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Consider implicit ordinary differential equations (ODEs) of the form
d

e AOxO]+B(0)x(t) =£(t.x(t),  t € [t1.00), (1)

A(t)%x(t) +B(t)x(t) = £(t,x(t)), (2)

where t4 >0, A(t),B(t) (t € [t+,)) are closed linear operators from X to Y
with the domains D), Dg(y), D =Da) N Dg() # {0}, X,Y are Banach spaces,
f:[ty,0)xX =Y.

The time-varying operators A(t), B(t) can be degenerate.

The differential equations (DEs) (1) and (2) with a degenerate (for
some t) operator A(t) are called time-varying (nonautonomous)
degenerate DEs or time-varying differential-algebraic
equations (DAES). In the terminology of DAEs, equations of the form (1),
(2) are commonly referred to as semilinear.

We study the initial value problem (the Cauchy problem) for the DAEs (1), (2)
with the initial condition

X(to) = Xy. (3)
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Fields of application of the theory of DAEs are control theory,
radioelectronics, cybernetics, mechanics, robotics technology, economics, ecology
and chemical kinetics.

In particular, semilinear DAEs are used in modelling

@ transient processes in electrical circuits

gas flow in networks

dynamics of neural networks
o dynamics of complex mechanical and technical systems (e.g., robots)

multi-sectoral economic models

kinetics of chemical reactions

Notice that any type of a PDE can be represented as a DAE in
infinite-dimensional spaces (an abstract DAE) and, possibly, a complementary
boundary condition.
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Assume that the characteristic operator pencil AA(t)+B(t) (A €Cisa
parameter), associated with the linear part of the DAE (1) or (2), is a regular
pencil of index not higher than 1: for each t >t the pencil AA(t) 4+ B(t) be
regular and there exist functions Cj : [t4,00) — (0,00), Ca: [t4,00) — (0,00) such
that for every t € [t ,0) the pencil resolvent R(1,t) = (AA(t) + B(t)) ! satisfies
the constraint

IR(A0)[ < Ci(t), [A]=Ca(t). (4)

Then for each t € [t o), there exist the two pairs of mutually complementary

projectors

P;(t): D—Dj(t) and Qj(t): Y = Yj(t), j=1,2,
which generate the direct decompositions

D =D;(t)+D2(t), Y=Y;(t)+Y2(t) such that (5)
the pair of subspaces X;(t), Y1(t) and X2(t), Yo(t) are invariant under the
operators A(t), B(t) (i.e., A(t),B(t): X;(t) = Y;(t)) and
Aj(t) = A(t)|Dj<t) . Bj(t) = B(t)|Dj<t) : Dj(t) — Yj(t), j =1,2, are such that
As(t) =0 and there exist A;*(t), B;(t) if Di(t) # {0}, Da(t) # {0}
respectively (Ds(t) = Ker A(t)ND, Y1 (t) = A(t)D)

At)=A1(t)+A5(t), B(t)=B1(t)+B2(t): D1(t)+D2(t) = Y1(t)+Y2(t) (6)

[Rutkas A.G., Vlasenko L.A. Existence of solutions of degenerate nonlinear differential
operator equations, Nonlinear Oscillations, 2001]
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For each t € [t,) the projectors can be determined by the formulas
[Rutkas A.G., Vlasenko L.A. Nonlinear Oscillations, 2001]

Pl(t):%ﬁ ]f R(A,6)A(t)dA, Pa(t) = Ix — Py (t),
AI=Cat)

Qu(t) = — ]f AR AL, Qa(t) =Ty — Qu(t).

and the auxiliary operator G(t) = A(t) + B(t)P2(t): D = Y has the bounded
inverse G (t) € (Y,X).

M. Filipkovska (FAU) 5/43



Let X=Y =D =R".
For each t any x € R™ can be uniquely represented in the form
X =Xp, (t) +Xpy(t),  xp; () =Pi(t)x € Xi(t).
The DAE (1) [A(t)x(t)]" +B(t)x(t) = f(t,x(t)) is reduced to the equivalent system
/
1

[P1()x(t)]" =[P} (t) = G~ (t)Qu (6)[A'(t) + B(8)]] Pr (£)x(t) + G (£)Qu (t)E(t.x(t)),
G~ () ( [£(6.x(t)) — A'(6)P1 (t)x(t)] = Pa(t)x(t) =0 or

Xp, () = [P1(t) = GTH(6)Qu (6)[A (t) + B(6)]] xp, () + G H(H)Qu () (8,%),  (8)
71(t)Q2(t)[f(t Xp, (t) +Xp, (t)) — Al(t )xpy ()] —Xp, (t) = 0. 9)

Introduce the manifold

Li, = {(t,x) € [t4,00) x R™ | Q2(t)[B(t)x+ A’(t)P1 (t)x — £(t,x)] =0}.  (10)
The consistency condition (to,xo) € L¢, for the initial point (to,x0) is one of
the necessary conditions for the existence of a solution of the initial value problem

(1). (3).
Vigy (659, (£)) = ¥ (635p, (6)) + (% (6.35p, (6)), [P (6) — G~ ()QuOIA () +
B(t)]]xp, (t) + G (t) Q1 (6)f (t,xp, (t) +xp, (t))) is the derivative of the function V(t,z)

along the trajectories of the equation (8), where V(t,z) is a continuously differentiable
and positive definite scalar function.
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The IVP (1), (3): ~—[A(t)x(t)]+B(t)x(t) = f(t,x(t)), x(to) = Xo.

d
dt
Definitions

A solution x(t) of the initial value problem (IVP) (1), (3) is called global or
defined in the future if it exists on [tg,0).

A solution x(t) of the IVP (1), (3) is called Lagrange stable if it is global and

bounded, i.e., sup ||x(t)| < oe.
tE[t07°°)

A solution x(t) of the IVP (1), (3) has a finite escape time (is blow-up in
finite time) and is called Lagrange unstable if it exists on some finite interval
[to,T) and is unbounded, i.e., . li%no||x(t)|| = co.

ST

The equation (1) is called Lagrange stable if every solution of the IVP (1), (3)
is Lagrange stable (the DAE is Lagrange stable for every consistent initial point).

The equation (1) is called Lagrange unstable if every solution of the IVP (1),
(3) is Lagrange unstable.

J. La Salle obtained the theorems on the global solvability, the Lagrange
stability and instability of the explicit ODE x’ ={(t,x) [J. La Salle, S. Lefschetz,
Stability by Liapunov's Direct Method with Applications, 1961].



Solutions of the equation (1) are called ultimately bounded, if there exists a
constant K > 0 (K is independent of the choice of tg, x¢) and for each solution
x(t) with an initial point (to,Xo) there exists a number T = 7(t9,Xg) > to such that
IIx(t)|| < K for all t € [to + T,).

The equation (1) is called ultimately bounded or dissipative, if for any
consistent initial point (tp,xo) there exists a global solution of the initial value
problem (1), (3) and all solutions are ultimately bounded.

If the number 7 does not depend on the choice of tg, then the solutions of (1)
are called uniformly ultimately bounded and the equation (1) is called uniformly
ultimately bounded or uniformly dissipative.

Ultimately bounded systems of explicit ODEs x’ = f(t,x), which are also called
dissipative systems and D-systems, were studied in [Yoshizawa T., Stability theory
by Liapunov's second method, 1966] and [La Salle J., Lefschetz S., 1961].
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Main results:

o Theorems on the existence and uniqueness of global solutions

Some advantages: the restrictions of the type of the global Lipschitz
condition (including contractive mapping) are not used.

o Theorem on the Lagrange stability of the DAE (the boundedness of
solutions)

o Theorem on the Lagrange instability of the DAE (solutions have finite
escape time)

e Theorem on the ultimate boundedness (dissipativity) of the DAE (the
ultimate boundedness of solutions)

o Theorems on the Lyapunov stability and instability of the equilibrium
state of the DAE

o Theorems on asymptotic stability and asymptotic stability in the large
of the equilibrium state (complete stability of the DAE)

@ Numerical methods

The application of the obtained theorems to the study of certain mathematical
models of electrical circuits with nonlinear and time-varying elements are shown.
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Theorem 1 (the global solvability). Let f € C([t4,0) x R?,R™),
2£ € C([t4,) x R*, L(R")), A,B € C'([t+,0),L(R")), the pencil AA(t)+B(t)
satisfy (4), where Cy € C([t,),(0,%)), and the following conditions be satisfied:
1) for each t € [t4,0) and each x,, (t) € X; (t) there exists a unique
Xps (t) € X2(t) such that (t,xp, (t) +xp, (t)) € Ly ;
2) for each t. € [t,), x5 (t+) € Xi(t«), i = 1,2, such that
(tw,x5, (ts) +5, (t4)) € L, the operator D i (60)x, (6) X2 (t) = Ya(ts),
b, X

g (1) = | 35 [Qa(B) (b x5, (£) 55, (6))] = B(t:)| Pa(t.), is
invertible;

3) there exist a number R > 0, a positive definite function
V € C([t4,) x U4 (0),R), where U§ (0) = {z € R" | ||z|| > R}, and a function
X € C([t+,00) x (0,00),R) such that:

3.1) V(t,2) — oo uniformly in t on every finite interval [a,b) C [t,o0) as ||z|| — oo,

3.2) for all t, xp,, (t), xp, (t) such that (t,xp, (t) +xp,(t)) € L¢., [|xp, (t)]] >R,
the inequality Vig) (t,xp, (t)) < 2(t,V(t.xp, (t))) holds,

3.3) the inequality v/ < x(t,v), t > t, has no positive solutions v(t) with finite
escape time.

Then for each initial point (to,xo) € L;, there exists a unique global
solution of the IVP (1), (3).
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Statement 1.
Theorem 1 remains valid if the conditions 1), 2) are replaced by the following:
there exists a constant 0 < o < 1 such that

1G7(6) Qa () £ (t,xp, (£) + x5, (£)) — GH(£) Qo (6) £ (.3, (6) +x2, (1)) || <
<aljx,(t)—x2, (6)] (11)

P2
for any t € [t ,00), xp, (t) € X1 (t) and xI,, (t) € X2 (t), i=1,2.

Theorem 2 (the global solvability).

Theorem 1 remains valid if the conditions 1), 2) are replaced by the following:

1) for each t € [t4,), xp, (t) € X1 (t) there exists x,, (t) € Xa(t) such that
(t7xp1 (t) + Xpy (t)) € Lt+;

2) for each t.. € [t4,0), x5 (tx) € Xy (t+), x},, (t+) € Xa(t.) such that
(te, X}, (t) +x1,(ts)) € L, , i = 1,2, the operator function CIDt*,Xf)l(t*)(pr (t4))
defined by

Dy, g, (1) F Xa(ts) = DX (t0), Y (t4)),

Dy, g, (1) (Xpa () = %[Qa(t*)f(t*,X£1(t*)+Xp2(t*))]—B(t*) Py(t), (12)

P1

is basis invertible on [x} (t.),x3 (t.)].
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Theorem 3 (Lagrange stability). Let f € C([t4,00) x R",R"),
£ € C([t4,) x R*L(R")), A,B€C'([t1,%0),L(R")), the pencil AA(t)+B(t)
satisfy (4), where Cy € C([t4,),(0,2)), the requirements 1), 2) of Theorem 1
or 2 be fulfilled, and

3) there exists a number R > 0, a positive definite function
V € C!([ts,0) x U (0),R) and a function x € C([t+,%) x (0,%),R) such that:

3.1) V(t,2z) — oo uniformly in t on [t4,) as ||z — oo

3.2) for all t, x;,, (t), xp, (t) such that (t,xp, (t)+xp,(t)) € L, |
the inequality V(g (t,xp, (t)) < 2(t,V(t.xp, (t))) holds;

3.3) the differential inequality v/ < x(t,v), t > t, has no unbounded positive
solutions v(t) for t € [t,e).

Let one of the following conditions be also satisfied:

4.a) for all (t,xp, (t) +xp,(t)) € Le,, ||xp, (£)|| <M < eo (M is an arbitrary
constant), the inequality
1G L (6) Qa ()[E(tXpy (£) + Xpa (1)) — A'(6)3p, (§)]| < K < o0, where Kyr = K(M)
is some constant, holds;

4.b) for all (t,xp, (t) +xpy(t)) € L, [|xp, (t)]] <M < oo, the inequality
[Ixp, (8)]| < Ky < oo, where Ky = K(M) is some constant, holds.

Then the equation (1) is Lagrange stable.

Xp, (8[| = R,
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Theorem 4 (Lagrange instability). Let f € C([t4,0) x R",R"),
£ € C([t4,) x R*L(RY)), A,B€C!([t1,%0),L(R")), the pencil AA(t)+B(t)
satisfy (4), where Cy € C([t4,),(0,2)), the requirements 1), 2) of Theorem 1
or 2 be fulfilled, and

3) there exists a region Q CR", 0 € Q, such that the component Py (t)x(t) of
each existing solution x(t) with the initial point (to,xo) € Lg,, where
Py (to)xo € Q, remains all the time in Q;

4) there exist a positive definite function V € C! ([t ,0) x Q,R) and a function
X € C([t+,00) x (0,00),R) such that:

4.1) for all t, xp, (t), xp,(t) such that (t,xp, (t) +Xp, (t)) € Ly, , xp, (t) € Q, the
inequality V{g, (t.xp, (t)) > x (£,V(t.xp, (t))) holds,

4.2) the inequality v/ > x(t,v), t > t4, has no positive solutions defined in the
future (i.e., defined for all t > t.).

Then for each initial point (to,x0) € L¢, such that Py (ty)xo € Q, there
exists a unique solution of the IVP (1), (3) and this solution is Lagrange
unstable.
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Remarks on the form of the functions y

It is usually convenient to choose ) € C([t4,0) X (0,00),R) in the form
2(6%) = K(OU(), (13)
where U € C(0,), k € C([t+,),R). Then the theorem conditions can be
changed as follows:

@ in Theorems 1, 2 on the global solvability, it suffices to require that

< dv
V)

=0 (¢ >0 is some constant) instead of the condition 3.3);

@ in Theorem 3 on the Lagrange stability, it suffices to require that fwv) =oo
c \

and [k(t)dt <eo (tg >t is some number) instead of the condition 3.3);
to

@ in Theorem 4 on the Lagrange instability, it suffices to require that

f—v < o0 and fk( )dt = oo instead of the condition 4.2).

U(v)

[Filipkovskaya M. S. Global solvability of time-varying semilinear differential-algebraic
equations, boundedness and stability of their solutions. |, Differential Equations, 2021]
[Filipkovskaya M. S. Global solvability of time-varying semilinear differential-algebraic
equations, boundedness and stability of their solutions. Il, Differential Equations, 2021
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Theorem 5 (uniform dissipativity (ultimate boundedness)). Let
f € C([t4,o) x R*,R"), %f € C([t4,) x R L(R®)), A,B € C}([t4,00),L(R®)),
the pencil LA (t) + B(t) satisfy (4), where Cz € C!([t4,),(0,00)), the
requirements 1), 2) of Theorem 1 or 2 be fulfilled, and

3) there exist a number R > 0, a positive definite function
V € C([t4,) x U (0),R) and functions U; € C([0,)), j = 0,1,2, such that
Up(r) is non-decreasing and Uy(r) — +o0 as r — +oo, Uy (1) is increasing,
Usy(r) > 0 for r > 0, and for all t € [t+,00), xp, (t) € X1 (t), xp, (t) € Xa(t) such
that (t,xp, (t) +Xp,(t)) € Lt . ||xp, (t)]| > R the condition
Uo(J|xp, (6)]]) < V(t,xp, (t)) < Ui(]|xp, (t)]|) and one of the following inequalities
hold:

3.3) Vig)(t:55, (£)) < ~Us ([ (8)):

3.b) Vig)(t.xp, (t)) < —Uz ((H(t)xp, (t),%p, (t))), where H € C([t4,00), L(R")) is
some self-adjoint positive definite operator function such that sup ||H(t)|| < oo;

tE[64,00)

3.0) Vés)(t,xp1 (t)) < —=CV(t,xp, (t)), where C > 0 is some constant;

4) there exist a constant ¢ > 0 and a number T >t such that
161 (6)Qa (6) E(65p, (6) +%py (1)) = A'(6)3p, (1)) < clxcp, (8)] for al
(tvxpl (t) + Xpy (t)) €Lr.

Then the DAE (1) is uniformly ultimately bounded (uniformly dissipative).



Remarks on the form of the functions V

It is often convenient to choose the positive definite scalar function V (t,z) in
the form

V(t,z) = (H(t)z,2), (14)

where H € C! ([t ,),L(R")) is a self-adjoint positive definite operator function.
The function V (t,z) (14) satisfies the conditions (except for the conditions on the
derivative of the function along the trajectories of (8)) of Theorems 1-4 on the
global solvability, the Lagrange stability and the Lagrange instability, and if

additionally sup ||H(t)|| < o, then the function (14) also satisfies the conditions
€[4 ,00)
of Theorem 5 on the dissipativity.

[Filipkovska (Filipkovskaya) M. S. Global boundedness and stability of solutions of
nonautonomous degenerate differential equations, Proceedings of the Institute of
Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 2020]
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d

SIAGX)] + Blt)x() = H(x(0). x(to) =0
Introduce the uniform mesh @, = {t; =to+ih,i=0,...,N, tx =T} on [to,T]

with the step size h = (T —to)/N. The values of an approximate solution at the

points t; are denoted by x;, i =0,...,N.

The IVP (1), (3):

Theorem (on the convergence of the method). Let the conditions of
Theorem 1 or 2 be satisfied and, additionally, the operator
q)t,Pl(t)Zsz(t)u* = CDmPl(t)z* (Pa(t)us): Xa(t) = Ya(t), which is defined by the
formula (12) for each (fixed) t, x;; (t) =P1(t)z«, x5, (t) = P2(t)u., be invertible
for (t,P1(t)zs +Pa(t)us) € [to,T] x R™. If A,B € C%([to,T],L(R™)),
Cy € C?([to,T],(0,%)), f € C([to,T] x R*,R") and the initial value xq are chosen
so that the consistency condition Q2 (to) [A’(to)P1(to)x0 + B(to)xo — f(to,x0)] =0
(i.e., (to,x0) € Ly, ) holds, then numerical method
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zo = P1(to)xo, uo = P2 (to)xo, (15)
zin = (T4 B[P (6) = G (6)Qu (8)[A' (1) + B(t:)]| P1 (1) )7+
+hG71(ti)Q1(ti)f(ti,Xi), (16)
Uj+1 = Uj—

ox

1
- [I — G (ti41)Q2 (’Ei+1)ﬁ (tis1,P1(tig1)zirs + Pa(tipr)ui) Po (ti+1)] X
X [ui =G (ti1)Qa(tis1) [f(ti+17P1 (tis1)Zis1 + Po(tivn)u)—
— A(ti41)P1 (ti+1)Zi+1H ; (17)

X1 = Py (tiz1)ziv +Pa(tiv)uiyg, i=0,...,N—-1, (18)

approximating the IVP (1), (3) on [to,T], converges and has the first order of
accuracy: max [|x(t;) —xi|| = O(h), h — 0 ( max ||z(t;) — %] = O(h),
0<i<N 0<i<N

max [lu(ti) —wil| = O(h), h = 0).
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Remark. If in Theorem we do not require the additional smoothness for f,
A,B and C, (ie., f € C([t4,o) x R*R"), % € C([t4,0) x R L(R")),
A,B € C!([t4,),L(R")) and Cy € C!([t4,),(0,0))), then the method (15)—(18)
converges, but may not have the first order of accuracy: Jmax Ix(t;) —xi|| = o(1),
h—0.
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The model of a radio engineering device

A voltage source e(t),
nonlinear resistances ¢, ¢, Y,
a nonlinear conductance h,
a linear resistance r,
a linear conductance g,
an inductance L and
a capacitance C are given.
Let e(t) € C([0,00),R),
@(y), @o(y), ¥(y),h(y) € C' (R,R),
r,g, L, C>0.

The model of the circuit Fig. 1 is described
by the system with the variables

Fig. 1. The diagram of the electric circuit

x1 =1Ip, x2=Uc, x3=L L 0 0
d
L3 +x2+rxs =e(t) — @o(x1) — @(x3), (19) A= ( 0. C 0 )
0 0 O
d
Caxz +gx2 —x3 = —h(x2), (20) 01 r
X2+I'X3:III(X1—X3)—(P(X3). (21) B= 0 g -1
0 1 r
The vector form of the system is the DAE
e ysrem ! e(t) — gn(x1) — (x3)
a[AX] +Bx =1{(t,x), (22) f(t,x) = —h(x2)
where x = (x1,x2,x3)T € R? Y(x1 —x3) = ¢(x3)
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Lagrange stability of the model of a radio engineering device.
The particular cases.

@o(y) = any®™ 1, ( )=y y(y) = azy? L h(y) = oy, (23)
Po(y) =auy™ ", o(y )—Otzsmy v(y )—Otasmy, h(y) = aysiny, (24)

kljseN, >0 i=14, ycR.

For each initial point (to,x°) satisfying x5 +rxJ = y(x? — x3) — 9(x3), there
exists a unique global solution of the IVP (22), x(tg) = x°
(x(to) = (IL(to), Uc(to),I(to))™) for the functions of the form (23), if j <k, j<s
and ag is sufficiently small, and for the functions of the form (24), if oz + o3 <r.

o0

If, additionally, sup |e(t)| <+ee or [ |e(t)|dt <-oo, then for the initial points
£€[0,00) to

(to,x°) the DAE (22) is Lagrange stable (in both cases), i.e., every solution of the

DAE is bounded. In particular, these requirements are fulfilled for voltages of the

form
)2

e(t)=B(t+a) ™ e(t)=Be * e(t)=fe 62 ,e(t) =PBsin(wt+06), (25)

where ot >0, §,0,0 € R, ne€N, 0 €0,27n].

[M.S. Filipkovska, Lagrange stability of semilinear differential-algebraic equations and
application to nonlinear electrical circuits, Journal of Mathematical Physics, Analysis,
Geometry, 2018]




Lagrange stability. The numerical solution
L=500-10% C=05-10"%r=2, g=0.2, to =0, xo = (10,— 10,5)T
@o(y) =v*, @(y) =siny, y(y) =siny, h(y) =siny, e(t) = (26+10)~>

700 800 900 1000

100 200 300 400 500 600

0 100 200 300 400 500 600 700 800 900 1000 o
t

Fig. 2. The current Iy, (t) Fig. 3. The voltage Uc(t)

I(t)

00 50 600 700 800

Fig. 4. The current I(t)
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Lagrange stability. The numerical solution

L=500-10°,C=05-10"°,1=2, g=0.2, to =0, xo = (0,0,0)T,
@o(y) =vy> o(y) =y h(y)=y* w(y) =y> e(t) = 100e "sin(5t)

006

(1)

Uc(t)

Fig. 5. The current Ij,(t) Fig. 6. The voltage Uc(t)

8

Fig. 7. The current I(t)
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Lagrange stability. The numerical solution

L=300-10% C=05-105, r=2.6, g = 0.2, to = 0, xo = (7/6,0.5,0),
oo (y) =y3, @(y) =siny, y(y) =siny, h(y) =siny, e(t) = 200sin(0.5t) — 0.2

250 04
i
= I | 5o
| I .
| |
I |
= o 100 200 300 400 500 600 700 800 900 1000 ot 0 100 200 300 400 ?DQ 600 700 800 900 1000
t
Fig. 8. The current Ip,(t) Fig. 9. The voltage Uc(t)
.
o
o |
/
s . I
g |
o |
”
00 |

-0,
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Fig. 10. The current I(t)

M. Filipkovska (FAU) 24 /43



The global solution. The numerical solution

L=1000-10"% C=0.5-10" r=2,g=0.3, to =0, x° = (0,0,0)T
oo(y) =" o(y)=y* w(y) =y° h(y) =y° e(t) = —t

P =15
= 5 =
50 -25
50 3

o 50 100 150 200 250 300 350 400 450 500 o 50 100 150 200 250 300 50 400
t

Fig. 11. The current Iy, (t) Fig. 12. The voltage Uc(t)

0 500
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t

Fig. 13. The current I(t)
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Lagrange instability of the radio engineering device model

Consider the system (19)—(21) with the nonlinear resistances and conductance

P(y) =", o(y) =v", w(y)=y°, h(y) =v>. (26)
It is assumed that there exists M = sup |e(t)| < 4. Choose
t€([to,°)
Q= {(Xl,Xg)T S R2 | X1 >mp,mg = max{l—i—\/ Me, \3/ g—i—r*l, SCLil,
\/max{?)—l(L(rC)—l—r),O}},xz < —rx; — X5 —my, (27)

m, = max{g — QCLlr,O}}.

Then by Theorem 3 for any initial moment to and any initial currents and
voltage Ir,(to), Uc(to), L(to) satisfying Uc(to) +rL(to) = (I (to) —L(to))—
—@(I(to)) and such that (I, (to), Uc(to))T € Q there exists a unique distribution
of the currents and voltages in the circuit Fig. 1 only for to <t < T ([to,T) is
some finite interval ) and the currents and voltages are unbounded.

It means that there exists a unique solution of the Cauchy problem for the DAE
(22) with the functions (26), e(t) such that sup |e(t)| < 4-oo, and the initial

t€[to,o)
condition x(to) = (I (to), Uc(to),L(to))T, and this solution has a finite escape
time.
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Lagrange instability. The numerical solution

L=10-10% C=0.5-10%r=2,g=0.2,
Oo(x1)=—x3, 9(x3)=x3, h(xa)=x3, w(x1 —x3)=(x1 —x3)>, e(t)=2sint,
to =0, xo = (2.45, — 20.625125,2.5)T

x10' x10'
45
5000
4
4500
-2
35
4000
3500 -4 3
3000 . 25
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-8 15
1500
1000 10 N
05
500 1
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o 0.0058 0.01 0.015 0.02 0.025 o 0.005 0.01 0.015 0.02 0.025 o 0.005 0.01 0.015 0.02 0.025
t t t

Fig. 14. The current Ir,(t) Fig. 15. The voltage Uc(t) Fig. 16. The current
I(t)
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It is known that the dynamics of electrical circuits is modeled using DAEs which, in
general, cannot be reduced to an explicit ODE.

The mathematical model of a time-varying nonlinear electrical circuit

N /3=
1 I Iy L o R I
I 31 I 32
P2
3 G3 U
Ry

Fig. 17. The diagram of the electric circuit
A current I(t), a voltage U(t), resistances Ry (t), Ra(t), @1(I1), ¢2(I2), ¢@3(Is1),
a conductance G3(t), an inductance L(t) and a capacitance C are given.
A transient process in the electrical circuit (Fig. 17) is described by the system

%[L(t)h ()] + Ra ()1 (t) = U(t) — @1 (L (t)) — @3 (Is1 (t)), (28)
L (t) = Is1(t) — Ia(t) = I(t) + Ga(t) @3 (I31(t)), (29)
Ra(t)I2(t) = @3(I31(t)) — @2 (I2(t)), (30)
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Denote X1 (t) = Il (t), Xz(t) = 131 (t) and X3(t) = 12 (t)
The vector form of the system (28)—(30) is the time-varying semilinear DAE (1):
d

o A +B(e)x = £(t.%),

where

X1 L(t) 0 0 Ri(t) O 0
X = (xz) ,A(t):( 0 0 0) ,B(t):( 1 -1 -1 ) :
X3 0 0 0 0 0 Rz(t)

U(t)— @1 (x1)—93(x2)
ft,x)=| I(t)+Gs(t)ps(x2) .
@3(x2)—Pa2(x3)

The initial condition (3):  x(to) =x0, x0 = (L1 (to),I51(t0),I2(t0))T.

It is assumed that the functions L(t), Ri(t), R2(t) and G3(t) are positive for all
t € [ty,00).

The projections xy, (t) = Pj(t)x € X;(t) of a vector x have the form
Xpy (t) = Xp, = (x1,%1,0) T, Xp, (£) = Xp, = (0,2 —x1,%x3) "

Denote z = x1, u =X —X1, W = X3, then x,, = (2,2,0)T, x,, = (0,u,w)?.
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Using the introduced notation, the equations (29)—(30) can be rewritten as

w=—I(t)—u—Gs(t) o3 (u+12), (31)
u=y(tzu), where y(tzu)=-I(t)— (Gs(t)+R;"(t))@s(utz)+
+Ry () @2 (—1(t) —u— Ga(t)p3(u+2)). (32)

By Theorem 1 for each initial point (to,xp) € [t+,%) X R? satisfying the
algebraic equations (i.e., (to,xo) € Ly, )

X1 — X9 —X3 :I(t)+G3(t) (P3(X2), (33)
Ra(t)x3 = @3(x2) — ¢2(x3), (34)

there exists a unique global solution x(t) of the IVP (1), (3) if
L. R{,Ry € Cl([t+,°°),]R), ILU,Gs € C([t+,°°),R), (IS CI(R), j=1.2.3;
L(t) >0, Ry (t) >0, Ra(t) > 0, G3(t) > 0 for all t € [t ,00);

1) for each t € [t4,) and each z € R there exists a unique u € R satisfying the
equality (32);

2) for each t. € [t4,%0), z« € R and each u.,w, € R satisfying the equalities
(31), (32), one has the relation

@5 (0 +2.) + (@5 (Wi) + Ra(t.)] [14 Gs(ts) 05 (ws +2.)] #0; (35)

3) there exists R > 0 such that — (@ (z) + @3(u+2))z < Ry (t)z? for all
t € [t4,), u,w €R, z € R, |z] > R, satisfying the equalities (31), (32).



A similar assertion takes place according to Theorem 2, if the above conditions
are satisfied with the following changes: the condition 1) does not contain the
requirement that u be unique; the condition 2) is replaced by the following:

2*) for each t, € [t4+,), z. € R and each ul,wk € R, j = 1,2, satisfying the
equalities (31), (32), the relation

@3 (uz +7) + [@5(W2) + Ro(t:)] [1+ Ga(ts) @3 (0 +24)] #0
holds for any uy € [ul,u?], wy € [wl,w?], k=1,2.

If, additionally, [k(t)dt < eo, where k(t) =2L1(t) (|L'(t| + [U(t)]), the

to

functions I(t), Ry (t), Gs(t) are bounded for all t € [t ), and @3(x2), @2(x3)
are bounded for x; € R and x3 € R respectively, then the DAE (1) is Lagrange
stable by Theorem 3.
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The particular cases.

The the conditions 1), 2) are satisfied for the functions @2, @3 which are
increasing (nondecreasing) on R, for example,

P2(y) =ay™ ", @3(y) =by*™ L, @u(y) =cy”", ab,c>0,km]leN, (36)

and if b is sufficiently small, m <1, sup |I(t)| <eo and Ry(t) > Ko = const > 0,
tE[t+7°°)
t € [t4,00), then the condition 3) is also fulfilled.

Note that in this case the mapping y(t,z,u) is not globally contractive with
respect to u. Obviously, the condition 1) is satisfied, if y(t,z,u) is globally
contractive with respect to u for any t, z, i.e., there exists a constant o < 1 such
that |y(t,z,u1) — y(t,2,u2)| < etjuy —uy for any t € [t4,00), z € R, uy,up €R.
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The numerical solution

L(t) =500, Ri(t) =e ®, Ra(t) =2+et, G3(t) = (t+1)L,
I(t) =sint, U(t) = (t+1)7",

(pl(y) = y3v i= 17253r t.’0 = Or X0 = (0,0’O)T

L)

Fig. 18. The current I, (t) Fig. 19. The current Ig; (t)

O Fa— 5;0 w  w w
Fig. 20. The current I5(t)



The numerical solution
Ra(t)=2+et Gs(t) = (t+1)"t

L()_500(t+1)— Ri(t) =
I(t) = t+1) -1, U():(t+1)
( =y3,1=1,2,3, to—O,Xo—(OaOaO)T

Iut)

Fig. 21. The current I, (t) Fig. 22. The current I3 (t)

Fig. 23. The current I1(t)



A model for a gas pipeline flow

Consider a mathematical model for a gas pipeline flow (the flow on a single
pipe), assuming that the temperature is identically equal to To = const. The
model consists of the isothermal Euler equations

pt+ (pv)x =0,

A ISO1
(PV)e+ (b+pv2)e = =5 pYIv| g (500

and the equation of state for a real gas in the form

b = RTopa(p). (ISGE)
e x€[0,L], t €[0,t1) C[0,0], L < oo is the length of the pipe
e p=p(t,x), v=v(t,x), p=p(t,x) are respectively the density, velocity and
pressure
g is the gravitational constant, and R is the specific gas constant
A is the pipe friction coefficient, and D is the pipe diameter

h = h(x) is the height profile of the pipe over ground

z=1z(p) is the compressibility factor
[P. Domschke, B. Hiller, J. Lang, V. Mehrmann, R. Morandin, C. Tischendorf. Gas
Network Modeling: An Overview, 2021 (Preprint)]



Assuming (pv?), to be negligibly small and introducing the variable ¢ = pv
(the mass flow rate by cross section area), we obtain the semilinear model for
the isothermal Euler equations with the same gas state equation:

Py = —¢x, (37)
@y = —px — gphx —0.5AD "@lo[p ", (38)
0= —p+RTopz(p). (39)

1 0 0 0 —d—(i( 0 0
Denote A={0 1 0], B=[-gh, 0 —&] f(u)= _%% and
0 0 O 0 0 -1 RTopz(p)

u=(p,p,p)T. Then we can write the system (37)—(39) as:
ASeut) +Bu(t) = fu(t), (40)

where u=u(t)(x) = (p(t,x),0(t,x),p(t,x))T, x € [0,L], t € [0,T] C [0,t1). The
initial condition has the form:
u(O) = Uo, Up = uU(X) = (P (O,X),(,D(O,x),p(o,x))T, X€ [OvL]v (41)

where p(0,x) is chosen so as to satisfy the equation (39) for t =0, x € [0,L].
We will assume that u(t,x) satisfies suitable boundary conditions, for example,

¢(t,0) =@(t), p(t.0)=pi(t), te [O’T]’ (42)
ie., u(t)(0) =u(t) = (p(t,0),0(t),p1(t))T, where @i(t) and p;(t) are given.
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Consider the IVP for time-invariant semilinear DAE

S [au)] +Bu() = f(Lu(),  tefioT) (43)
u(tg) = Up, (44)

where A,B: X — Y are closed linear operators with the domains D, Dg,
D =Da NDsg # {0}, and X,Y are real Banach spaces.

Theorem [L.A. Vlasenko, Evolution models with implicit and degenerate
differential equations, 2006]. Let the pencil AA + B satisfy (4), where C; >0
and Cs > 0 are constants. Assume that f € C([to,T] x X,Y) satisfies the Lipschitz
condition

lf(t,u) — £t V)| <M|lu—v|, uveX (45)

where the constant M is such that
M| Q| GT < 1. (46)
Then for each initial point ug € D satisfying
Q2Bug = Qaf(to,u0),
there exists a unique global solution of the IVP (43), (44) on [to,T].
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Outlooks

@ The extension of the results to the case when X,Y are Banach spaces, A(t),
B(t) (t € [t4,00)) are closed linear operators from X to Y with the domains
DA(t)rDB() D= DA ﬂDB 750

Q@ AA(t)+B(t) is a regular pencil of index v (v € N), i.e., there exist functions
Ci: [t4,00) = (0,00), Ca: [t4,00) — (0,00) such that for every t € [t )
IRA.6)[ < CL®)IA"", A= Ca(t). (47)
[Rutkas A.G., Vlasenko L.A. Existence of solutions of degenerate nonlinear
differential operator equations, Nonlinear Oscillations, 2001]

Then for each t € [t o) there exist the two pairs of mutually complementary
projectors Pj(t), Q;j(t), j =1,2, (7) which generate the direct decompositions
of D and Y (5) such that the operators A(t), B(t) have the block
representations (6), where A;*(t) and B, *(t) exist.

In general, the order of pole of the resolvent (A(t)+uB(t))~! at the point
i1 =0 is called the index of the regular pencil AA(t) + B(t).
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Example. Let v=2 and X =Y =D =R" or C". Then there exist the direct
decompositions

Dz(t) = D20 (t)+D21 (t), Yz = Y20 (t)+Y21 (t) (D20 =DnN KerA) (48)

that generate the two pairs of mutually complementary projectors

sz(t)Z D— Xj (t), sz(t)i Y — Yo, k=0,1, such that the DAE (2)

A(t)x'(t) + B(t)x(t) = f(t,x(t)) is reduced to the equivalent system
Py (t)=—x(t) = =G~ (6)B(6)P1 (t)x(t) + P1 ()G (6)E(t.x(8))],

)
AP (6)-5X(0) = ~Pan(0)x() + Pao (1) (DE(t.x(1))
P ()G (0)f(t,x(t)) — Par (t)x(t) = 0.

(49)
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Thank you for your attention!
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Consider implicit ordinary differential equations (ODEs) of the form
d

e AOxO]+B(0)x(t) =£(t.x(t),  t € [t1.00), (1)

A(t)%x(t) +B(t)x(t) = £(t,x(t)), (2)

where t4 >0, A(t),B(t) (t € [t+,)) are closed linear operators from X to Y
with the domains D), Dg(y), D =Da) N Dg() # {0}, X,Y are Banach spaces,
f:[ty,0)xX =Y.

The time-varying operators A(t), B(t) can be degenerate.

The differential equations (DEs) (1) and (2) with a degenerate (for
some t) operator A(t) are called time-varying (nonautonomous)
degenerate DEs or time-varying differential-algebraic
equations (DAES). In the terminology of DAEs, equations of the form (1),
(2) are commonly referred to as semilinear.

We study the initial value problem (the Cauchy problem) for the DAEs (1), (2)
with the initial condition

X(to) = Xy. (3)
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Fields of application of the theory of DAEs are control theory,
radioelectronics, cybernetics, mechanics, robotics technology, economics, ecology
and chemical kinetics.

In particular, semilinear DAEs are used in modelling

@ transient processes in electrical circuits

gas flow in networks

dynamics of neural networks
o dynamics of complex mechanical and technical systems (e.g., robots)

multi-sectoral economic models

kinetics of chemical reactions

Notice that any type of a PDE can be represented as a DAE in
infinite-dimensional spaces (an abstract DAE) and, possibly, a complementary
boundary condition.
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Model of a gas flow for a single pipe
We consider the mathematical model of a gas pipeline which consists of the
isothermal Euler equations of the form
Py = —¢x, (4)
@y = —px — gPhx — 0.5AD " p|g|p " (5)

and the equation of state for a real gas in the form

p = RTopz(p), (6)
e x€[0,L], t € [0,t1) C [0,00], where [to,t1) is the time interval, L < e is the
pipe length and Ty is the temperature

o p=p(tx), ¢ =0(t,x) (¢ :=pv, v is the velocity) and p = p(t,x) are
respectively the density, flow rate and pressure

g is the gravitational constant, and R is the specific gas constant
A is the pipe friction coefficient, and D is the pipe diameter

h = h(x) is the height profile of the pipe over ground

z=z(p) is the compressibility factor

[P. Benner, S. Grundel, C. Himpe, C. Huck, T. Streubel, C. Tischendorf. Gas
Network Benchmark Models, 2018]



1 0 0 0 —i 0 0
Denote A={0 1 0),B=[—-gh, 0 —4&| f(u)= _%% and
0 00 0 0 -1 RTopz(p)
)-

u=(p,p,p)T. Then we can write the system (4)—(6) as
A Su(t) + But) = F(u(t), ™)
where u = u(t)(x) = (p(t,x),0(t,x),p(t,x))T, x € [0,L], t € [0,T] C [0,t1). The
initial condition has the form:
u(0)=uop,  w=uo(x)=(p(0,x),0(0.x),p(0x)", x€[O.L],  (8)

where p(0,x) is chosen so as to satisfy the equation (6) for t =0, x € [0,L]. We
will assume that u(t,x) satisfies suitable boundary conditions, for example,

¢(t,0) = @i(t), p(t,0) =pi(t), te[0,T], (9)

i.e, u(t)(0) =u(t) = (p(t,0),¢(t),p1(t))T, where @i(t) and p;(t) are given.
Then we consider the IVP (1), (3), where X =Y =L, and
A(t),B(t): H§[0,L] = {u(x) € HY[0,L] | u(t)(0) = w(t)} — Lo for each t € [0,t1).
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[P. Benner, S. Grundel, C. Himpe, C. Huck, T. Streubel, C. Tischendorf. Gas
Network Benchmark Models, 2018]

[Azevedo-Perdicoulis, T.-P., Jank, G. Modelling aspects of describing a gas
network through a DAE system. 2007]

The gas network is considered to be described by a connected finite graph
G = (V,E,y), where V denotes a set of vertices with |V| =n, and E denotes a set
of edges with |E| =m. The mapping y: E — V x V is called the incidence map,
where y; (e) = vy is the initial vertex and ys(e) = v, is the final vertex.

We define a flow ¢: E — R and a pressure-drop p: E — R on every edge, and a
nodal-pressure ®: V — R and a nodal-flow F: V — R on every vertex.

The Kirchhoff First Law (KFL) says that the flow rate vanishes at any vertex of
the graph: The Kirchhoff Second Law (KSL) says that the pressure drop vanishes
at every fundamental circuit of the graph.

Notice that the network may comprise valves, reservoirs, compressor stations,
supplying sources, and regulators.

The isothermal Euler equations are linearised around the operation levels
(ps,9«), whence we set p = p,+Ap and @ = @, + A, with Ap and A¢ as the
deviations from the pressure-drop and flow, respectively, from the reference values
px and Q.
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Discretizing the gas net with respect to the space variable x, we obtain the gas
network model in the form of a DAE of a type

%(Au) = Bu+f(t,u), (10)
where u = (A@,®P,uq,up)T, uy denotes a control device controlling the flow in
some edges by a “flow”, up, denotes a control device controlling the flow in some
edges by a “pressure” and A is a certain degenerate matrix. The gas network
model also may include the parameters denoting control devices controlling the
pressure in the edges or nodes either through flow or pressure.
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Assume that the characteristic operator pencil AA(t)+B(t) (A €Cisa
parameter), associated with the linear part of the DAE (1) or (2), is a regular
pencil of index not higher than 1: for each t >t the pencil AA(t) 4+ B(t) be
regular and there exist functions Cj : [t4,00) — (0,00), Ca: [t4,00) — (0,00) such
that for every t € [t ,0) the pencil resolvent R(1,t) = (AA(t) + B(t)) ! satisfies
the constraint

IR(A,6)[] < Ci(t), [A]=Cat). (11)

Then for each t € [t o), there exist the two pairs of mutually complementary

projectors
Pj(t)I D— Dj(t) and Qj(t)Z Y — Yj(t), j=12,

which generate the direct decompositions
D =D;(t)+D2(t), Y=Y;(t)+Y2(t) such that (12)
the pair of subspaces X;(t), Y1(t) and X2(t), Yo(t) are invariant under the
operators A(t), B(t), and A;(t) = A(t)|Dj<t) , Bj(t) = B(t)|Dj(t) : Dj(t) = Y;(t),
j=1,2, are such that A,(t) =0, and there exist A;*(t) and B;*(t) if
D, (t) # {0}, D2(t) # {0} respectively (D2(t) =KerA(t)ND, Y;(t) = A(t)D)
A(t)=A1(t)+Ax(t), B(t)=By(t)+B2(t): Di(t)+Da(t) = Y1(t)+Yo(t) (13)
[Rutkas A.G., Vlasenko L.A. Existence of solutions of degenerate nonlinear differential
operator equations, Nonlinear Oscillations, 2001]
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For each t € [t,) the projectors can be determined by the formulas
[Rutkas A.G., Vlasenko L.A. Nonlinear Oscillations, 2001]

Pl(t):%ﬁ ]f R(A,6)A(t)dA, Pa(t) = Ix — Py (t),
AI=Cat)

(14)
Qu(t) = — ]f AR AL, Qa(t) =Ty — Qu(t).

and the auxiliary operator G(t) = A(t) + B(t)P2(t): D = Y has the bounded
inverse G (t) € (Y,X).
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Let X=Y=D=R".
For each t any x € R™ can be uniquely represented in the form

x = Xpy (t) +Xp, (1), xp;(t) = Pi(t)x € Xi(t).
The DAE (1) [A(t)x(t)]" + B(t)x(t) = f(t,x(t)) is reduced to the equivalent system

G~ 1( )Q1(t)[A'(t) +B(t)]] P (t ) (t) + G () Qu(t)f (t.x(t)),

(£)P1(t)x(t)] — P2 (t)x(t) = or
Xp, (8) = [P1(t) = GTH(E)Qu (6)[A'(t) + B(6)]]xp, (t) + G (1) Qu (£)E(t,x),  (15)
Gil(t)Q2(t)[f(t Xp, (t) +%p, (1)) — ( )Xm (t)] — Xp2( )=0. (16)

Introduce the manifold

Li, = {(t,x) € [t4,00) x R™ | Q2(t)[B(t)x + A'(t)P1 (t)x — f(t,x)] =0}.  (17)
The consistency condition (to,xo) € L¢, for the initial point (to,x0) is one of
the necessary conditions for the existence of a solution of the initial value problem

(1). (3).
Vi) (651 () = B (659, (6) + (52 (txp, (6)), [P (6) — G (6)Qu (6)[A/ (1) +
B(t)]]xp, (t) + G (t) Q1 (6)f (t,xp, (t) +xp, (t))) is the derivative of the function V(t,z)

along the trajectories of the equation (15), where V(t,z) is a continuously differentiable
and positive definite scalar function.
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Main results:

o Theorems on the existence and uniqueness of global solutions

Some advantages: the restrictions of the type of the global Lipschitz
condition (including contractive mapping) are not used.

o Theorem on the Lagrange stability of the DAE (the boundedness of
solutions)

o Theorem on the Lagrange instability of the DAE (solutions have finite
escape time)

e Theorem on the ultimate boundedness (dissipativity) of the DAE (the
ultimate boundedness of solutions)

o Theorems on the Lyapunov stability and instability of the equilibrium
state of the DAE

o Theorems on asymptotic stability and asymptotic stability in the large
of the equilibrium state (complete stability of the DAE)

@ Numerical methods

The obtained theorems were used for the study of certain mathematical models of
electrical circuits with nonlinear and time-varying elements.
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The IVP (1), (3): %[A(t)x(t)]—i—B(t)x(t):f(t,x(t)), x(to) = %o.

Definitions

Let £(t,0) =0 and f: [t4,00) x UK (0) — R", where
UR(0) = {x e R" | [|x]| <R}.

An equilibrium position (a stationary solution) x,(t) =0 of the DAE (1)
(f(t,0) =0) is called Lyapunov stable, or simply stable, if for each € >0 (¢ <R)
and each tg € [t4,00) there exists a number 6 = §(€,t9) >0 (6 < €) such that for
any consistent initial point (tg,xo) satisfying the condition ||xg|| < & there exists a
global solution x(t) of the IVP (1), (3) and this solution satisfies the inequality
[Ix(t)|]| < € for all t € [to,0).
If, in addition, there exists 0 = §(tp) > 0 (6 < &) such that for each solution x(t)
with an initial point (tg,xo) satisfying the condition ||xq|| < J the requirement

tlim x(t) = 0 is fulfilled, then x,(t) =0 is called asymptotically Lyapunov stable,
—yo0
or simply asymptotically stable.

If in the previous definition the number § is independent of tg, then the solution
is called uniformly Lyapunov stable or uniformly stable (on [t ,)).
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An equilibrium position x.(t) = 0 of the DAE (1) (f(t,0) =0) is called
Lyapunov unstable, or simply unstable, if for some € > 0 (¢ <R), to € [t4,)
and any 8 > 0 there exist a solution x5(t) of the IVP (1), (3) and a time moment
t1 > to such that ||xo|| < 0 and ||xs(t1)| > €.

Let £(t,0) =0 and f: [t4,00) x R* — R™,
If the equilibrium position x.(t) = 0 of the DAE (1) (f(t,0) =0) is asymptotically
stable and, moreover, for each point (tg,xo) € L¢, there exists a global solution
x(t) of the IVP (1), (3) and tlgn x(t) =0, then x,(t) =0 is called asymptotically
stable in the large, and the DAE is called completely stable or asymptotically
stable.

Remark. Since the Lagrange instability of a solution implies its Lyapunov
instability, the theorems on the Lagrange instability of DAEs can also be treated

as Lyapunov instability theorems.

Asymptotic stability in the large for explicit ODEs was considered in
[Krasovsky N.N. Some problems of the theory of stability of motion, 1959].
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By, (0) = {z € R" [ [|z]| <11},

Xpq,X n . (18)
Brlky 72 (0) = {x € R™ [ [|xp; (8)]] < i, xp; (t) = Pi(t)x,i = 1,2}

Theorem 6 (Lyapunov stability and asymptotic stability of equilibrium position
of the DAE). Let f € C([t4,00) x UK (0),R"), £(t,0) =0,
df/dx € C([t4,) x UX(0),L(R")), A,B € C([t,%),L(R")), and the pencil
AA(t) +B(t) satisfy (11), where Cy € C' ([t ,%0),(0,%0)). Assume that for each
ti € [t4,00) and x; (t) =0, x,_ (t+) = 0 the operator
b (6) 3, (6) ° Xa(ts) = Yo (tu),
Py s 1)y (1) = | 2 [Qa (L 5, (1) 35, (6))] = B(t:)| Pa(t.), is
invertible. Then the following statements are true:

1. Let there exist numbers ry,r> >0, r; +12 < R, and a positive definite
function V € C' ([t ,o) x By, (0),R) such that for all t € [t ), x € By %, P2(0)
the following inequality holds:

Vé15)(tvxp1 (t)) <0. (19)

Then the equilibrium position x.(t) =0 of the DAE (1) is Lyapunov stable.
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2. Let there exist numbers ry,r> > 0, r; + 12 < R, and positive definite functions
V € C!([t4,) x By, (0),R), W € C(B,, (0),R), and U € C(B,, (0),R) such that
V(t,z) < W(z) for all t € [t4,), z € B, (0), and

Vias) (65, (£)) < —U(xp, (1)) (20)

for all t € [ty,00), x € BiPL 2 (0), xp, (t) # 0;
also, let

L) Q2 () [E(,P1 (t)x+Pa(t)x) — A'(6)P1(t)x] — 0

as x — 0 uniformly in t on [T,e) for some T >t,. (21)

Then the equilibrium position x,(t) =0 of the DAE (1) is asymptotically
Lyapunov stable.
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Theorem 7 (Lyapunov instability of equilibrium position of the DAE).
Let f € C([t4,00) x UK(0),R"), £(t,0) =0, 9f/dx € C([t+,00) x UK (0),L(R")),
A,B € C!([t4+,),L(R")), and the pencil LA(t)+ B(t) satisfy (11), where
Cy € C([t4,%0),(0,00)). Assume that for each t. € [t ) and x5 (t.) =0,
x5, (t«) = 0 the operator @ (62 () Xo(ts) = Ya(ty),

o s, () (1) = | 2 [Qa (L F(6 5, (1) 5, (6))] = B(t.)| Pa(t.). is
invertible. Let there exist numbers T >t, and ry,r2> >0, r;1 +1r2 <R, and a
function V € C'([T,e) x B,, (0),R) such that

1. V(t,z) — 0 uniformly in t on [T,e) as ||z|| = 0;

2. there exists a positive function U € C(B, (0),[0,00)) such that

V'(15)(t,xp1(t)) > U(xp, (t)) >0 or Vé15)(t,xp1(t)) < —U(xp, (t)) <0 (22)

for all t € [T,e0), x € ByPk, P2(0), xp, (t) #0;

3. for each Ay >0 and each Ay > 0, A; <r3j, there exist xp, (T) # 0 and xp, (T)
such that [|xp, (T)|| < A;, i=1,2, and V(T ,xp, (T)) ’(15)(T,xp1(T)) >0
(i.e., the sign of the function V coincides with the sign of the derivative VélS) at
(Txp, (T))).
Then the equilibrium position x.(t) =0 of the DAE (1) is Lyapunov
unstable.



Theorem 8 (asymptotic stability in the large or complete stability of the DAE).
Let f € C([t4,o) x R®,R?), £(t,0) =0, 9f/dx € C([t4,o) x R* L(R")),
A, B € C'([t4,),L(R")), the pencil 2A(t) + B(t) satisfy (11), where
Cy € C([t+,%),(0,0)). Let the conditions 1), 2) of Theorem 1 or 1), 2) of
Theorem 2 (on the global solvability), as well as condition (21), be satisfied.
Assume that there exist positive definite functions V € C!([t,00) x R®,R),
W e C(R*,R) and U € C(R",R) such that

1. V(t,z) < W(z) for all t € [t4,00), z € R";

2. V(t,2) — oo uniformly in t on [t4,) as ||z]| — c;

3. for all (t,xp, (t) +xp,(t)) € Lg,, xp, (t) # 0 (xp;(t) =Pi(t)x, i=1,2), the
inequality (20) holds.
Then the equilibrium position x.(t) =0 of the DAE (1) is asymptotically
stable in the large (the DAE (1) is completely stable).
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The conditions 1), 2) of Theorem 1 (on the global solvability):
1) for each t € [t4,%0) and each x,, (t) € X; (t) there exists a unique
Xps (t) € X2(t) such that (t,xp, (t) +xp, (t)) € Ly ;
2) for each t. € [t,), x5 (t+) € Xi(t«), i = 1,2, such that
(b5, (6) +5, (t)) € Ly, the operator @ . ;) : Xo(te) = Ya(ts),

#)Xpg (te) -
o ()3 (1) = | 3 [Qa (L6 5, (1) 35, (6))] = B(t:)| Pa(t.), is

invertible;

The conditions 1), 2) of Theorem 2 (on the global solvability):

1) for each t € [t4,), xp, (t) € X1 (t) there exists x,, (t) € Xa(t) such that
(t%py (t) +xpy (t)) € L ;

2) for each t. € [t4,0), x} (tx) € Xy (ts), xb,, (t4) € Xp(ts) such that
(e, x5 (ta) + x5, (b)) € Lt+, i=1,2, the operator function @ . (5. (xpy (t))
defined by Py (1.): Xalt) = L(Xa(t.).Ya(t). @y, ) (g () =

2 Q) (b5, (6) +Xpy ()] — B(ts) | P2(ts), is basis invertible on

[xp, (£2)x5, (6)].
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Outlooks
@ It is planned to extend the obtained results to the case when XY are Banach
spaces, f: [t4,0) x X =Y and A(t),B(t): X =Y (t € [t+,)) are closed
linear operators with the domains D (y), Dg(), D = D) NDg(y) # {0}
In this case we will require that A(t), B(t) be strongly contmuously
differentiable on [t,e) (i.e., for each d € D the functions A(t)d, B(t)d be
continuously differentiable on [t ,e)).

@ It is planned to consider semilinear time-varying DAEs of index higher than 1.

A regular pencil AA(t) 4+ B(t) is a regular pencil of index v (v € N) if there
exist functions Cy,Ca: [t4,00) — (0,0) such that for every t € [t ,00)

IRA.6)[ < CL®)IA"", A= Ca(h). (23)

[Rutkas A.G., Vlasenko L.A. Existence of solutions of degenerate nonlinear
differential operator equations, Nonlinear Oscillations, 2001]

Then for each t € [t ,o0) there exist the two pairs of mutually complementary
projectors P;(t), Q;(t), j =1,2, (14) which generate the direct
decompositions of D and Y (12) such that the operators A(t), B(t) have the
block representations (13), where A;'(t) and B, (t) exist.

In general, the order of pole of the resolvent (A(t)+uB(t)) ! at the point

1 =0 is called the index of the regular pencil AA(t) 4+ B(t).
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