov fluxes at the
junction). Given u0,ℓ ∈ L∞(Iℓ; R+) and ub,i ∈ L∞((0,+∞);R+), we say that u = (u1, . . . , un+m) is
an entropy solution of (1.2.5) if uℓ ∈ L∞((0,+∞)× Iℓ) for all ℓ ∈ {1, . . . , n+m} and the following
conditions are satisfied.

(1) For all ℓ ∈ {1, . . . , n+m}, the function uℓ is an entropy solution of the conservation law in
the interior of Iℓ, i.e. for all non-negative test functions φℓ ∈ C∞

c ([0,+∞) × Iℓ;R+) and
for any constant k ∈ R, there holds∫ ∞

0

∫
Iℓ

(η(uℓ, k)∂tφℓ + qℓ(uℓ, k)∂xφℓ) dx dt+

∫
Iℓ

η(u0,ℓ, k)φℓ(0, x) dx ≥ 0,

where η(uℓ, k) := |uℓ − k| and qℓ(uℓ, k) := sign(uℓ − k)(fℓ(uℓ)− fℓ(k)).
(2) The boundary condition in the exterior vertices of the network is satisfied in the sense of

Bardos–LeRoux–Nédélec, i.e.

fi(ui(t,−Li)) = Gi(ub,i(t), ui(t,−Li)), a.e. t > 0, i ∈ {1, . . . , n},

where Gi is the Godunov flux associated with fi.
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(3) The junction condition is satisfied in the following sense: there exists a function p ∈
L∞((0,+∞);R+) such that

fi(ui(t, 0−)) = Gi(ui(t, 0−), p(t)), a.e. t > 0, i ∈ {1, . . . , n},
fj(uj(t, 0+)) = Gj(p(t), uj(t, 0+)), a.e. t > 0, j ∈ {n+ 1, . . . , n+m},

and the conservativity condition

n∑
i=1

Gi(ui(t, 0−), p(t)) =

n+m∑
j=n+1

Gj(p(t), uj(t, 0+)), for a.e. t > 0

holds.

Remark 9.1.1 (The case of monotone fluxes). Under hypothesis (F3), the flux function is
strictly increasing and the Godunov flux is given by Gi(a, b) = fi(a). As a consequence, in Point
(2) of Definition 9.1.1, we cannot impose a boundary condition at x = Lj, but only at x = −Li for
i ∈ {1, . . . , n}, which is given by

fi(ui(t,−Li)) = fi(ub,i(t)), i ∈ {1, . . . , n}.
We also note that, being the flux invertible, we can equivalently write

ui(t,−Li) = ub,i(t), i ∈ {1, . . . , n}.

Moreover, Point (3) reduces to

fj(uj(t, 0+)) = fn+1(un+1(t, 0+)), j ∈ {n+ 1, . . . , n+m},
n∑
i=1

fi(ui(t, 0−)) =
n+m∑
j=n+1

fj(uj(t, 0+)).

The second line indicates the conservation of mass; the first one indicates that the entropy-
admissibility condition amounts to requiring an equi-distribution of the flux coming out of the junction.

Definition 9.1.1 can be equivalently reformulated in terms of an adapted entropy inequality (see
[19, Definition 2.10]).

Definition 9.1.2 (Entropy admissible solution: formulation using adapted entropies at the
junction). Given u0,ℓ ∈ L∞(Iℓ;R+) and ub ∈ L∞((0,+∞);R+), we say that u = (u1, . . . , un+m) is
an entropy solution of (1.2.5) if uℓ ∈ L∞((0,+∞)× Iℓ) for all ℓ ∈ {1, . . . , n+m} and the following
conditions are satisfied.

(1) Points (1) and (2) of Definition 9.1.1 hold.
(2) For any k = (k1, . . . , kn+m) ∈ GV V , uℓ satisfies the adapted entropy inequality on the

network, i.e. for all non-negative test functions φℓ ∈ C∞
c ((0,+∞) × Īℓ;R+) such that

φℓ(t, 0) = φ1(t, 0), there holds

n+m∑
ℓ=1

∫ ∞

0

∫
Iℓ

(
η(uℓ, kℓ)∂tφℓ + qℓ(uℓ, kℓ)∂xφℓ

)
dx dt ≥ 0,

where η(uℓ, kℓ) := |uℓ−kℓ| and qℓ(uℓ, k) := sign(uℓ−kℓ)(fℓ(uℓ)−fℓ(kℓ)). Here, GV V denotes
the vanishing viscosity germ, defined as follows (see [19, Definition 2.1]):

GV V :=


u = (u1, . . . , um+n) : ∃p ≥ 0 such that∑n

i=1Gi (ui, p) =
∑m+n

j=m+1Gj (p, uj) and

Gi (ui, p) = fi (ui) , Gj (p, uj) = fj (uj) ,
∀i ∈ {1, . . . , n}, j ∈ {n+ 1, . . . , n+m}

 .

Under assumptions (F1)–(F3), it can be proven that such entropy solutions exist and are the
limit of a vanishing viscosity approximation process (see [19, Theorem 4.1]) and Godunov-type
numerical schemes (see [19, Theorem 3.3] and also [229] for a more explicit implementation of
the scheme). Moreover, with this entropy formulation, the following uniqueness result holds ([19,
Proposition 3.1]).
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Theorem 9.1.1 (L1-stability of entropy solutions). Let us assume that (F1)–(F3) hold and let
u and v be entropy solutions of (1.2.5) in the sense of Definition 9.1.1 with initial data u0,ℓ, v0,ℓ ∈
L∞(Iℓ;R+) for ℓ ∈ {1, . . . , n +m}, respectively, and same boundary data ub,i ∈ L∞((0,+∞);R+)
for i ∈ {1, . . . , n}. Then,

n∑
i=1

∥ui(t, ·)− vi(t, ·)∥L1(Ii)
+

n+m∑
j=n+1

∥uj(t, ·)− vj(t, ·)∥L1(Ij)

≤
n∑
i=1

∥ui(0, ·)− vi(0, ·)∥L1(Ii)
+

n+m∑
j=n+1

∥uj(0, ·)− vj(0, ·)∥L1(Ij)

for every t > 0. In particular, at most, one entropy solution exists for given initial and boundary
data.

A comparison principle can also be established following [19], which implies that the inf in
assumption (F3) is actually taken in a bounded interval. Moreover, due to the finite speed of
propagation of the waves of hyperbolic conservation laws, these existence and uniqueness results can
be extended inductively to more general networks (see [138]).

9.2. Proof of the controllability of the hyperbolic problem

Before going into the proof of Theorem 9.0.1, we shall outline the strategy with the following
toy problem.1

Remark 9.2.1 (A case study: the IBVP for the linear transport equation). We consider
∂tu(t, x) + c∂xu(t, x) = 0, t > 0, x ∈ (0, L),

u(0, x) = u0(x), x ∈ (0, L),

u(t, 0) = 0, t > 0,

(9.2.1)

where L > 0, c > 0, and u0 ∈ L2((0, L)). Let us define the Lyapunov functional

∀t ≥ 0, Jν(t) :=

∫ L

0
u2e−νx dx,(9.2.2)

with ν > 0, and compute

d

dt
Jν(t) =

d

dt

∫ L

0
u2e−νx dx =

∫ L

0
2u∂tue

−νx dx = −
∫ L

0
2cu∂xue

−νx dx

= −νc
∫ L

0
u2e−νx dx−[u2e−νx]L0︸ ︷︷ ︸

≤0

≤ −νcJν(t).

Gronwall’s lemma yields

Jν(t) ≤ e−cνtJν(0), t ≥ 0.

We then observe that

e−ν∥u(t, ·)∥2L2((0,L)) ≤ Jν(t) ≤ ∥u(t, ·)∥2L2((0,L)).

Putting these together, we have

e−Lν∥u(t, ·)∥2L2((0,L)) ≤ e−cνt∥u0∥L2((0,L)),

i.e.

∥u(t, ·)∥2L2((0,L)) ≤ e−cνt+Lν∥u0∥L2((0,L)) = e−cν(t−
L
c )∥u0∥L2((0,L)).

Therefore, letting ν → +∞, we conclude ∥u(t, ·)∥L2((0,L)) = 0 for t > L/c.

1This example was presented by V. Perrollaz in the conference “VIII Partial Differential Equations, Optimal
Design and Numerics”, 2019.
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In order to make the proof of Remark 9.2.1 rigorous for conservation laws, we need to rely on
the entropy formulation (see [122]). Moreover, to adapt the argument to the case of networked
systems, we need to take particular care of the transmission of information at the junction.

Proof of Theorem 9.0.1. Following the strategy in [122], we define, for each edge i ∈
{1, . . . , n} and j ∈ {n+ 1, . . . , n+m}, the Lyapunov functionals

∀t ≥ 0, Jν,i(t) :=

∫ 0

−Li

|ui(t, x)− vi(t, x)|e−νx dx, Jν,j(t) :=

∫ Lj

0
|uj(t, x)− vj(t, x)|e−νx dx,

for a fixed ν > 0.
Step 1. Analysis of the incoming edges. Given t̄ ≥ 0, for any i ∈ {1, . . . , n}, the edge-wise entropy

condition (see Point (1) of Definition 9.1.1) yields, by a “doubling of variables”-type argument (see
[122]),

0 ≤
∫ t̄

0

∫ 0

−Li

|ui(t, x)− vi(t, x)|∂tφi(t, x) dx dt

+

∫ t̄

0

∫ 0

−Li

sign
(
ui(t, x)− vi(t, x)

)(
fi(ui(t, x))− fi(vi(t, x))

)
∂xφi(t, x) dx dt,

+

∫ 0

−Li

|ui(0, x)− vi(0, x)|φi(0, x) dx,

with φi ∈ C∞
c (R2;R+). Here, we used the existence of a strong trace at the boundary to use point

(2) of Definition 9.1.1.
We consider a sequence {φi,k}k∈N ⊂ C∞

c ([0,+∞)× (−Li, 0);R+) such that

φi,k(t, x) → χ(−∞,t̄](t)e
−νx strongly in L1 as k → +∞.

Then, letting k → ∞, we obtain

Jν,i(t̄) ≤ Jν,i(0)− ν

∫ t̄

0

∫ 0

−Li

e−νx sign
(
ui(t, x)− vi(t, x)

)(
fi(ui(t, x))− fi(vi(t, x))

)
dx dt.(9.2.3)

Here, we needed to use the existence of strong traces at the boundary guaranteed by (F2).
In order to estimate the last term of (9.2.3), we observe that, for all (a, b) ∈ R,

sign(a− b)(fℓ(a)− fℓ(b)) = sign(a− b)

(∫ 1

0
f ′ℓ(b+ s(a− b)) (a− b) ds

)
= |a− b|

∫ 1

0
f ′ℓ(b+ s(a− b)) ds

≥ |a− b|
∫ 1

0
cℓ ds ≥ cℓ|a− b|,

where we used assumption (F3) to bound the f ′ℓ from below. Therefore, we obtain

Jν,i(t̄) ≤ Jν,i(0)− νci

∫ t̄

0
Jν,i(t) dt.

A distributional (differential) Gronwall-type argument along these lines (using φi(t, x) = φ(t)e−νx)
then yields

Jν,i(t̄) ≤ e−ciνt̄Jν,i(0).(9.2.4)

As t̄ was arbitrarily chosen, we can write, for all t ≥ 0,

∥ui(t, ·)− vi(t, ·)∥L1(Ii) ≤ Jν,i(t) ≤ eνLi∥ui(t, ·)− vi(t, ·)∥L1(Ii).(9.2.5)

Thus, plugging (9.2.5) into (9.2.4), we compute

∥ui(t, ·)− vi(t, ·)∥L1(Ii) ≤ Jν,i(t) ≤ eνLi−νcitJν,i(0) ≤ e
−νci

(
t−Li

ci

)
∥u0,i − v0,i∥L1(Ii)

and, letting ν → +∞, we conclude that ui(t, ·)−vi(t, ·) = 0 for t > Li/ci. Therefore, ui(t, ·) = vi(t, ·)
for all i ∈ {1, . . . , n} if t > maxi∈Iin{Li/ci}.
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Step 2. Analysis of the outgoing edges. By Definition 9.1.1 (and Remark 9.1.1), the traces of u
and v at the junction satisfy

fj(uj(t, 0+))− fj(vj(t, 0+)) = fn+1(un+1(t, 0+))− fn+1(vn+1(t, 0+)),(9.2.6)

∀j ∈ {n+ 1, . . . , n+m},
n∑
i=1

(fi(ui(t, 0−))− fi(vi(t, 0−))) =

n+m∑
j=1

(fj(uj(t, 0+))− fj(vj(t, 0+))) .(9.2.7)

From Step 1, for all i ∈ {1, . . . , n}, we have ui(t, 0−)− vi(t, 0−) = 0 for t > maxi∈Iin {Li/ci}. Then,
from (9.2.7), we have

n+m∑
j=1

(fj(uj(t, 0+))− fj(vj(t, 0+))) = 0.

By (9.2.6), this yields uj(t, 0+) = vj(t, 0+) for t > maxi∈Iin {Li/ci} for all j ∈ {n+ 1, . . . , n+m}.
Then, we can repeat the argument of Step 1: we consider the Lyapunov functional

Jν,j(t) =

∫ Lj

0
|uj(t, x)− vj(t, x)|e−νx dx

and prove that uj(t, ·) = vj(t, ·) for all j ∈ {n+ 1, . . . , n+m} if t > maxj∈Iout {Lj/cj} .
Step 3. Conclusion of the argument. Putting Step 1 and Step 2 together, we conclude that, for

any

t > T̂ := max
i∈Iin

{Li/ci}+ max
j∈Iout

{Lj/cj},

it holds

uℓ(t, x) = vℓ(t, x) for a.e. x ∈ Iℓ, ∀ℓ ∈ {1, . . . , n+m}.

□

9.3. Proof of the exponential stabilization of the viscous problem

In this Section, we prove the stabilization result for the viscous problem. As before, we first
illustrate the strategy with a toy problem.

Remark 9.3.1 (The effect of viscosity in the toy problem). Let us consider a viscous regular-
ization of the toy problem (9.2.1):

∂tuε(t, x) + c∂xuε(t, x) = ε∂2xxuε(t, x), t > 0, x ∈ (0, L),

uε(0, x) = u0(x), x ∈ (0, L),

uε(t, 0) = uε(t, L) = 0, t > 0,

where ε > 0, L > 0, c > 0, and u0 ∈ L2((0, L)). Then, we can estimate the Lyapunov functional
(9.2.2) as follows:

Jν(t) ≤ e−(cν−εν2)tJν(0), t ≥ 0.

This yields

∥uε(t, ·)∥L2((0,L)) ≤ e−(cν−εν2)t+Lν∥u0∥L2((0,L)),

which only implies an exponential stabilization result:

∥uε(t, ·)∥L2((0,L)) ≤ e−ν(c−εν)(t−
L

c−εν ) = C1e
−C2t∥u0∥L2((0,L)),

with C1 := eLν and C2 := cν − εν2 (C2 > 0 for νε < c).
As expected, the effect of viscosity prevents us from controlling exactly the state to zero by simply

using null boundary data; instead, at the time t ≥ L/c, still a small exponential tail remains. More
precisely, we let α ∈ (0, 1) and ν = − cα

2ε and compute

∥uε(t, ·)∥L2((0,L)) ≤ e−
cα
2ε ((1−

α
2 )ct−1)∥u0∥L2((0,L)).
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For t > 1
c(1−α) , we deduce

∥uε(t, ·)∥L2((0,L)) ≤ e
− cα2

4ε(1−α) ∥u0∥L2((0,L)).

This estimate is motivated by [10, Lemma 2.1]: it is consistent with the decay of the free solution of
advection-diffusion equations first used in [106] to prove a uniform controllability result.

The same point can be made when considering the controllability/stabilization of numerical
approximations of (9.1.1) that introduce artificial viscosity.

Proof of Theorem 9.0.2. Let uε = (uε,1, . . . , uε,n+m) and vε = (vε,1, . . . , vε,n+m) be classi-
cal solutions of (1.2.6) and let us consider the following Lyapunov functional:

∀t ≥ 0, Jν(t) :=

n∑
i=1

∫ 0

−Li

|uε,i(t, x)− vε,i(t, x)|e−νx dx+

n+m∑
j=n+1

∫ Lj

0
|uε,j(t, x)− vε,j(t, x)|e−νx dx.

Then, as in the proof of Theorem 9.0.1, but using the junction condition of (1.2.6) similarly to [19,
Eq. (89)], we compute

0 ≤−
n∑
i=1

∫ 0

−Li

|uε,i(t̄, x)− vε,i(t̄, x)|e−νx dx−
n+m∑
j=n+1

∫ Lj

0
|uε,j(t̄, x)− vε,j(t̄, x)|e−νx dx

+
n∑
i=1

∫ 0

−Li

|uε,i(0, x)− vε,i(0, x)|e−νx dx+
n+m∑
j=n+1

∫ Lj

0
|uε,j(0, x)− vε,j(0, x)|e−νx dx

− ν

n∑
i=1

∫ t̄

0

∫ 0

−Li

sign
(
uε,i(t, x)− vε,i(t, x)

)(
fi(uε,i(t, x))− fi(vε,i(t, x))

)
e−νx dx dt

− ν

n+m∑
j=n+1

∫ t̄

0

∫ Lj

0
sign

(
uε,j(t, x)− vε,j(t, x)

)(
fj(uε,j(t, x))− fj(vε,j(t, x))

)
e−νx dx dt

+ εν2
n∑
i=1

∫ t̄

0

∫ 0

−Li

|uε,i(t, x)− vε,i(t, x)|e−νx dx dt

+ εν2
n+m∑
j=n+1

∫ t̄

0

∫ Lj

0
|uε,j(t, x)− vε,j(t, x)|e−νx dx dt,

where we got rid of an extra boundary term εν(n − m)
∫ t̄
0 |uε,1(t, 0) − vε,1(t, 0)|dt thanks to the

assumption n ≤ m.
From this, we deduce

Jν(t̄) ≤ Jν(0) + εν2
∫ t̄

0
Jν(t) dt

− ν

∫ t̄

0

n∑
i=1

ci

∫ 0

−Li

|uε,i(t, x)− vε,i(t, x)|e−νx dx dt

− ν

∫ t̄

0

n+m∑
j=n+1

cj

∫ Lj

0
|uε,j(t, x)− vε,j(t, x)|e−νx dx dt.

Taking c := minℓ∈{1,...,n+m} cℓ, we get

Jν(t̄) ≤ Jν(0)− (cν − εν2)

∫ t̄

0
Jν(t) dt.

Along the same lines, a (differential) Gronwall-type argument then yields

Jν(t̄) ≤ e−(cν−εν2)t̄Jν(0).
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This implies the claimed exponential stabilization result for a sufficiently small ν > 0. Indeed, since
t̄ > 0 was arbitrarily chosen, we have, for t ≥ 0,

n∑
ℓ=1

∥uε,ℓ(t, ·)− vε,ℓ(t, ·)∥L1(Iℓ) ≤ e−(cν−εν2)t+Lν
n∑
ℓ=1

∥uε,0,ℓ − vε,0,ℓ∥L1(Iℓ),

where L := maxi∈{1,...,n} Li+maxj∈{n+1,...,n+m} Lj . Therefore, by choosing ν = − cα
2ε for any α ∈ (0, 1],

we compute
n+m∑
ℓ=1

∥uε,ℓ(t, ·)− vε,ℓ(t, ·)∥L1(Iℓ) ≤ e−
cα
2ε ((1−

α
2 )ct−L)

n+m∑
ℓ=1

∥uε,0,ℓ − vε,0,ℓ∥L1(Iℓ).(9.3.1)

□

9.4. Numerical experiments

In this Section, we present some numerical simulations to illustrate our main result. We consider
a star-shaped graph with n = 2 incoming edges of length 1 and m = 3 outgoing edges of length
1 and let fℓ(ξ) := ξ/(1 + ξ) for ℓ ∈ {1, . . . , 5}. We shall apply the Godunov numerical scheme
proposed in [202] (and implemented by Musch in [201]). We simulate the evolution of the dynamics
corresponding to the following sets of initial and boundary data.

Example I. Oscillatory initial data vs. edge-wise constant entropy solution:

u0(x) := (| sin(16x)|, | sin(16x)|, | cos(16x)|, | cos(16x)|, | cos(16x)|);
v0(x) := (2, 1, 7/11, 7/11, 7/11);

ub,1 ≡ vb,1 ≡ 2, ub,2 ≡ vb,2 ≡ 1.

Example II. Initial data containing one shock in an incoming edge vs. edge-wise constant
entropy solution:

u0(x) := (21(−1,−0.2)(x) + 31(−0.2,0)(x), 1, 1/2, 1/2, 1/2);

v0(x) := (2, 1, 7/11, 7/11, 7/11);

ub,1 ≡ vb,1 ≡ 2, ub,2 ≡ vb,2 ≡ 1.

The effect of “numerical viscosity” prevents finite-time exact controllability with these boundary
controls; but, for sufficiently refined meshes, the exponential error tail is not distinguishable and,
after a sufficiently long time, we get u(T, ·) = v(T, ·) = v0 for both examples (v0 being an edge-wise
constant entropy-admissible solution, i.e. v0 ∈ GV V ).
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Figure 9.1. First row: Simulation of Example I at times t = 0 and t = 10.
Second row: Simulation of Example II at times t = 0 and t = 10. In both cases,
the CFL (Courant–Friedrichs–Lewy) number is C = 0.5 and the space mesh size is
∆x = 2−6 (for each edge). We refer to [201] for the code that can be used to produce
the figures and videos of the evolution.





CHAPTER 10

Conclusions and open problems

The results presented in this thesis open many avenues for future research at the confluence
of nonlocal and viscous regularizations of conservation laws, singular limits, control theory, and
networks. To guide future investigations, we have compiled a set of questions below.

(1) Nonlocal–to–local convergence for more general weights. In the case of a symmetric weight,
the solution of the nonlocal conservation law does not satisfy a maximum principle (see [168,
Example 7.3 and Figure 9]). From the examples in [90], it is also apparent that we cannot
expect the nonlocal solution to converge in a strong or weak sense to the local entropy
solution; however, numerical experiments (cf. [168, Example 7.3]) suggest that convergence
in a measure-valued sense may hold. For asymmetric piecewise-constant weights (which
are not covered by the results in [89]), the numerical simulations shown in Chapters 3
and 4 indicate that a positive result may also be true.

(2) Olĕınik-type inequalities for more general velocities. The Olĕınik-type inequalities of Chap-
ter 4 have been obtained for rather specific classes of velocity functions. It remains an
open problem to establish similar inequalities in more general cases. In particular, the
case of a power-type velocity, as in ∂tρ+ ∂x(W

q−1ρ) = 0 (with q > 2), naturally arises in
connection with the long-time convergence of the solution to the local N -wave profiles.

(3) Nonlocality in the velocity. A different type of nonlocal conservation law involves taking a
weighted average of the velocity rather than the solution itself: namely, ∂tρ+ ∂x((V (ρ) ∗
γ)ρ) = 0. A recent contribution on the nonlocal–to–local singular limit problem for this
kind of model with BV data is contained in [132], but Olĕınik-type inequalities have not
yet been established.

(4) Non-integrable initial data and long-time asymptotics. Considering initial data merely in
L∞ instead of L1∩L∞ would pose a significant issue for the study of long-time asymptotics
carried out in Chapter 5: since solutions might then have infinite mass, the compactness
arguments would need to be modified; moreover, the initial mass would no longer govern
the limit profile. We refer to [158] for the study of this problem for the heat equation. In
the periodic setting, further information is available for the long-time behavior of (local)
conservation laws (see, e.g., [182, 61]).

(5) Effect of viscosity on the long-time behavior. In the framework of the study of the long-
time behavior of Chapter 5, it would be of interest to analyze the competition between
nonlocal advection and diffusion effects. Currently, the only known results concern the
positive effect of viscosity on the convergence in the nonlocal–to–local limit in the case of
initial data that are uniformly bounded in L∞ with respect to the scaling parameter (as in
Chapter 6).

(6) Asymptotic preserving numerical schemes. A rigorous justification of the qualitative repro-
duction of the nonlocal–to–local singular limit and the long-time asymptotics by numerical
schemes (such as the ones presented in [213, Chapter 3] and [173] or those surveyed in
[134]) appears to be unexplored. In future work, we aim to prove that the counterparts of
the convergence results of Chapters 3, 4, and 5 also hold at the discrete level.

(7) Nonlocal–to–local limit for the initial-boundary value problem. The well-posedness of the
IBVP associated with nonlocal conservation laws was studied in [172]. The natural ques-
tion arises of whether the solution converges to the local entropy solution with boundary
data achieved in the sense of Bardos–LeRoux–Nédélec (see [27]) as the nonlocal weight
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approaches a Dirac delta distribution. This problem is also motivated by and strongly
related to the study of the cost of the boundary controls for the nonlocal conservation law
(see Chapter 7) in the nonlocal–to–local singular limit.

(8) Nonlocal–to–local limit for multi-dimensional conservation laws. In the theory of multi-
dimensional nonlocal conservation laws (for which we refer to [171] and references therein),
the study of the convergence of the solution to the entropy-admissible one of the corre-
sponding local model has not yet been addressed. Some related results are available for the
2D incompressible α-Euler system, where the (nonlocal) vorticity equation plays a key role
(see, e.g., [188, 1]).

(9) Controllability for more general weights. The controllability results of Chapter 7 focus
on the case of an exponential weight. For suitable classes of more general weights, the
solution to the corresponding nonlocal IBVP still exists, is unique, and satisfies a maximum
principle (see [172, Corollary 5.9]). However, the proofs of some of our controllability and
stabilization results appear to present many more technical difficulties. Similarly, it would
be interesting to remove the assumption on the lower/upper-bound on the initial datum
used in the stabilization results of Chapter 7 and consider constant boundary data such
that u

ℓ
≠ ur . In this case, we expect the dynamics to converge to the corresponding

steady-state solutions (as suggested by the numerical simulations).

(10) Nonlocal conservation laws on networks. The study of nonlocal conservation laws on net-
works is still at its primordial stage. Namely, in [155] a class of nonlocal conservation laws
modeling multi-commodity flow was studied and, more recently, some results on nonlocal
traffic models were obtained in [131]. In the latter reference, the modeling framework
includes suitable coupling conditions at intersections to either ensure maximum flux or
distribution parameters and focuses, in particular, on the cases of 1–to–1, 2–to–1, and
1–to–2 junctions. The study of more general nonlocal models on tree-shaped networks and
the related control and singular limit problems remains open for investigation.

(11) Alternative junction conditions for advection-diffusion equations on networks. In addition
to the continuity condition that we have imposed at the junctions in Chapter 8, there are
alternative transmission conditions that are physically relevant for the advection-diffusion
problem. It would be interesting to see if analogous results on the cost of controllability can
be obtained in the framework of the “membrane-type” junction conditions of [148, 78]. The
main challenge to overcome is that, in our analysis, the continuity condition has been pivotal
in estimating the boundary terms arising in the Carleman inequality. For the nonlinear
problem of Chapter 9, similar questions arise when considering different realizations of
viscous regularizations and different types of entropy conditions at the junction.

(12) Networks containing loops. In Chapter 8, it is essential to assume that our network
contains no loops in several key points, such as the definition of the auxiliary functions
needed for the Carleman estimate. It would be interesting to characterize the (uniform)
controllability properties of the parabolic problem according to the topology or metric
properties of the network (see, e.g., [23] and [117, Chapters 5 & 8] for some results in this
direction).

(13) Nonlinear conservation laws with vanishing viscosity and cost of controllability. The full
extension of the results of Chapter 8 to the case of nonlinear conservation laws (as
done in [141, 183] in the case of a segment) remains to be addressed in the future—
possibly also replacing the monotonicity assumption on the flux used in Chapter 9 with
a convexity/concavity condition as in [183].

(14) Dispersive effects and cost of controllability. In Chapter 8, we have only considered a
model that includes advection and diffusive phenomena, but we may also want to account
for dispersive effects. In the case of zero dispersion limit, the uniform control properties
of the linearized Korteweg–de Vries equation were studied in [142] (on the real line);
subsequently, in [143], the authors addressed the case of zero diffusion-dispersion; further
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recent works on the KdV equation with a vanishing parameter in the diffusive term include
[53, 54]. In the setting of star-shaped graphs, well-posedness and controllability results
for the KdV equation are also available in the literature (see [56, 59, 58, 12]), but the
uniform controllability problem has not been addressed yet.

(15) Optimal time for the decay of the cost of controllability. Establishing sharp estimates on
the time that separates blow-up and decay for the cost of controllability in the vanishing
viscosity limit from Chapter 8 is an interesting problem; however, the question, raised in
[106], remains unanswered even on segments (i.e., networks that consist of a single edge).

(16) Controllability on networks under positivity constraints. For physical applications, it is
relevant to drive the dynamics of a system to rest while preserving the non-negativity of the
initial datum along the evolution. Such controllability results under positivity constraints
have been achieved only recently for the heat equation in Euclidean domains (see [193, 216])
and are missing on networks.

(17) Numerical schemes and uniform controllability on networks. A rigorous study of the con-
trollability of semi-discrete advection-diffusion equations on networks and of the cost of
boundary controls in the discrete–to–continuous limit has not yet been carried out. Some
related results in this direction are available in the case of one-dimensional Euclidean
domains (see, e.g., [40, 41, 42, 199, 10, 11, 9]).
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[47] A. Bressan, S. Čanić, M. Garavello, M. Herty, and B. Piccoli. Flows on networks: recent results and perspectives.
EMS Surv. Math. Sci., 1(1):47–111, 2014.

[48] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New
York, 2011.

[49] J. M. Burgers. A mathematical model illustrating the theory of turbulence. In Advances in Applied Mechanics,
pages 171–199. Academic Press, New York, 1948. Edited by Richard von Mises and Theodore von Kármán.
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25:77–83, 1926.

[231] A. Vasseur. Strong traces for solutions of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal.,
160(3):181–193, 2001.

[232] E. Zeidler. Nonlinear functional analysis and its applications I. Fixed-point theorems. Springer-Verlag, New
York, 1986. Translated from the German by Peter R. Wadsack.

[233] K. Zhuang, G. Leugering, and T. Li. Exact boundary controllability of nodal profile for Saint-Venant system on
a network with loops. J. Math. Pures Appl. (9), 129:34–60, 2019.

[234] K. Zumbrun. On a nonlocal dispersive equation modeling particle suspensions. Quart. Appl. Math., 57(3):573–
600, 1999.


	Acknowledgments
	Abstract
	Zusammenfassung
	Chapter 1. Introduction
	1.1. Nonlocal regularizations of scalar conservation laws
	1.2. Conservation laws models on networks
	Outline

	Part 1.  Nonlocal conservation laws
	Chapter 2. Well-posedness of nonlocal conservation laws with BV weights
	2.1. Proof of the well-posedness result
	2.2. Numerical experiments

	Chapter 3. Nonlocal–to–local singular limit for BV initial data
	3.1. Preliminary results
	3.2. Total variation bound on the nonlocal impact
	3.3. Nonlocal–to–local convergence
	3.4. Numerical experiments

	Chapter 4. Oleĭnik-type estimates and nonlocal–to–local singular limit for L initial data
	4.1. Proof of the Oleĭnik estimates
	4.2. Proof of the nonlocal–to–local convergence
	4.3. Numerical experiments

	Chapter 5. Long-time convergence of a nonlocal Burgers equation toward the local N-wave
	5.1. A priori estimates
	5.2. Long-time behavior
	5.3. Numerical experiments

	Chapter 6. Nonlocal–to–local singular limit problem with artificial viscosity
	6.1. A priori estimates
	6.2. Compensated compactness framework and proof of the convergence result

	Chapter 7. Boundary controllability and asymptotic stabilization of a nonlocal traffic model
	7.1. Preliminaries
	7.2. Reachability for sufficiently small times
	7.3. Exact boundary controllability and time-inverted dynamics
	7.4. Long-time behavior
	7.5. Steady states


	Part 2.  Conservation laws on networks
	Chapter 8. Controllability of advection-diffusion equations on networks and singular limits
	8.1. Preliminaries
	8.2. Main results
	8.3. Controllability of the transport problem
	8.4. Blow-up of the cost of controllability
	8.5. Decay of the cost of controllability

	Chapter 9. Controllability of entropy solutions of scalar conservation laws at a junction via Lyapunov methods
	9.1. Entropy admissible solutions for scalar conservation laws on networks
	9.2. Proof of the controllability of the hyperbolic problem
	9.3. Proof of the exponential stabilization of the viscous problem
	9.4. Numerical experiments


	Chapter 10. Conclusions and open problems
	Bibliography

