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Consider impliit ordinary di�erential equations (ODEs) of the form

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), t ∈ [t+,∞), (1)

A(t)
d

dt

x(t)+B(t)x(t) = f(t,x(t)), (2)

where t+ ≥ 0, A(t),B(t) (t ∈ [t+,∞)) are losed linear operators from X to Y

with the domains D

A(t), DB(t), D=D

A(t)∩DB(t) 6= {0}, X,Y are Banah spaes,

f : [t+,∞)×X→Y.

The time-varying operators A(t), B(t) an be degenerate.

The di�erential equations (DEs) (1) and (2) with a degenerate (for

some t) operator A(t) are alled time-varying (nonautonomous)

degenerate DEs or time-varying di�erential-algebrai

equations (DAEs). In the terminology of DAEs, equations of the form (1),

(2) are ommonly referred to as semilinear.

We study the initial value problem (the Cauhy problem) for the DAEs (1), (2)

with the initial ondition

x(t
0

) = x

0

. (3)
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Fields of appliation of the theory of DAEs are ontrol theory,

radioeletronis, ybernetis, mehanis, robotis tehnology, eonomis, eology

and hemial kinetis.

In partiular, semilinear DAEs are used in modelling

transient proesses in eletrial iruits

gas �ow in networks

dynamis of neural networks

dynamis of omplex mehanial and tehnial systems (e.g., robots)

multi-setoral eonomi models

kinetis of hemial reations

Notie that any type of a PDE an be represented as a DAE in

in�nite-dimensional spaes (an abstrat DAE) and, possibly, a omplementary

boundary ondition.
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Assume that the harateristi operator penil λA(t)+B(t) (λ ∈ C is a

parameter), assoiated with the linear part of the DAE (1) or (2), is a regular

penil of index not higher than 1: for eah t≥ t+ the penil λA(t)+B(t) be
regular and there exist funtions C

1

: [t+,∞)→ (0,∞), C
2

: [t+,∞)→ (0,∞) suh
that for every t ∈ [t+,∞) the penil resolvent R(λ ,t) = (λA(t)+B(t))−1 satis�es

the onstraint

‖R(λ ,t)‖ ≤ C

1

(t), |λ | ≥ C

2

(t). (4)

Then for eah t ∈ [t+,∞), there exist the two pairs of mutually omplementary

projetors

P

j

(t) : D→ D

j

(t) and Q

j

(t) : Y→ Y

j

(t), j= 1,2,

whih generate the diret deompositions

D=D

1

(t)+̇D
2

(t), Y =Y

1

(t)+̇Y
2

(t) suh that (5)

the pair of subspaes X

1

(t), Y
1

(t) and X
2

(t), Y
2

(t) are invariant under the
operators A(t), B(t) (i.e., A(t),B(t) : X

j

(t)→ Y

j

(t)) and

A

j

(t) = A(t)|
D

j

(t) , Bj(t) = B(t)|
D

j

(t) : D
j

(t)→ Y

j

(t), j= 1,2, are suh that

A

2

(t) = 0 and there exist A

−1
1

(t), B

−1
2

(t) if D

1

(t) 6= {0}, D

2

(t) 6= {0}
respetively (D

2

(t) =KerA(t)∩D, Y
1

(t) =A(t)D)

A(t)=A

1

(t)+̇A
2

(t), B(t)=B

1

(t)+̇B
2

(t) : D
1

(t)+̇D
2

(t)→Y

1

(t)+̇Y
2

(t) (6)

[Rutkas A.G., Vlasenko L.A. Existene of solutions of degenerate nonlinear di�erential

operator equations, Nonlinear Osillations, 2001℄

M. Filipkovska (FAU) 4 /43



For eah t ∈ [t+,∞) the projetors an be determined by the formulas

[Rutkas A.G., Vlasenko L.A. Nonlinear Osillations, 2001℄

P

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

R(λ ,t)A(t)dλ , P

2

(t) = I

X

−P

1

(t),

Q

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

A(t)R(λ ,t)dλ , Q

2

(t) = I

Y

−Q

1

(t).
(7)

and the auxiliary operator G(t) =A(t)+B(t)P
2

(t) : D→Y has the bounded

inverse G

−1(t) ∈ (Y,X).
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Let X=Y =D= Rn

.

For eah t any x ∈ Rn

an be uniquely represented in the form

x= x

p

1

(t)+x

p

2

(t), x

p

i

(t) = P

i

(t)x ∈ X

i

(t).

The DAE (1) [A(t)x(t)]′+B(t)x(t) = f(t,x(t)) is redued to the equivalent system

[P
1

(t)x(t)]′=
[

P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]

P

1

(t)x(t)+G

−1(t)Q
1

(t)f(t,x(t)),

G

−1(t)Q
2

(t)[f(t,x(t))−A

′(t)P
1

(t)x(t)]−P

2

(t)x(t) = 0 or

x

′
p

1

(t) =
[

P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]

x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x), (8)

G

−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]−x

p

2

(t) = 0. (9)

Introdue the manifold

L

t+ = {(t,x) ∈ [t+,∞)×R
n |Q

2

(t)[B(t)x+A

′(t)P
1

(t)x− f(t,x)] = 0}. (10)

The onsisteny ondition (t
0

,x
0

) ∈ L

t+ for the initial point (t
0

,x
0

) is one of
the neessary onditions for the existene of a solution of the initial value problem

(1), (3).

V

′
(8)

(t,x
p

1

(t)) = ∂V
∂t

(t,x
p

1

(t))+
(

∂V
∂z

(t,x
p

1

(t)),
[

P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+

B(t)]
]

x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x
p

1

(t)+x

p

2

(t))
)

is the derivative of the funtion V(t,z)

along the trajetories of the equation (8), where V(t,z) is a ontinuously di�erentiable

and positive de�nite salar funtion.
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The IVP (1), (3):

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), x(t
0

) = x

0

.

De�nitions

A solution x(t) of the initial value problem (IVP) (1), (3) is alled global or

de�ned in the future if it exists on [t
0

,∞).

A solution x(t) of the IVP (1), (3) is alled Lagrange stable if it is global and

bounded, i.e., sup
t∈[t

0

,∞)

‖x(t)‖< ∞.

A solution x(t) of the IVP (1), (3) has a �nite esape time (is blow-up in

�nite time) and is alled Lagrange unstable if it exists on some �nite interval

[t
0

,T) and is unbounded, i.e., lim
t→T−0

‖x(t)‖= ∞.

The equation (1) is alled Lagrange stable if every solution of the IVP (1), (3)

is Lagrange stable (the DAE is Lagrange stable for every onsistent initial point).

The equation (1) is alled Lagrange unstable if every solution of the IVP (1),

(3) is Lagrange unstable.

J. La Salle obtained the theorems on the global solvability, the Lagrange

stability and instability of the expliit ODE x

′ = f(t,x) [J. La Salle, S. Lefshetz,

Stability by Liapunov's Diret Method with Appliations, 1961℄.
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Solutions of the equation (1) are alled ultimately bounded, if there exists a

onstant K> 0 (K is independent of the hoie of t

0

, x

0

) and for eah solution

x(t) with an initial point (t
0

,x
0

) there exists a number τ = τ(t
0

,x
0

)≥ t

0

suh that

‖x(t)‖<K for all t ∈ [t
0

+ τ,∞).

The equation (1) is alled ultimately bounded or dissipative, if for any

onsistent initial point (t
0

,x
0

) there exists a global solution of the initial value

problem (1), (3) and all solutions are ultimately bounded.

If the number τ does not depend on the hoie of t

0

, then the solutions of (1)

are alled uniformly ultimately bounded and the equation (1) is alled uniformly

ultimately bounded or uniformly dissipative.

Ultimately bounded systems of expliit ODEs x

′ = f(t,x), whih are also alled

dissipative systems and D-systems, were studied in [Yoshizawa T., Stability theory

by Liapunov's seond method, 1966℄ and [La Salle J., Lefshetz S., 1961℄.
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Main results:

Theorems on the existene and uniqueness of global solutions

Some advantages: the restritions of the type of the global Lipshitz

ondition (inluding ontrative mapping) are not used.

Theorem on the Lagrange stability of the DAE (the boundedness of

solutions)

Theorem on the Lagrange instability of the DAE (solutions have �nite

esape time)

Theorem on the ultimate boundedness (dissipativity) of the DAE (the

ultimate boundedness of solutions)

Theorems on the Lyapunov stability and instability of the equilibrium

state of the DAE

Theorems on asymptoti stability and asymptoti stability in the large

of the equilibrium state (omplete stability of the DAE)

Numerial methods

The appliation of the obtained theorems to the study of ertain mathematial

models of eletrial iruits with nonlinear and time-varying elements are shown.
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Theorem 1 (the global solvability). Let f ∈ C([t+,∞)×Rn,Rn),
∂

∂x f ∈ C([t+,∞)×Rn,L(Rn)), A,B ∈ C

1([t+,∞),L(Rn)), the penil λA(t)+B(t)

satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), and the following onditions be satis�ed:

1) for eah t ∈ [t+,∞) and eah x

p

1

(t) ∈X

1

(t) there exists a unique

x

p

2

(t) ∈ X

2

(t) suh that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ ;

2) for eah t∗ ∈ [t+,∞), x∗
p

i

(t∗) ∈ X

i

(t∗), i= 1,2, suh that

(t∗,x∗
p

1

(t∗)+x

∗
p

2

(t∗)) ∈ L

t+ the operator Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[

Q

2

(t∗)f(t∗,x∗
p

1

(t∗)+x

∗
p

2

(t∗))
]

−B(t∗)
]

P

2

(t∗), is

invertible;

3) there exist a number R> 0, a positive de�nite funtion

V ∈ C

1([t+,∞)×U



R

(0),R), where U

R

(0) = {z ∈R
n | ‖z‖ ≥ R}, and a funtion

χ ∈ C([t+,∞)× (0,∞),R) suh that:

3.1) V(t,z)→ ∞ uniformly in t on every �nite interval [a,b)⊂ [t+,∞) as ‖z‖→∞,

3.2) for all t, x

p

1

(t), x
p

2

(t) suh that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≥ R,

the inequality V

′
(8)

(t,x
p

1

(t)) ≤ χ
(

t,V(t,x
p

1

(t))
)

holds,

3.3) the inequality v

′ ≤ χ(t,v), t≥ t+, has no positive solutions v(t) with �nite

esape time.

Then for eah initial point (t
0

,x
0

) ∈ L

t+ there exists a unique global

solution of the IVP (1), (3).
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Statement 1.

Theorem 1 remains valid if the onditions 1), 2) are replaed by the following:

there exists a onstant 0≤ α < 1 suh that

∥

∥

G

−1(t)Q
2

(t) f
(

t,x
p

1

(t)+x

1

p

2

(t)
)

−G

−1(t)Q
2

(t) f
(

t,x
p

1

(t)+x

2

p

2

(t)
)∥

∥≤
≤ α

∥

∥

x

1

p

2

(t)−x

2

p

2

(t)
∥

∥

(11)

for any t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t) and xi
p

2

(t) ∈X

2

(t), i= 1,2.

Theorem 2 (the global solvability).

Theorem 1 remains valid if the onditions 1), 2) are replaed by the following:

1) for eah t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t) there exists x
p

2

(t) ∈ X

2

(t) suh that

(t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ ;

2) for eah t∗ ∈ [t+,∞), x∗
p

1

(t∗) ∈ X

1

(t∗), xi
p

2

(t∗) ∈X

2

(t∗) suh that

(t∗,x∗
p

1

(t∗)+x

i

p

2

(t∗)) ∈ L

t+ , i= 1,2, the operator funtion Φ
t∗,x∗

p

1

(t∗)(xp2(t∗))

de�ned by

Φ
t∗,x∗

p

1

(t∗) : X
2

(t∗)→ L(X
2

(t∗),Y2

(t∗)),

Φ
t∗,x∗

p

1

(t∗)(xp2(t∗)) =

[

∂

∂x

[

Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

p

2

(t∗))
]

−B(t∗)

]

P

2

(t∗), (12)

is basis invertible on [x1
p

2

(t∗),x2
p

2

(t∗)].
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Theorem 3 (Lagrange stability). Let f ∈C([t+,∞)×Rn,Rn),
∂

∂x f ∈ C([t+,∞)×Rn,L(Rn)), A,B∈C1([t+,∞),L(Rn)), the penil λA(t)+B(t)

satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), the requirements 1), 2) of Theorem 1

or 2 be ful�lled, and

3) there exists a number R> 0, a positive de�nite funtion

V ∈ C

1([t+,∞)×U



R

(0),R) and a funtion χ ∈ C([t+,∞)× (0,∞),R) suh that:

3.1) V(t,z)→ ∞ uniformly in t on [t+,∞) as ‖z‖→ ∞;

3.2) for all t, x

p

1

(t), x
p

2

(t) suh that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≥ R,

the inequality V

′
(8)

(t,x
p

1

(t)) ≤ χ
(

t,V(t,x
p

1

(t))
)

holds;

3.3) the di�erential inequality v

′ ≤ χ(t,v), t≥ t+, has no unbounded positive

solutions v(t) for t ∈ [t+,∞).

Let one of the following onditions be also satis�ed:

4.a) for all (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≤M< ∞ (M is an arbitrary

onstant), the inequality

‖G−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]‖ ≤K

M

< ∞, where K

M

=K(M)

is some onstant, holds;

4.b) for all (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≤M< ∞, the inequality

‖x
p

2

(t)‖ ≤K

M

< ∞, where K

M

=K(M) is some onstant, holds.

Then the equation (1) is Lagrange stable.
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Theorem 4 (Lagrange instability). Let f ∈ C([t+,∞)×Rn,Rn),
∂

∂x f ∈ C([t+,∞)×R
n,L(Rn)), A,B∈C1([t+,∞),L(Rn)), the penil λA(t)+B(t)

satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), the requirements 1), 2) of Theorem 1

or 2 be ful�lled, and

3) there exists a region Ω ⊂ Rn

, 0 6∈ Ω, suh that the omponent P

1

(t)x(t) of

eah existing solution x(t) with the initial point (t
0

,x
0

) ∈ L

t+ , where

P

1

(t
0

)x
0

∈ Ω, remains all the time in Ω;

4) there exist a positive de�nite funtion V ∈ C

1([t+,∞)×Ω,R) and a funtion

χ ∈ C([t+,∞)× (0,∞),R) suh that:

4.1) for all t, x

p

1

(t), x
p

2

(t) suh that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , xp
1

(t) ∈ Ω, the

inequality V

′
(8)

(t,x
p

1

(t))≥ χ
(

t,V(t,x
p

1

(t))
)

holds,

4.2) the inequality v

′ ≥ χ(t,v), t≥ t+, has no positive solutions de�ned in the

future (i.e., de�ned for all t≥ t+).

Then for eah initial point (t
0

,x
0

) ∈ L

t+ suh that P

1

(t
0

)x
0

∈ Ω, there

exists a unique solution of the IVP (1), (3) and this solution is Lagrange

unstable.
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Remarks on the form of the funtions χ

It is usually onvenient to hoose χ ∈ C([t+,∞)× (0,∞),R) in the form

χ(t,v) = k(t)U(v), (13)

where U ∈ C(0,∞), k ∈ C([t+,∞),R). Then the theorem onditions an be

hanged as follows:

in Theorems 1, 2 on the global solvability, it su�es to require that

∞
∫



dv

U(v)
= ∞ (> 0 is some onstant) instead of the ondition 3.3);

in Theorem 3 on the Lagrange stability, it su�es to require that

∞
∫



dv

U(v)
= ∞

and

∞
∫

t

0

k(t)dt< ∞ (t

0

≥ t+ is some number) instead of the ondition 3.3);

in Theorem 4 on the Lagrange instability, it su�es to require that

∞
∫



dv

U(v)
< ∞ and

∞
∫

t

0

k(t)dt= ∞ instead of the ondition 4.2).

[Filipkovskaya M. S. Global solvability of time-varying semilinear di�erential-algebrai

equations, boundedness and stability of their solutions. I, Di�erential Equations, 2021℄

[Filipkovskaya M. S. Global solvability of time-varying semilinear di�erential-algebrai

equations, boundedness and stability of their solutions. II, Di�erential Equations, 2021℄
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Theorem 5 (uniform dissipativity (ultimate boundedness)). Let

f ∈ C([t+,∞)×Rn,Rn), ∂
∂x f ∈ C([t+,∞)×Rn,L(Rn)), A,B ∈ C

1([t+,∞),L(Rn)),

the penil λA(t)+B(t) satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), the

requirements 1), 2) of Theorem 1 or 2 be ful�lled, and

3) there exist a number R> 0, a positive de�nite funtion

V ∈ C

1([t+,∞)×U



R

(0),R) and funtions U

j

∈ C([0,∞)), j= 0,1,2, suh that

U

0

(r) is non-dereasing and U

0

(r)→+∞ as r→+∞, U

1

(r) is inreasing,

U

2

(r)> 0 for r> 0, and for all t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t), x
p

2

(t) ∈ X

2

(t) suh

that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≥ R the ondition

U

0

(‖x
p

1

(t)‖)≤V(t,x
p

1

(t)) ≤U

1

(‖x
p

1

(t)‖) and one of the following inequalities

hold:

3.a) V

′
(8)

(t,x
p

1

(t))≤−U
2

(

‖x
p

1

(t)‖
)

;

3.b) V

′
(8)

(t,x
p

1

(t))≤−U
2

(

(H(t)x
p

1

(t),x
p

1

(t))
)

, where H ∈ C([t+,∞),L(Rn)) is

some self-adjoint positive de�nite operator funtion suh that sup
t∈[t+,∞)

‖H(t)‖< ∞;

3.ñ) V

′
(8)

(t,x
p

1

(t))≤−CV(t,x
p

1

(t)), where C> 0 is some onstant;

4) there exist a onstant > 0 and a number T> t+ suh that

‖G−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]‖ ≤ ‖x
p

1

(t)‖ for all

(t,x
p

1

(t)+x

p

2

(t)) ∈ L

T

.

Then the DAE (1) is uniformly ultimately bounded (uniformly dissipative).
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Remarks on the form of the funtions V

It is often onvenient to hoose the positive de�nite salar funtion V(t,z) in
the form

V(t,z) = (H(t)z,z), (14)

where H ∈ C

1([t+,∞),L(Rn)) is a self-adjoint positive de�nite operator funtion.

The funtion V(t,z) (14) satis�es the onditions (exept for the onditions on the

derivative of the funtion along the trajetories of (8)) of Theorems 1�4 on the

global solvability, the Lagrange stability and the Lagrange instability, and if

additionally sup
t∈[t+,∞)

‖H(t)‖< ∞, then the funtion (14) also satis�es the onditions

of Theorem 5 on the dissipativity.

[Filipkovska (Filipkovskaya) M. S. Global boundedness and stability of solutions of

nonautonomous degenerate di�erential equations, Proeedings of the Institute of

Mathematis and Mehanis, National Aademy of Sienes of Azerbaijan, 2020℄
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The IVP (1), (3):

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), x(t
0

) = x

0

.

Introdue the uniform mesh ω
h

= {t
i

= t

0

+ ih, i= 0,...,N, t
N

= T} on [t
0

,T]
with the step size h= (T− t

0

)/N. The values of an approximate solution at the

points t

i

are denoted by x

i

, i= 0,...,N.

Theorem (on the onvergene of the method). Let the onditions of

Theorem 1 or 2 be satis�ed and, additionally, the operator

Φ
t,P

1

(t)z∗,P
2

(t)u∗ = Φ
t,P

1

(t)z∗(P2(t)u∗) : X
2

(t)→ Y

2

(t), whih is de�ned by the

formula (12) for eah (�xed) t, x

∗
p

1

(t) = P

1

(t)z∗, x∗
p

2

(t) = P

2

(t)u∗, be invertible
for (t,P

1

(t)z∗+P

2

(t)u∗) ∈ [t
0

,T]×Rn

. If A,B ∈ C

2([t
0

,T],L(Rn)),

C

2

∈C

2([t
0

,T],(0,∞)), f ∈C

1([t
0

,T]×R
n,Rn) and the initial value x

0

are hosen

so that the onsisteny ondition Q

2

(t
0

)
[

A

′(t
0

)P
1

(t
0

)x
0

+B(t
0

)x
0

− f(t
0

,x
0

)
]

= 0

(i.e., (t
0

,x
0

) ∈ L

t+) holds, then numerial method
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z

0

= P

1

(t
0

)x
0

, u

0

= P

2

(t
0

)x
0

, (15)

z

i+1 =
(

I+h

[

P

′
1

(t
i

)−G

−1(t
i

)Q
1

(t
i

)[A′(t
i

)+B(t
i

)]
]

P

1

(t
i

)
)

z

i

+

+hG

−1(t
i

)Q
1

(t
i

)f
(

t

i

,x
i

)

, (16)

u

i+1 = u

i

−

−
[

I−G

−1(t
i+1)Q2

(t
i+1)

∂ f

∂x

(

t

i+1,P1(ti+1)zi+1+P

2

(t
i+1)ui

)

P

2

(t
i+1)

]−1
×

×
[

u

i

−G

−1(t
i+1)Q2

(t
i+1)

[

f

(

t

i+1,P1(ti+1)zi+1+P

2

(t
i+1)ui

)

−

−A

′(t
i+1)P1(ti+1)zi+1

]

]

, (17)

x

i+1 = P

1

(t
i+1)zi+1+P

2

(t
i+1)ui+1, i= 0,...,N−1, (18)

approximating the IVP (1), (3) on [t
0

,T], onverges and has the �rst order of

auray: max
0≤i≤N

‖x(t
i

)−x

i

‖=O(h), h→ 0 ( max
0≤i≤N

‖z(t
i

)− z

i

‖=O(h),

max
0≤i≤N

‖u(t
i

)−u

i

‖=O(h), h→ 0).
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Remark. If in Theorem we do not require the additional smoothness for f,

A,B and C

2

(i.e., f ∈ C([t+,∞)×Rn,Rn),
∂ f

∂x
∈ C([t+,∞)×Rn,L(Rn)),

A,B ∈C

1([t+,∞),L(Rn)) and C
2

∈C

1([t+,∞),(0,∞))), then the method (15)�(18)

onverges, but may not have the �rst order of auray: max
0≤i≤N

‖x(t
i

)−x

i

‖= o(1),

h→ 0.
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The model of a radio engineering devie

A voltage soure e(t),
nonlinear resistanes ϕ, ϕ

0

, ψ,

a nonlinear ondutane h,

a linear resistane r,

a linear ondutane g,

an indutane L and

a apaitane C are given.

Let e(t)∈C([0,∞),R),
ϕ(y),ϕ

0

(y),ψ(y),h(y)∈C1(R,R),
r, g, L, C> 0.

The model of the iruit Fig. 1 is desribed

by the system with the variables

x

1

= I

L

, x

2

=U

C

, x

3

= I:

L

d

dt

x

1

+x

2

+ rx

3

= e(t)−ϕ
0

(x
1

)−ϕ(x
3

), (19)

C

d

dt

x

2

+gx

2

−x

3

=−h(x
2

), (20)

x

2

+ rx

3

= ψ(x
1

−x

3

)−ϕ(x
3

). (21)

The vetor form of the system is the DAE

d

dt

[Ax]+Bx= f(t,x), (22)

where x= (x
1

,x
2

,x
3

)T ∈ R3

Fig. 1. The diagram of the eletri iruit

A=





L 0 0

0 C 0

0 0 0





B=





0 1 r

0 g −1
0 1 r





f(t,x) =





e(t)−ϕ
0

(x
1

)−ϕ(x
3

)
−h(x

2

)
ψ(x

1

−x

3

)−ϕ(x
3

)
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Lagrange stability of the model of a radio engineering devie.

The partiular ases.

ϕ
0

(y) = α
1

y

2k−1, ϕ(y) = α
2

y

2l−1, ψ(y) = α
3

y

2j−1, h(y) = α
4

y

2s−1, (23)

ϕ
0

(y) = α
1

y

2k−1, ϕ(y) = α
2

siny, ψ(y) = α
3

siny, h(y) = α
4

siny, (24)

k, l, j,s ∈ N, α
i

> 0, i= 1,4, y ∈ R.

For eah initial point (t
0

,x0) satisfying x0
2

+ rx

0

3

= ψ(x0
1

−x

0

3

)−ϕ(x0
3

), there
exists a unique global solution of the IVP (22), x(t

0

) = x

0

(x(t
0

) = (I
L

(t
0

),U
C

(t
0

), I(t
0

))T) for the funtions of the form (23), if j≤ k, j≤ s

and α
3

is su�iently small, and for the funtions of the form (24), if α
2

+α
3

< r.

If, additionally, sup
t∈[0,∞)

|e(t)|<+∞ or

+∞
∫

t

0

|e(t)|dt<+∞, then for the initial points

(t
0

,x0) the DAE (22) is Lagrange stable (in both ases), i.e., every solution of the

DAE is bounded. In partiular, these requirements are ful�lled for voltages of the

form

e(t) = β (t+α)−n, e(t) = βe−αt, e(t) = βe
− (t−α)2

σ2 , e(t) = β sin(ωt+θ ), (25)

where α > 0, β ,σ ,ω ∈ R, n ∈ N, θ ∈ [0,2π ].
[M.S. Filipkovska, Lagrange stability of semilinear di�erential-algebrai equations and

appliation to nonlinear eletrial iruits, Journal of Mathematial Physis, Analysis,

Geometry, 2018℄
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Lagrange stability. The numerial solution

L= 500 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.2, t
0

= 0, x

0

= (10,−10,5)T

ϕ
0

(y) = y

3

, ϕ(y) = siny, ψ(y) = siny, h(y) = siny, e(t) = (2t+10)−2

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

t

I L
(t

)

0 100 200 300 400 500 600 700 800 900 1000
−10

−8

−6

−4

−2

0

2

t

U
C
(t

)

Fig. 2. The urrent I

L

(t) Fig. 3. The voltage U

C

(t)

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

4

5

t

I(
t)

Fig. 4. The urrent I(t)
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Lagrange stability. The numerial solution

L= 500 ·10−6 , C= 0.5 ·10−6 , r= 2, g= 0.2, t
0

= 0, x

0

= (0,0,0)T,
ϕ
0

(y) = y

3

, ϕ(y) = y

3

, h(y) = y

3

, ψ(y) = y

3

, e(t) = 100e

−t sin(5t)

−5 0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

t

I L
(t

)

−5 0 5 10 15 20 25 30
0

1

2

3

4

5

6

7
x 10

−5

t

U
C
(t

)

Fig. 5. The urrent I

L

(t) Fig. 6. The voltage U

C

(t)
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−2

0

2

4

6

8

10
x 10

−5

t

I(
t)

Fig. 7. The urrent I(t)
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Lagrange stability. The numerial solution

L= 300 ·10−6, C= 0.5 ·10−6, r= 2.6, g= 0.2, t
0

= 0, x

0

= (π/6,0.5,0)T,
ϕ
0

(y) = y

3

, ϕ(y) = siny, ψ(y) = siny, h(y) = siny, e(t) = 200sin(0.5t)−0.2

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

t

I L
(t

)

0 100 200 300 400 500 600 700 800 900 1000
−0.1

0

0.1

0.2

0.3

0.4

0.5

t

U
C
(t

)

Fig. 8. The urrent I

L

(t) Fig. 9. The voltage U

C

(t)
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0.05

0.1
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Fig. 10. The urrent I(t)

M. Filipkovska (FAU) 24/43



The global solution. The numerial solution

L= 1000 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.3, t
0

= 0, x

0 = (0,0,0)T

ϕ
0

(y) = y

3

, ϕ(y) = y

3

, ψ(y) = y

3

, h(y) = y

3

, e(t) =−t2

0 50 100 150 200 250 300 350 400 450 500

−60

−50

−40

−30

−20

−10

0

t

I L
(t

)

0 50 100 150 200 250 300 350 400 450 500

−3

−2.5

−2

−1.5

−1

−0.5

0

t

U
C
(t

)

Fig. 11. The urrent I

L

(t) Fig. 12. The voltage U

C

(t)
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Fig. 13. The urrent I(t)
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Lagrange instability of the radio engineering devie model

Consider the system (19)�(21) with the nonlinear resistanes and ondutane

ϕ
0

(y) =−y2, ϕ(y) = y

3, ψ(y) = y

3, h(y) = y

2. (26)

It is assumed that there exists M

e

= sup
t∈[t

0

,∞)

|e(t)|<+∞. Choose

Ω =

{

(x
1

,x
2

)T ∈ R2 | x
1

>m

1

,m
1

= max
{

1+
√
M

e

, 3

√

g+ r

−1,3CL−1,
√

max
{

3

−1(L(rC)−1− r),0
}

}

, x
2

<−rx
1

−x

3

1

−m

2

,

m

2

= max
{

g−2CL

−1
r,0

}

}

.

(27)

Then by Theorem 3 for any initial moment t

0

and any initial urrents and

voltage I

L

(t
0

), U
C

(t
0

), I(t
0

) satisfying U
C

(t
0

)+ rI(t
0

) = ψ(I
L

(t
0

)− I(t
0

))−
−ϕ(I(t

0

)) and suh that (I
L

(t
0

),U
C

(t
0

))T ∈ Ω there exists a unique distribution

of the urrents and voltages in the iruit Fig. 1 only for t

0

≤ t< T ( [t
0

,T) is
some �nite interval ) and the urrents and voltages are unbounded.

It means that there exists a unique solution of the Cauhy problem for the DAE

(22) with the funtions (26), e(t) suh that sup
t∈[t

0

,∞)

|e(t)|<+∞, and the initial

ondition x(t
0

) = (I
L

(t
0

),U
C

(t
0

), I(t
0

))T, and this solution has a �nite esape

time.
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Lagrange instability. The numerial solution

L= 10 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.2,
ϕ
0

(x
1

)=−x2
1

, ϕ(x
3

)=x

3

3

, h(x
2

)=x

2

2

, ψ(x
1

−x

3

)=(x
1

−x

3

)3, e(t)=2sin t,

t

0

= 0, x

0

= (2.45,−20.625125,2.5)T
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Fig. 14. The urrent I

L

(t) Fig. 15. The voltage U

C

(t) Fig. 16. The urrent

I(t)
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It is known that the dynamis of eletrial iruits is modeled using DAEs whih, in

general, annot be redued to an expliit ODE.

The mathematial model of a time-varying nonlinear eletrial iruit

Fig. 17. The diagram of the eletri iruit

A urrent I(t), a voltage U(t), resistanes R
1

(t), R
2

(t), ϕ
1

(I
1

), ϕ
2

(I
2

), ϕ
3

(I
31

),
a ondutane G

3

(t), an indutane L(t) and a apaitane C are given.

A transient proess in the eletrial iruit (Fig. 17) is desribed by the system

d

dt

[L(t)I
1

(t)]+R

1

(t)I
1

(t) =U(t)−ϕ
1

(I
1

(t))−ϕ
3

(I
31

(t)), (28)

I

1

(t)− I

31

(t)− I

2

(t) = I(t)+G

3

(t)ϕ
3

(I
31

(t)), (29)

R

2

(t)I
2

(t) = ϕ
3

(I
31

(t))−ϕ
2

(I
2

(t)), (30)
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Denote x

1

(t) = I

1

(t), x
2

(t) = I

31

(t) and x
3

(t) = I

2

(t).

The vetor form of the system (28)�(30) is the time-varying semilinear DAE (1):

d

dt

[A(t)x]+B(t)x= f(t,x),

where

x=





x

1

x

2

x

3



 ,A(t) =





L(t) 0 0

0 0 0

0 0 0



 ,B(t)=





R

1

(t) 0 0

1 −1 −1
0 0 R

2

(t)



 ,

f(t,x) =





U(t)−ϕ
1

(x
1

)−ϕ
3

(x
2

)
I(t)+G

3

(t)ϕ
3

(x
2

)
ϕ
3

(x
2

)−ϕ
2

(x
3

)



 .

The initial ondition (3): x(t
0

) = x

0

, x

0

= (I
1

(t
0

), I
31

(t
0

), I
2

(t
0

))T.

It is assumed that the funtions L(t), R
1

(t), R
2

(t) and G
3

(t) are positive for all
t ∈ [t+,∞).

The projetions x

p

j

(t) = P

j

(t)x ∈ X

j

(t) of a vetor x have the form

x

p

1

(t) = x

p

1

= (x
1

,x
1

,0)T, x
p

2

(t) = x

p

2

= (0,x
2

−x

1

,x
3

)T.

Denote z= x

1

, u= x

2

−x

1

, w= x

3

, then x

p

1

= (z,z,0)T, x

p

2

= (0,u,w)T.
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Using the introdued notation, the equations (29)�(30) an be rewritten as

w =−I(t)−u−G

3

(t)ϕ
3

(u+ z), (31)

u= ψ(t,z,u), where ψ(t,z,u)=−I(t)−
(

G

3

(t)+R

−1
2

(t)
)

ϕ
3

(u+ z)+

+R

−1
2

(t)ϕ
2

(

− I(t)−u−G

3

(t)ϕ
3

(u+ z)
)

. (32)

By Theorem 1 for eah initial point (t
0

,x
0

) ∈ [t+,∞)×R3

satisfying the

algebrai equations (i.e., (t
0

,x
0

) ∈ L

t+)

x

1

−x

2

−x

3

= I(t)+G

3

(t)ϕ
3

(x
2

), (33)

R

2

(t)x
3

= ϕ
3

(x
2

)−ϕ
2

(x
3

), (34)

there exists a unique global solution x(t) of the IVP (1), (3) if

L,R
1

,R
2

∈ C

1([t+,∞),R), I,U,G
3

∈C([t+,∞),R), ϕ
j

∈ C

1(R), j= 1,2,3;
L(t)> 0, R

1

(t)> 0, R

2

(t)> 0, G

3

(t)> 0 for all t ∈ [t+,∞);
1) for eah t ∈ [t+,∞) and eah z ∈R there exists a unique u ∈ R satisfying the

equality (32);

2) for eah t∗ ∈ [t+,∞), z∗ ∈ R and eah u∗,w∗ ∈ R satisfying the equalities

(31), (32), one has the relation

ϕ ′
3

(u∗+ z∗)+
[

ϕ ′
2

(w∗)+R

2

(t∗)
][

1+G

3

(t∗)ϕ ′
3

(u∗+ z∗)
]

6= 0; (35)

3) there exists R> 0 suh that −
(

ϕ
1

(z)+ϕ
3

(u+ z)
)

z≤ R

1

(t)z2 for all

t ∈ [t+,∞), u,w ∈R, z ∈ R, |z| ≥ R, satisfying the equalities (31), (32).
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A similar assertion takes plae aording to Theorem 2, if the above onditions

are satis�ed with the following hanges: the ondition 1) does not ontain the

requirement that u be unique; the ondition 2) is replaed by the following:

2*) for eah t∗ ∈ [t+,∞), z∗ ∈R and eah u

j

∗,w
j

∗ ∈ R, j= 1,2, satisfying the

equalities (31), (32), the relation

ϕ ′
3

(u
2

+ z∗)+
[

ϕ ′
2

(w
2

)+R

2

(t∗)
][

1+G

3

(t∗)ϕ ′
3

(u
1

+ z∗)
]

6= 0

holds for any u

k

∈ [u1∗ ,u
2

∗], wk

∈ [w1

∗ ,w
2

∗ ], k= 1,2.

If, additionally,

∞
∫

t

0

k(t)dt< ∞, where k(t) = 2L

−1(t)(|L′(t|+ |U(t)|), the

funtions I(t), R−1
2

(t), G
3

(t) are bounded for all t ∈ [t+,∞), and ϕ
3

(x
2

), ϕ
2

(x
3

)
are bounded for x

2

∈ R and x

3

∈R respetively, then the DAE (1) is Lagrange

stable by Theorem 3.
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The partiular ases.

The the onditions 1), 2) are satis�ed for the funtions ϕ
2

, ϕ
3

whih are

inreasing (nondereasing) on R, for example,

ϕ
2

(y) = ay

2k−1, ϕ
3

(y) = by

2m−1, ϕ
1

(y) = y

2l−1, a,b,> 0, k,m, l ∈ N, (36)

and if b is su�iently small, m≤ l, sup
t∈[t+,∞)

|I(t)|< ∞ and R

2

(t)≥K

0

= onst> 0,

t ∈ [t+,∞), then the ondition 3) is also ful�lled.

Note that in this ase the mapping ψ(t,z,u) is not globally ontrative with
respet to u. Obviously, the ondition 1) is satis�ed, if ψ(t,z,u) is globally
ontrative with respet to u for any t, z, i.e., there exists a onstant α < 1 suh

that

∣

∣ψ(t,z,u
1

)−ψ(t,z,u
2

)
∣

∣≤ α|u
1

−u

2

| for any t ∈ [t+,∞), z ∈ R, u
1

,u
2

∈R.
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The numerial solution

L(t) = 500, R

1

(t) = e

−t
, R

2

(t) = 2+ e

−t
, G

3

(t) = (t+1)−1,
I(t) = sint, U(t) = (t+1)−1,
ϕ
i

(y) = y

3

, i= 1,2,3, t

0

= 0, x

0

= (0,0,0)T
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The numerial solution

L(t) = 500(t+1)−1, R
1

(t) = e

−t
, R

2

(t) = 2+ e

−t
, G

3

(t) = (t+1)−1,
I(t) = (t+1)−1−1, U(t) = (t+1)−1,
ϕ
i

(y) = y

3

, i= 1,2,3, t

0

= 0, x

0

= (0,0,0)T
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A model for a gas pipeline �ow

Consider a mathematial model for a gas pipeline �ow (the �ow on a single

pipe), assuming that the temperature is identially equal to T

0

= onst. The

model onsists of the isothermal Euler equations

ρ
t

+(ρv)
x

= 0,

(ρv)
t

+(p+ρv2)
x

=− λ

2D

ρv|v|−gρh
x

,
(ISO1)

and the equation of state for a real gas in the form

p= RT

0

ρz(p), (ISGE)

x ∈ [0,L], t ∈ [0,t
1

)⊆ [0,∞], L< ∞ is the length of the pipe

ρ = ρ(t,x), v= v(t,x), p= p(t,x) are respetively the density, veloity and

pressure

g is the gravitational onstant, and R is the spei� gas onstant

λ is the pipe frition oe�ient, and D is the pipe diameter

h= h(x) is the height pro�le of the pipe over ground

z= z(p) is the ompressibility fator

[P. Domshke, B. Hiller, J. Lang, V. Mehrmann, R. Morandin, C. Tishendorf. Gas

Network Modeling: An Overview, 2021 (Preprint)℄
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Assuming (ρv2)
x

to be negligibly small and introduing the variable ϕ = ρv
(the mass �ow rate by ross setion area), we obtain the semilinear model for

the isothermal Euler equations with the same gas state equation:

ρ
t

=−ϕ
x

, (37)

ϕ
t

=−p
x

−gρh
x

−0.5λD−1ϕ |ϕ |ρ−1, (38)

0=−p+RT

0

ρz(p). (39)

Denote A=





1 0 0

0 1 0

0 0 0





, B=





0 − d

dx

0

−gh
x

0 − d

dx

0 0 −1





, f(u)=





0

− λ
2D

ϕ|ϕ|
ρ

RT

0

ρz(p)





and

u= (ρ ,ϕ ,p)T. Then we an write the system (37)�(39) as:

A

d

dt

u(t)+Bu(t) = f(u(t)), (40)

where u= u(t)(x) = (ρ(t,x),ϕ(t,x),p(t,x))T, x ∈ [0,L], t ∈ [0,T]⊂ [0,t
1

). The
initial ondition has the form:

u(0) = u

0

, u

0

= u

0

(x) = (ρ(0,x),ϕ(0,x),p(0,x))T, x ∈ [0,L], (41)

where p(0,x) is hosen so as to satisfy the equation (39) for t= 0, x ∈ [0,L].
We will assume that u(t,x) satis�es suitable boundary onditions, for example,

ϕ(t,0) = ϕ
l

(t), p(t,0) = p

l

(t), t ∈ [0,T], (42)

i.e., u(t)(0) = u

l

(t) = (ρ(t,0),ϕ
l

(t),p
l

(t))T, where ϕ
l

(t) and p
l

(t) are given.
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Consider the IVP for time-invariant semilinear DAE

d

dt

[Au(t)]+Bu(t) = f(t,u(t)), t ∈ [t
0

,T], (43)

u(t
0

) = u

0

, (44)

where A,B : X→ Y are losed linear operators with the domains D

A

, D

B

,

D=D

A

∩D
B

6= {0}, and X,Y are real Banah spaes.

Theorem [L.A. Vlasenko, Evolution models with impliit and degenerate

di�erential equations, 2006℄. Let the penil λA+B satisfy (4), where C

1

> 0

and C

2

> 0 are onstants. Assume that f ∈ C([t
0

,T]×X,Y) satis�es the Lipshitz
ondition

‖f(t,u)− f(t,v)‖ ≤M‖u−v‖, u,v ∈ X, (45)

where the onstant M is suh that

M‖Q
2

‖‖G−1|< 1. (46)

Then for eah initial point u

0

∈D satisfying

Q

2

Bu

0

=Q

2

f(t
0

,u
0

),

there exists a unique global solution of the IVP (43), (44) on [t
0

,T].
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Outlooks

1

The extension of the results to the ase when X,Y are Banah spaes, A(t),
B(t) (t ∈ [t+,∞)) are losed linear operators from X to Y with the domains

D

A(t), DB(t), D=D

A(t)∩DB(t) 6= 0.

2 λA(t)+B(t) is a regular penil of index ν (ν ∈N), i.e., there exist funtions

C

1

: [t+,∞)→ (0,∞), C
2

: [t+,∞)→ (0,∞) suh that for every t ∈ [t+,∞)

‖R(λ ,t)‖ ≤ C

1

(t)|λ |ν−1, |λ | ≥ C

2

(t). (47)

[Rutkas A.G., Vlasenko L.A. Existene of solutions of degenerate nonlinear

di�erential operator equations, Nonlinear Osillations, 2001℄

Then for eah t ∈ [t+,∞) there exist the two pairs of mutually omplementary

projetors P

j

(t), Q
j

(t), j= 1,2, (7) whih generate the diret deompositions

of D and Y (5) suh that the operators A(t), B(t) have the blok

representations (6), where A

−1
1

(t) and B−1
2

(t) exist.

In general, the order of pole of the resolvent (A(t)+ µB(t))−1 at the point

µ = 0 is alled the index of the regular penil λA(t)+B(t).
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Example. Let ν = 2 and X=Y =D= Rn

or Cn

. Then there exist the diret

deompositions

D

2

(t) =D

20

(t)+̇D
21

(t), Y

2

=Y

20

(t)+̇Y
21

(t) (D
20

=D∩KerA) (48)

that generate the two pairs of mutually omplementary projetors

P

2k

(t) : D→ X

j

(t), Q
2k

(t) : Y→ Y

2k

, k= 0,1, suh that the DAE (2)

A(t)x′(t)+B(t)x(t) = f(t,x(t)) is redued to the equivalent system

P

1

(t)
d

dt

x(t) =−G−1(t)B(t)P
1

(t)x(t)+P

1

(t)G−1(t)f(t,x(t))],

G

−1(t)A(t)P
21

(t)
d

dt

x(t) =−P
20

(t)x(t)+P

20

(t)G−1(t)f(t,x(t)),

P

21

(t)G−1(t)f(t,x(t))−P

21

(t)x(t) = 0.

(49)
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Consider impliit ordinary di�erential equations (ODEs) of the form

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), t ∈ [t+,∞), (1)

A(t)
d

dt

x(t)+B(t)x(t) = f(t,x(t)), (2)

where t+ ≥ 0, A(t),B(t) (t ∈ [t+,∞)) are losed linear operators from X to Y

with the domains D

A(t), DB(t), D=D

A(t)∩DB(t) 6= {0}, X,Y are Banah spaes,

f : [t+,∞)×X→Y.

The time-varying operators A(t), B(t) an be degenerate.

The di�erential equations (DEs) (1) and (2) with a degenerate (for

some t) operator A(t) are alled time-varying (nonautonomous)

degenerate DEs or time-varying di�erential-algebrai

equations (DAEs). In the terminology of DAEs, equations of the form (1),

(2) are ommonly referred to as semilinear.

We study the initial value problem (the Cauhy problem) for the DAEs (1), (2)

with the initial ondition

x(t
0

) = x

0

. (3)
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Fields of appliation of the theory of DAEs are ontrol theory,

radioeletronis, ybernetis, mehanis, robotis tehnology, eonomis, eology

and hemial kinetis.

In partiular, semilinear DAEs are used in modelling

transient proesses in eletrial iruits

gas �ow in networks

dynamis of neural networks

dynamis of omplex mehanial and tehnial systems (e.g., robots)

multi-setoral eonomi models

kinetis of hemial reations

Notie that any type of a PDE an be represented as a DAE in

in�nite-dimensional spaes (an abstrat DAE) and, possibly, a omplementary

boundary ondition.
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Model of a gas �ow for a single pipe

We onsider the mathematial model of a gas pipeline whih onsists of the

isothermal Euler equations of the form

ρ
t

=−ϕ
x

, (4)

ϕ
t

=−p
x

−gρh
x

−0.5λD−1ϕ |ϕ |ρ−1
(5)

and the equation of state for a real gas in the form

p= RT

0

ρz(p), (6)

x ∈ [0,L], t ∈ [0,t
1

)⊆ [0,∞], where [t
0

,t
1

) is the time interval, L< ∞ is the

pipe length and T

0

is the temperature

ρ = ρ(t,x), ϕ = ϕ(t,x) (ϕ := ρv, v is the veloity) and p= p(t,x) are
respetively the density, �ow rate and pressure

g is the gravitational onstant, and R is the spei� gas onstant

λ is the pipe frition oe�ient, and D is the pipe diameter

h= h(x) is the height pro�le of the pipe over ground

z= z(p) is the ompressibility fator

[P. Benner, S. Grundel, C. Himpe, C. Huk, T. Streubel, C. Tishendorf. Gas

Network Benhmark Models, 2018℄
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Denote A=



1 0 0

0 1 0

0 0 0



, B=




0 − d

dx

0

−gh
x

0 − d

dx

0 0 −1



, f(u)=




0

− λ
2D

ϕ|ϕ|
ρ

RT

0

ρz(p)




and

u= (ρ ,ϕ ,p)T. Then we an write the system (4)�(6) as:

A

d

dt

u(t)+Bu(t) = f(u(t)), (7)

where u= u(t)(x) = (ρ(t,x),ϕ(t,x),p(t,x))T, x ∈ [0,L], t ∈ [0,T]⊂ [0,t
1

). The
initial ondition has the form:

u(0) = u

0

, u

0

= u

0

(x) = (ρ(0,x),ϕ(0,x),p(0,x))T, x ∈ [0,L], (8)

where p(0,x) is hosen so as to satisfy the equation (6) for t= 0, x ∈ [0,L]. We

will assume that u(t,x) satis�es suitable boundary onditions, for example,

ϕ(t,0) = ϕ
l

(t), p(t,0) = p

l

(t), t ∈ [0,T], (9)

i.e., u(t)(0) = u

l

(t) = (ρ(t,0),ϕ
l

(t),p
l

(t))T, where ϕ
l

(t) and p
l

(t) are given.

Then we onsider the IVP (1), (3), where X=Y = L

2

and

A(t),B(t) : H
1

0

[0,L] = {u(x) ∈ H

1[0,L] | u(t)(0) = u

l

(t)} → L

2

for eah t ∈ [0,t
1

).
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[P. Benner, S. Grundel, C. Himpe, C. Huk, T. Streubel, C. Tishendorf. Gas

Network Benhmark Models, 2018℄

[Azevedo-Perdioulis, T.-P., Jank, G. Modelling aspets of desribing a gas

network through a DAE system. 2007℄

The gas network is onsidered to be desribed by a onneted �nite graph

G= (V,E,ψ), where V denotes a set of verties with |V|= n, and E denotes a set

of edges with |E|=m. The mapping ψ : E→ V×V is alled the inidene map,

where ψ
1

(e) = v

1

is the initial vertex and ψ
2

(e) = v

2

is the �nal vertex.

We de�ne a �ow ϕ : E→R and a pressure-drop p : E→R on every edge, and a

nodal-pressure Φ : V→ R and a nodal-�ow F : V→ R on every vertex.

The Kirhho� First Law (KFL) says that the �ow rate vanishes at any vertex of

the graph:The Kirhho� Seond Law (KSL) says that the pressure drop vanishes

at every fundamental iruit of the graph.

Notie that the network may omprise valves, reservoirs, ompressor stations,

supplying soures, and regulators.

The isothermal Euler equations are linearised around the operation levels

(p∗,ϕ∗), whene we set p= p∗+∆p and ϕ = ϕ∗+∆ϕ , with ∆p and ∆ϕ as the

deviations from the pressure-drop and �ow, respetively, from the referene values

p∗ and ϕ∗.
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Disretizing the gas net with respet to the spae variable x, we obtain the gas

network model in the form of a DAE of a type

∂

∂ t
(Au) = Bu+ f(t,u), (10)

where u= (∆ϕ ,Φ,u
q

,u
p

)T, u
q

denotes a ontrol devie ontrolling the �ow in

some edges by a ��ow�, u

p

denotes a ontrol devie ontrolling the �ow in some

edges by a �pressure� and A is a ertain degenerate matrix. The gas network

model also may inlude the parameters denoting ontrol devies ontrolling the

pressure in the edges or nodes either through �ow or pressure.
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Assume that the harateristi operator penil λA(t)+B(t) (λ ∈ C is a

parameter), assoiated with the linear part of the DAE (1) or (2), is a regular

penil of index not higher than 1: for eah t≥ t+ the penil λA(t)+B(t) be
regular and there exist funtions C

1

: [t+,∞)→ (0,∞), C
2

: [t+,∞)→ (0,∞) suh
that for every t ∈ [t+,∞) the penil resolvent R(λ ,t) = (λA(t)+B(t))−1 satis�es

the onstraint

‖R(λ ,t)‖ ≤ C

1

(t), |λ | ≥ C

2

(t). (11)

Then for eah t ∈ [t+,∞), there exist the two pairs of mutually omplementary

projetors

P

j

(t) : D→ D

j

(t) and Q

j

(t) : Y→ Y

j

(t), j= 1,2,

whih generate the diret deompositions

D=D

1

(t)+̇D
2

(t), Y =Y

1

(t)+̇Y
2

(t) suh that (12)

the pair of subspaes X

1

(t), Y
1

(t) and X
2

(t), Y
2

(t) are invariant under the

operators A(t), B(t), and A

j

(t) = A(t)|
D

j

(t) , Bj(t) = B(t)|
D

j

(t) : D
j

(t)→Y

j

(t),

j= 1,2, are suh that A

2

(t) = 0, and there exist A

−1
1

(t) and B−1
2

(t) if

D

1

(t) 6= {0}, D
2

(t) 6= {0} respetively (D

2

(t) =KerA(t)∩D, Y
1

(t) =A(t)D)

A(t)=A

1

(t)+̇A
2

(t), B(t)=B

1

(t)+̇B
2

(t) : D
1

(t)+̇D
2

(t)→ Y

1

(t)+̇Y
2

(t) (13)

[Rutkas A.G., Vlasenko L.A. Existene of solutions of degenerate nonlinear di�erential

operator equations, Nonlinear Osillations, 2001℄
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For eah t ∈ [t+,∞) the projetors an be determined by the formulas

[Rutkas A.G., Vlasenko L.A. Nonlinear Osillations, 2001℄

P

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

R(λ ,t)A(t)dλ , P

2

(t) = I

X

−P

1

(t),

Q

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

A(t)R(λ ,t)dλ , Q

2

(t) = I

Y

−Q

1

(t).
(14)

and the auxiliary operator G(t) =A(t)+B(t)P
2

(t) : D→Y has the bounded

inverse G

−1(t) ∈ (Y,X).
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Let X=Y =D= Rn

.

For eah t any x ∈ Rn

an be uniquely represented in the form

x= x

p

1

(t)+x

p

2

(t), x

p

i

(t) = P

i

(t)x ∈ X

i

(t).

The DAE (1) [A(t)x(t)]′+B(t)x(t) = f(t,x(t)) is redued to the equivalent system

[P
1

(t)x(t)]′=
[
P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]
P

1

(t)x(t)+G

−1(t)Q
1

(t)f(t,x(t)),

G

−1(t)Q
2

(t)[f(t,x(t))−A

′(t)P
1

(t)x(t)]−P

2

(t)x(t) = 0 or

x

′
p

1

(t) =
[
P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]
x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x), (15)

G

−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]−x

p

2

(t) = 0. (16)

Introdue the manifold

L

t+ = {(t,x) ∈ [t+,∞)×R
n |Q

2

(t)[B(t)x+A

′(t)P
1

(t)x− f(t,x)] = 0}. (17)

The onsisteny ondition (t
0

,x
0

) ∈ L

t+ for the initial point (t
0

,x
0

) is one of

the neessary onditions for the existene of a solution of the initial value problem

(1), (3).

V

′
(15)

(t,x
p

1

(t)) = ∂V
∂t

(t,x
p

1

(t))+
(

∂V
∂z

(t,x
p

1

(t)),
[
P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+

B(t)]
]
x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x
p

1

(t)+x

p

2

(t))
)
is the derivative of the funtion V(t,z)

along the trajetories of the equation (15), where V(t,z) is a ontinuously di�erentiable

and positive de�nite salar funtion.
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Main results:

Theorems on the existene and uniqueness of global solutions

Some advantages: the restritions of the type of the global Lipshitz

ondition (inluding ontrative mapping) are not used.

Theorem on the Lagrange stability of the DAE (the boundedness of

solutions)

Theorem on the Lagrange instability of the DAE (solutions have �nite

esape time)

Theorem on the ultimate boundedness (dissipativity) of the DAE (the

ultimate boundedness of solutions)

Theorems on the Lyapunov stability and instability of the equilibrium

state of the DAE

Theorems on asymptoti stability and asymptoti stability in the large

of the equilibrium state (omplete stability of the DAE)

Numerial methods

The obtained theorems were used for the study of ertain mathematial models of

eletrial iruits with nonlinear and time-varying elements.

M. Filipkovska (FAU) 11/22



The IVP (1), (3):

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), x(t
0

) = x

0

.

De�nitions

Let f(t,0) ≡ 0 and f : [t+,∞)×U

x

R

(0)→ Rn

, where

U

x

R

(0) = {x ∈R
n | ‖x‖< R}.

An equilibrium position (a stationary solution) x∗(t)≡ 0 of the DAE (1)

(f(t,0) ≡ 0) is alled Lyapunov stable, or simply stable, if for eah ε > 0 (ε <R)

and eah t

0

∈ [t+,∞) there exists a number δ = δ (ε,t
0

)> 0 (δ ≤ ε) suh that for

any onsistent initial point (t
0

,x
0

) satisfying the ondition ‖x
0

‖< δ there exists a

global solution x(t) of the IVP (1), (3) and this solution satis�es the inequality

‖x(t)‖< ε for all t ∈ [t
0

,∞).

If, in addition, there exists δ̃ = δ̃ (t
0

)> 0 (δ̃ ≤ δ ) suh that for eah solution x(t)

with an initial point (t
0

,x
0

) satisfying the ondition ‖x
0

‖< δ̃ the requirement

lim
t→∞

x(t) = 0 is ful�lled, then x∗(t)≡ 0 is alled asymptotially Lyapunov stable,

or simply asymptotially stable.

If in the previous de�nition the number δ is independent of t

0

, then the solution

is alled uniformly Lyapunov stable or uniformly stable (on [t+,∞)).
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An equilibrium position x∗(t)≡ 0 of the DAE (1) (f(t,0) ≡ 0) is alled

Lyapunov unstable, or simply unstable, if for some ε > 0 (ε < R), t

0

∈ [t+,∞)
and any δ > 0 there exist a solution xδ (t) of the IVP (1), (3) and a time moment

t

1

> t

0

suh that ‖x
0

‖< δ and ‖xδ (t1)‖ ≥ ε.

Let f(t,0) ≡ 0 and f : [t+,∞)×Rn → Rn

.

If the equilibrium position x∗(t)≡ 0 of the DAE (1) (f(t,0) ≡ 0) is asymptotially

stable and, moreover, for eah point (t
0

,x
0

) ∈ L
t+ there exists a global solution

x(t) of the IVP (1), (3) and lim
t→∞

x(t) = 0, then x∗(t)≡ 0 is alled asymptotially

stable in the large, and the DAE is alled ompletely stable or asymptotially

stable.

Remark. Sine the Lagrange instability of a solution implies its Lyapunov

instability, the theorems on the Lagrange instability of DAEs an also be treated

as Lyapunov instability theorems.

Asymptoti stability in the large for expliit ODEs was onsidered in

[Krasovsky N.N. Some problems of the theory of stability of motion, 1959℄.
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B

r

1

(0) = {z ∈ R
n | ‖z‖ ≤ r

1

},

B

x

p

1

,x
p

2

r

1

,r
2

(0) = {x ∈ R
n | ‖x

p

i

(t)‖ ≤ r

i

,x
p

i

(t) = P

i

(t)x, i = 1,2}.
(18)

Theorem 6 (Lyapunov stability and asymptoti stability of equilibrium position

of the DAE). Let f ∈C([t+,∞)×U

x

R

(0),Rn), f(t,0)≡ 0,

∂ f/∂x ∈ C([t+,∞)×U

x

R

(0),L(Rn)), A,B ∈ C

1([t+,∞),L(Rn)), and the penil

λA(t)+B(t) satisfy (11), where C

2

∈C1([t+,∞),(0,∞)). Assume that for eah

t∗ ∈ [t+,∞) and x∗
p

1

(t∗) = 0, x

∗
p

2

(t∗) = 0 the operator

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is

invertible. Then the following statements are true:

1. Let there exist numbers r

1

,r
2

> 0, r

1

+ r

2

< R, and a positive de�nite

funtion V ∈C1([t+,∞)×B

r

1

(0),R) suh that for all t ∈ [t+,∞), x ∈ B
x

p

1

,x
p

2

r

1

,r
2

(0)

the following inequality holds:

V

′
(15)

(t,x
p

1

(t)) ≤ 0. (19)

Then the equilibrium position x∗(t)≡ 0 of the DAE (1) is Lyapunov stable.
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2. Let there exist numbers r

1

,r
2

> 0, r

1

+ r

2

<R, and positive de�nite funtions

V ∈ C

1([t+,∞)×B

r

1

(0),R), W ∈ C(B
r

1

(0),R), and U ∈C(B
r

1

(0),R) suh that

V(t,z)≤W(z) for all t ∈ [t+,∞), z ∈ B
r

1

(0), and

V

′
(15)

(t,x
p

1

(t))≤−U
(
x

p

1

(t)
)

(20)

for all t ∈ [t+,∞), x ∈ B

x

p

1

,x
p

2

r

1

,r
2

(0), x
p

1

(t) 6= 0;

also, let

G

−1(t)Q
2

(t)[f(t,P
1

(t)x+P

2

(t)x)−A

′(t)P
1

(t)x]→ 0

as x→ 0 uniformly in t on [T,∞) for some T> t+. (21)

Then the equilibrium position x∗(t)≡0 of the DAE (1) is asymptotially

Lyapunov stable.
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Theorem 7 (Lyapunov instability of equilibrium position of the DAE).

Let f ∈C([t+,∞)×U

x

R

(0),Rn), f(t,0)≡ 0, ∂ f/∂x ∈ C([t+,∞)×U

x

R

(0),L(Rn)),

A,B ∈C1([t+,∞),L(Rn)), and the penil λA(t)+B(t) satisfy (11), where

C

2

∈C1([t+,∞),(0,∞)). Assume that for eah t∗ ∈ [t+,∞) and x∗
p

1

(t∗) = 0,

x

∗
p

2

(t∗) = 0 the operator Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is

invertible. Let there exist numbers T≥ t+ and r

1

,r
2

> 0, r

1

+ r

2

< R, and a

funtion V ∈C1([T,∞)×B

r

1

(0),R) suh that

1. V(t,z)→ 0 uniformly in t on [T,∞) as ‖z‖→ 0;

2. there exists a positive funtion U ∈ C(B
r

1

(0),[0,∞)) suh that

V

′
(15)

(t,x
p

1

(t))≥U

(
x

p

1

(t)
)
> 0 or V

′
(15)

(t,x
p

1

(t))≤−U
(
x

p

1

(t)
)
< 0 (22)

for all t ∈ [T,∞), x ∈ B
x

p

1

,x
p

2

r

1

,r
2

(0), x
p

1

(t) 6= 0;

3. for eah ∆
1

> 0 and eah ∆
2

> 0, ∆
i

≤ r

i

, there exist x

p

1

(T) 6= 0 and x

p

2

(T)

suh that ‖x
p

i

(T)‖ < ∆
i

, i= 1,2, and V(T,x
p

1

(T))V′
(15)

(T,x
p

1

(T))> 0

(i.e., the sign of the funtion V oinides with the sign of the derivative V

′
(15)

at

(T,x
p

1

(T))).

Then the equilibrium position x∗(t)≡ 0 of the DAE (1) is Lyapunov

unstable.
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Theorem 8 (asymptoti stability in the large or omplete stability of the DAE).

Let f ∈C([t+,∞)×Rn,Rn), f(t,0) ≡ 0, ∂ f/∂x ∈ C([t+,∞)×Rn,L(Rn)),

A,B ∈C1([t+,∞),L(Rn)), the penil λA(t)+B(t) satisfy (11), where

C

2

∈C1([t+,∞),(0,∞)). Let the onditions 1), 2) of Theorem 1 or 1), 2) of

Theorem 2 (on the global solvability), as well as ondition (21), be satis�ed.

Assume that there exist positive de�nite funtions V ∈ C

1([t+,∞)×Rn,R),

W ∈ C(Rn,R) and U ∈ C(Rn,R) suh that

1. V(t,z) ≤W(z) for all t ∈ [t+,∞), z ∈ Rn

;

2. V(t,z)→ ∞ uniformly in t on [t+,∞) as ‖z‖→ ∞;

3. for all (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , xp
1

(t) 6= 0 (x

p

i

(t) = P

i

(t)x, i= 1,2), the

inequality (20) holds.

Then the equilibrium position x∗(t)≡ 0 of the DAE (1) is asymptotially

stable in the large (the DAE (1) is ompletely stable).
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The onditions 1), 2) of Theorem 1 (on the global solvability):

1) for eah t ∈ [t+,∞) and eah x

p

1

(t) ∈X
1

(t) there exists a unique

x

p

2

(t) ∈ X

2

(t) suh that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ ;

2) for eah t∗ ∈ [t+,∞), x∗
p

i

(t∗) ∈ X

i

(t∗), i= 1,2, suh that

(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗)) ∈ L

t+ the operator Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is

invertible;

The onditions 1), 2) of Theorem 2 (on the global solvability):

1) for eah t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t) there exists x

p

2

(t) ∈ X

2

(t) suh that

(t,x
p

1

(t)+x

p

2

(t)) ∈ L
t+ ;

2) for eah t∗ ∈ [t+,∞), x∗
p

1

(t∗) ∈ X

1

(t∗), x
i

p

2

(t∗) ∈X2

(t∗) suh that

(t∗,x
∗
p

1

(t∗)+x

i

p

2

(t∗)) ∈ L

t+ , i= 1,2, the operator funtion Φ
t∗,x∗

p

1

(t∗)(xp2(t∗))

de�ned by Φ
t∗,x∗

p

1

(t∗) : X
2

(t∗)→ L(X
2

(t∗),Y2

(t∗)),Φ
t∗,x∗

p

1

(t∗)(xp2(t∗)) =[
∂

∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is basis invertible on

[x1
p

2

(t∗),x
2

p

2

(t∗)].
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Outlooks

1

It is planned to extend the obtained results to the ase when X,Y are Banah

spaes, f : [t+,∞)×X→Y and A(t),B(t) : X→Y (t ∈ [t+,∞)) are losed

linear operators with the domains D

A(t), DB(t), D=D

A(t)∩DB(t) 6= {0}.

In this ase we will require that A(t), B(t) be strongly ontinuously

di�erentiable on [t+,∞) (i.e., for eah d ∈D the funtions A(t)d, B(t)d be

ontinuously di�erentiable on [t+,∞)).

2

It is planned to onsider semilinear time-varying DAEs of index higher than 1.

A regular penil λA(t)+B(t) is a regular penil of index ν (ν ∈N) if there

exist funtions C

1

,C
2

: [t+,∞)→ (0,∞) suh that for every t ∈ [t+,∞)

‖R(λ ,t)‖ ≤ C

1

(t)|λ |ν−1, |λ | ≥ C

2

(t). (23)

[Rutkas A.G., Vlasenko L.A. Existene of solutions of degenerate nonlinear

di�erential operator equations, Nonlinear Osillations, 2001℄

Then for eah t ∈ [t+,∞) there exist the two pairs of mutually omplementary

projetors P

j

(t), Q
j

(t), j= 1,2, (14) whih generate the diret

deompositions of D and Y (12) suh that the operators A(t), B(t) have the

blok representations (13), where A

−1
1

(t) and B−1
2

(t) exist.

In general, the order of pole of the resolvent (A(t)+ µB(t))−1 at the point

µ = 0 is alled the index of the regular penil λA(t)+B(t).
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