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Consider impli
it ordinary di�erential equations (ODEs) of the form

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), t ∈ [t+,∞), (1)

A(t)
d

dt

x(t)+B(t)x(t) = f(t,x(t)), (2)

where t+ ≥ 0, A(t),B(t) (t ∈ [t+,∞)) are 
losed linear operators from X to Y

with the domains D

A(t), DB(t), D=D

A(t)∩DB(t) 6= {0}, X,Y are Bana
h spa
es,

f : [t+,∞)×X→Y.

The time-varying operators A(t), B(t) 
an be degenerate.

The di�erential equations (DEs) (1) and (2) with a degenerate (for

some t) operator A(t) are 
alled time-varying (nonautonomous)

degenerate DEs or time-varying di�erential-algebrai


equations (DAEs). In the terminology of DAEs, equations of the form (1),

(2) are 
ommonly referred to as semilinear.

We study the initial value problem (the Cau
hy problem) for the DAEs (1), (2)

with the initial 
ondition

x(t
0

) = x

0

. (3)
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Fields of appli
ation of the theory of DAEs are 
ontrol theory,

radioele
troni
s, 
yberneti
s, me
hani
s, roboti
s te
hnology, e
onomi
s, e
ology

and 
hemi
al kineti
s.

In parti
ular, semilinear DAEs are used in modelling

transient pro
esses in ele
tri
al 
ir
uits

gas �ow in networks

dynami
s of neural networks

dynami
s of 
omplex me
hani
al and te
hni
al systems (e.g., robots)

multi-se
toral e
onomi
 models

kineti
s of 
hemi
al rea
tions

Noti
e that any type of a PDE 
an be represented as a DAE in

in�nite-dimensional spa
es (an abstra
t DAE) and, possibly, a 
omplementary

boundary 
ondition.
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Assume that the 
hara
teristi
 operator pen
il λA(t)+B(t) (λ ∈ C is a

parameter), asso
iated with the linear part of the DAE (1) or (2), is a regular

pen
il of index not higher than 1: for ea
h t≥ t+ the pen
il λA(t)+B(t) be
regular and there exist fun
tions C

1

: [t+,∞)→ (0,∞), C
2

: [t+,∞)→ (0,∞) su
h
that for every t ∈ [t+,∞) the pen
il resolvent R(λ ,t) = (λA(t)+B(t))−1 satis�es

the 
onstraint

‖R(λ ,t)‖ ≤ C

1

(t), |λ | ≥ C

2

(t). (4)

Then for ea
h t ∈ [t+,∞), there exist the two pairs of mutually 
omplementary

proje
tors

P

j

(t) : D→ D

j

(t) and Q

j

(t) : Y→ Y

j

(t), j= 1,2,

whi
h generate the dire
t de
ompositions

D=D

1

(t)+̇D
2

(t), Y =Y

1

(t)+̇Y
2

(t) su
h that (5)

the pair of subspa
es X

1

(t), Y
1

(t) and X
2

(t), Y
2

(t) are invariant under the
operators A(t), B(t) (i.e., A(t),B(t) : X

j

(t)→ Y

j

(t)) and

A

j

(t) = A(t)|
D

j

(t) , Bj(t) = B(t)|
D

j

(t) : D
j

(t)→ Y

j

(t), j= 1,2, are su
h that

A

2

(t) = 0 and there exist A

−1
1

(t), B

−1
2

(t) if D

1

(t) 6= {0}, D

2

(t) 6= {0}
respe
tively (D

2

(t) =KerA(t)∩D, Y
1

(t) =A(t)D)

A(t)=A

1

(t)+̇A
2

(t), B(t)=B

1

(t)+̇B
2

(t) : D
1

(t)+̇D
2

(t)→Y

1

(t)+̇Y
2

(t) (6)

[Rutkas A.G., Vlasenko L.A. Existen
e of solutions of degenerate nonlinear di�erential

operator equations, Nonlinear Os
illations, 2001℄
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For ea
h t ∈ [t+,∞) the proje
tors 
an be determined by the formulas

[Rutkas A.G., Vlasenko L.A. Nonlinear Os
illations, 2001℄

P

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

R(λ ,t)A(t)dλ , P

2

(t) = I

X

−P

1

(t),

Q

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

A(t)R(λ ,t)dλ , Q

2

(t) = I

Y

−Q

1

(t).
(7)

and the auxiliary operator G(t) =A(t)+B(t)P
2

(t) : D→Y has the bounded

inverse G

−1(t) ∈ (Y,X).
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Let X=Y =D= Rn

.

For ea
h t any x ∈ Rn


an be uniquely represented in the form

x= x

p

1

(t)+x

p

2

(t), x

p

i

(t) = P

i

(t)x ∈ X

i

(t).

The DAE (1) [A(t)x(t)]′+B(t)x(t) = f(t,x(t)) is redu
ed to the equivalent system

[P
1

(t)x(t)]′=
[

P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]

P

1

(t)x(t)+G

−1(t)Q
1

(t)f(t,x(t)),

G

−1(t)Q
2

(t)[f(t,x(t))−A

′(t)P
1

(t)x(t)]−P

2

(t)x(t) = 0 or

x

′
p

1

(t) =
[

P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]

x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x), (8)

G

−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]−x

p

2

(t) = 0. (9)

Introdu
e the manifold

L

t+ = {(t,x) ∈ [t+,∞)×R
n |Q

2

(t)[B(t)x+A

′(t)P
1

(t)x− f(t,x)] = 0}. (10)

The 
onsisten
y 
ondition (t
0

,x
0

) ∈ L

t+ for the initial point (t
0

,x
0

) is one of
the ne
essary 
onditions for the existen
e of a solution of the initial value problem

(1), (3).

V

′
(8)

(t,x
p

1

(t)) = ∂V
∂t

(t,x
p

1

(t))+
(

∂V
∂z

(t,x
p

1

(t)),
[

P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+

B(t)]
]

x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x
p

1

(t)+x

p

2

(t))
)

is the derivative of the fun
tion V(t,z)

along the traje
tories of the equation (8), where V(t,z) is a 
ontinuously di�erentiable

and positive de�nite s
alar fun
tion.
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The IVP (1), (3):

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), x(t
0

) = x

0

.

De�nitions

A solution x(t) of the initial value problem (IVP) (1), (3) is 
alled global or

de�ned in the future if it exists on [t
0

,∞).

A solution x(t) of the IVP (1), (3) is 
alled Lagrange stable if it is global and

bounded, i.e., sup
t∈[t

0

,∞)

‖x(t)‖< ∞.

A solution x(t) of the IVP (1), (3) has a �nite es
ape time (is blow-up in

�nite time) and is 
alled Lagrange unstable if it exists on some �nite interval

[t
0

,T) and is unbounded, i.e., lim
t→T−0

‖x(t)‖= ∞.

The equation (1) is 
alled Lagrange stable if every solution of the IVP (1), (3)

is Lagrange stable (the DAE is Lagrange stable for every 
onsistent initial point).

The equation (1) is 
alled Lagrange unstable if every solution of the IVP (1),

(3) is Lagrange unstable.

J. La Salle obtained the theorems on the global solvability, the Lagrange

stability and instability of the expli
it ODE x

′ = f(t,x) [J. La Salle, S. Lefs
hetz,

Stability by Liapunov's Dire
t Method with Appli
ations, 1961℄.
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Solutions of the equation (1) are 
alled ultimately bounded, if there exists a


onstant K> 0 (K is independent of the 
hoi
e of t

0

, x

0

) and for ea
h solution

x(t) with an initial point (t
0

,x
0

) there exists a number τ = τ(t
0

,x
0

)≥ t

0

su
h that

‖x(t)‖<K for all t ∈ [t
0

+ τ,∞).

The equation (1) is 
alled ultimately bounded or dissipative, if for any


onsistent initial point (t
0

,x
0

) there exists a global solution of the initial value

problem (1), (3) and all solutions are ultimately bounded.

If the number τ does not depend on the 
hoi
e of t

0

, then the solutions of (1)

are 
alled uniformly ultimately bounded and the equation (1) is 
alled uniformly

ultimately bounded or uniformly dissipative.

Ultimately bounded systems of expli
it ODEs x

′ = f(t,x), whi
h are also 
alled

dissipative systems and D-systems, were studied in [Yoshizawa T., Stability theory

by Liapunov's se
ond method, 1966℄ and [La Salle J., Lefs
hetz S., 1961℄.
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Main results:

Theorems on the existen
e and uniqueness of global solutions

Some advantages: the restri
tions of the type of the global Lips
hitz


ondition (in
luding 
ontra
tive mapping) are not used.

Theorem on the Lagrange stability of the DAE (the boundedness of

solutions)

Theorem on the Lagrange instability of the DAE (solutions have �nite

es
ape time)

Theorem on the ultimate boundedness (dissipativity) of the DAE (the

ultimate boundedness of solutions)

Theorems on the Lyapunov stability and instability of the equilibrium

state of the DAE

Theorems on asymptoti
 stability and asymptoti
 stability in the large

of the equilibrium state (
omplete stability of the DAE)

Numeri
al methods

The appli
ation of the obtained theorems to the study of 
ertain mathemati
al

models of ele
tri
al 
ir
uits with nonlinear and time-varying elements are shown.
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Theorem 1 (the global solvability). Let f ∈ C([t+,∞)×Rn,Rn),
∂

∂x f ∈ C([t+,∞)×Rn,L(Rn)), A,B ∈ C

1([t+,∞),L(Rn)), the pen
il λA(t)+B(t)

satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), and the following 
onditions be satis�ed:

1) for ea
h t ∈ [t+,∞) and ea
h x

p

1

(t) ∈X

1

(t) there exists a unique

x

p

2

(t) ∈ X

2

(t) su
h that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ ;

2) for ea
h t∗ ∈ [t+,∞), x∗
p

i

(t∗) ∈ X

i

(t∗), i= 1,2, su
h that

(t∗,x∗
p

1

(t∗)+x

∗
p

2

(t∗)) ∈ L

t+ the operator Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[

Q

2

(t∗)f(t∗,x∗
p

1

(t∗)+x

∗
p

2

(t∗))
]

−B(t∗)
]

P

2

(t∗), is

invertible;

3) there exist a number R> 0, a positive de�nite fun
tion

V ∈ C

1([t+,∞)×U




R

(0),R), where U


R

(0) = {z ∈R
n | ‖z‖ ≥ R}, and a fun
tion

χ ∈ C([t+,∞)× (0,∞),R) su
h that:

3.1) V(t,z)→ ∞ uniformly in t on every �nite interval [a,b)⊂ [t+,∞) as ‖z‖→∞,

3.2) for all t, x

p

1

(t), x
p

2

(t) su
h that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≥ R,

the inequality V

′
(8)

(t,x
p

1

(t)) ≤ χ
(

t,V(t,x
p

1

(t))
)

holds,

3.3) the inequality v

′ ≤ χ(t,v), t≥ t+, has no positive solutions v(t) with �nite

es
ape time.

Then for ea
h initial point (t
0

,x
0

) ∈ L

t+ there exists a unique global

solution of the IVP (1), (3).
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Statement 1.

Theorem 1 remains valid if the 
onditions 1), 2) are repla
ed by the following:

there exists a 
onstant 0≤ α < 1 su
h that

∥

∥

G

−1(t)Q
2

(t) f
(

t,x
p

1

(t)+x

1

p

2

(t)
)

−G

−1(t)Q
2

(t) f
(

t,x
p

1

(t)+x

2

p

2

(t)
)∥

∥≤
≤ α

∥

∥

x

1

p

2

(t)−x

2

p

2

(t)
∥

∥

(11)

for any t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t) and xi
p

2

(t) ∈X

2

(t), i= 1,2.

Theorem 2 (the global solvability).

Theorem 1 remains valid if the 
onditions 1), 2) are repla
ed by the following:

1) for ea
h t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t) there exists x
p

2

(t) ∈ X

2

(t) su
h that

(t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ ;

2) for ea
h t∗ ∈ [t+,∞), x∗
p

1

(t∗) ∈ X

1

(t∗), xi
p

2

(t∗) ∈X

2

(t∗) su
h that

(t∗,x∗
p

1

(t∗)+x

i

p

2

(t∗)) ∈ L

t+ , i= 1,2, the operator fun
tion Φ
t∗,x∗

p

1

(t∗)(xp2(t∗))

de�ned by

Φ
t∗,x∗

p

1

(t∗) : X
2

(t∗)→ L(X
2

(t∗),Y2

(t∗)),

Φ
t∗,x∗

p

1

(t∗)(xp2(t∗)) =

[

∂

∂x

[

Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

p

2

(t∗))
]

−B(t∗)

]

P

2

(t∗), (12)

is basis invertible on [x1
p

2

(t∗),x2
p

2

(t∗)].
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Theorem 3 (Lagrange stability). Let f ∈C([t+,∞)×Rn,Rn),
∂

∂x f ∈ C([t+,∞)×Rn,L(Rn)), A,B∈C1([t+,∞),L(Rn)), the pen
il λA(t)+B(t)

satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), the requirements 1), 2) of Theorem 1

or 2 be ful�lled, and

3) there exists a number R> 0, a positive de�nite fun
tion

V ∈ C

1([t+,∞)×U




R

(0),R) and a fun
tion χ ∈ C([t+,∞)× (0,∞),R) su
h that:

3.1) V(t,z)→ ∞ uniformly in t on [t+,∞) as ‖z‖→ ∞;

3.2) for all t, x

p

1

(t), x
p

2

(t) su
h that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≥ R,

the inequality V

′
(8)

(t,x
p

1

(t)) ≤ χ
(

t,V(t,x
p

1

(t))
)

holds;

3.3) the di�erential inequality v

′ ≤ χ(t,v), t≥ t+, has no unbounded positive

solutions v(t) for t ∈ [t+,∞).

Let one of the following 
onditions be also satis�ed:

4.a) for all (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≤M< ∞ (M is an arbitrary


onstant), the inequality

‖G−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]‖ ≤K

M

< ∞, where K

M

=K(M)

is some 
onstant, holds;

4.b) for all (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≤M< ∞, the inequality

‖x
p

2

(t)‖ ≤K

M

< ∞, where K

M

=K(M) is some 
onstant, holds.

Then the equation (1) is Lagrange stable.
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Theorem 4 (Lagrange instability). Let f ∈ C([t+,∞)×Rn,Rn),
∂

∂x f ∈ C([t+,∞)×R
n,L(Rn)), A,B∈C1([t+,∞),L(Rn)), the pen
il λA(t)+B(t)

satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), the requirements 1), 2) of Theorem 1

or 2 be ful�lled, and

3) there exists a region Ω ⊂ Rn

, 0 6∈ Ω, su
h that the 
omponent P

1

(t)x(t) of

ea
h existing solution x(t) with the initial point (t
0

,x
0

) ∈ L

t+ , where

P

1

(t
0

)x
0

∈ Ω, remains all the time in Ω;

4) there exist a positive de�nite fun
tion V ∈ C

1([t+,∞)×Ω,R) and a fun
tion

χ ∈ C([t+,∞)× (0,∞),R) su
h that:

4.1) for all t, x

p

1

(t), x
p

2

(t) su
h that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , xp
1

(t) ∈ Ω, the

inequality V

′
(8)

(t,x
p

1

(t))≥ χ
(

t,V(t,x
p

1

(t))
)

holds,

4.2) the inequality v

′ ≥ χ(t,v), t≥ t+, has no positive solutions de�ned in the

future (i.e., de�ned for all t≥ t+).

Then for ea
h initial point (t
0

,x
0

) ∈ L

t+ su
h that P

1

(t
0

)x
0

∈ Ω, there

exists a unique solution of the IVP (1), (3) and this solution is Lagrange

unstable.
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Remarks on the form of the fun
tions χ

It is usually 
onvenient to 
hoose χ ∈ C([t+,∞)× (0,∞),R) in the form

χ(t,v) = k(t)U(v), (13)

where U ∈ C(0,∞), k ∈ C([t+,∞),R). Then the theorem 
onditions 
an be


hanged as follows:

in Theorems 1, 2 on the global solvability, it su�
es to require that

∞
∫




dv

U(v)
= ∞ (
> 0 is some 
onstant) instead of the 
ondition 3.3);

in Theorem 3 on the Lagrange stability, it su�
es to require that

∞
∫




dv

U(v)
= ∞

and

∞
∫

t

0

k(t)dt< ∞ (t

0

≥ t+ is some number) instead of the 
ondition 3.3);

in Theorem 4 on the Lagrange instability, it su�
es to require that

∞
∫




dv

U(v)
< ∞ and

∞
∫

t

0

k(t)dt= ∞ instead of the 
ondition 4.2).

[Filipkovskaya M. S. Global solvability of time-varying semilinear di�erential-algebrai


equations, boundedness and stability of their solutions. I, Di�erential Equations, 2021℄

[Filipkovskaya M. S. Global solvability of time-varying semilinear di�erential-algebrai


equations, boundedness and stability of their solutions. II, Di�erential Equations, 2021℄
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Theorem 5 (uniform dissipativity (ultimate boundedness)). Let

f ∈ C([t+,∞)×Rn,Rn), ∂
∂x f ∈ C([t+,∞)×Rn,L(Rn)), A,B ∈ C

1([t+,∞),L(Rn)),

the pen
il λA(t)+B(t) satisfy (4), where C

2

∈C

1([t+,∞),(0,∞)), the

requirements 1), 2) of Theorem 1 or 2 be ful�lled, and

3) there exist a number R> 0, a positive de�nite fun
tion

V ∈ C

1([t+,∞)×U




R

(0),R) and fun
tions U

j

∈ C([0,∞)), j= 0,1,2, su
h that

U

0

(r) is non-de
reasing and U

0

(r)→+∞ as r→+∞, U

1

(r) is in
reasing,

U

2

(r)> 0 for r> 0, and for all t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t), x
p

2

(t) ∈ X

2

(t) su
h

that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , ‖xp
1

(t)‖ ≥ R the 
ondition

U

0

(‖x
p

1

(t)‖)≤V(t,x
p

1

(t)) ≤U

1

(‖x
p

1

(t)‖) and one of the following inequalities

hold:

3.a) V

′
(8)

(t,x
p

1

(t))≤−U
2

(

‖x
p

1

(t)‖
)

;

3.b) V

′
(8)

(t,x
p

1

(t))≤−U
2

(

(H(t)x
p

1

(t),x
p

1

(t))
)

, where H ∈ C([t+,∞),L(Rn)) is

some self-adjoint positive de�nite operator fun
tion su
h that sup
t∈[t+,∞)

‖H(t)‖< ∞;

3.ñ) V

′
(8)

(t,x
p

1

(t))≤−CV(t,x
p

1

(t)), where C> 0 is some 
onstant;

4) there exist a 
onstant 
> 0 and a number T> t+ su
h that

‖G−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]‖ ≤ 
‖x
p

1

(t)‖ for all

(t,x
p

1

(t)+x

p

2

(t)) ∈ L

T

.

Then the DAE (1) is uniformly ultimately bounded (uniformly dissipative).
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Remarks on the form of the fun
tions V

It is often 
onvenient to 
hoose the positive de�nite s
alar fun
tion V(t,z) in
the form

V(t,z) = (H(t)z,z), (14)

where H ∈ C

1([t+,∞),L(Rn)) is a self-adjoint positive de�nite operator fun
tion.

The fun
tion V(t,z) (14) satis�es the 
onditions (ex
ept for the 
onditions on the

derivative of the fun
tion along the traje
tories of (8)) of Theorems 1�4 on the

global solvability, the Lagrange stability and the Lagrange instability, and if

additionally sup
t∈[t+,∞)

‖H(t)‖< ∞, then the fun
tion (14) also satis�es the 
onditions

of Theorem 5 on the dissipativity.

[Filipkovska (Filipkovskaya) M. S. Global boundedness and stability of solutions of

nonautonomous degenerate di�erential equations, Pro
eedings of the Institute of

Mathemati
s and Me
hani
s, National A
ademy of S
ien
es of Azerbaijan, 2020℄
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The IVP (1), (3):

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), x(t
0

) = x

0

.

Introdu
e the uniform mesh ω
h

= {t
i

= t

0

+ ih, i= 0,...,N, t
N

= T} on [t
0

,T]
with the step size h= (T− t

0

)/N. The values of an approximate solution at the

points t

i

are denoted by x

i

, i= 0,...,N.

Theorem (on the 
onvergen
e of the method). Let the 
onditions of

Theorem 1 or 2 be satis�ed and, additionally, the operator

Φ
t,P

1

(t)z∗,P
2

(t)u∗ = Φ
t,P

1

(t)z∗(P2(t)u∗) : X
2

(t)→ Y

2

(t), whi
h is de�ned by the

formula (12) for ea
h (�xed) t, x

∗
p

1

(t) = P

1

(t)z∗, x∗
p

2

(t) = P

2

(t)u∗, be invertible
for (t,P

1

(t)z∗+P

2

(t)u∗) ∈ [t
0

,T]×Rn

. If A,B ∈ C

2([t
0

,T],L(Rn)),

C

2

∈C

2([t
0

,T],(0,∞)), f ∈C

1([t
0

,T]×R
n,Rn) and the initial value x

0

are 
hosen

so that the 
onsisten
y 
ondition Q

2

(t
0

)
[

A

′(t
0

)P
1

(t
0

)x
0

+B(t
0

)x
0

− f(t
0

,x
0

)
]

= 0

(i.e., (t
0

,x
0

) ∈ L

t+) holds, then numeri
al method
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z

0

= P

1

(t
0

)x
0

, u

0

= P

2

(t
0

)x
0

, (15)

z

i+1 =
(

I+h

[

P

′
1

(t
i

)−G

−1(t
i

)Q
1

(t
i

)[A′(t
i

)+B(t
i

)]
]

P

1

(t
i

)
)

z

i

+

+hG

−1(t
i

)Q
1

(t
i

)f
(

t

i

,x
i

)

, (16)

u

i+1 = u

i

−

−
[

I−G

−1(t
i+1)Q2

(t
i+1)

∂ f

∂x

(

t

i+1,P1(ti+1)zi+1+P

2

(t
i+1)ui

)

P

2

(t
i+1)

]−1
×

×
[

u

i

−G

−1(t
i+1)Q2

(t
i+1)

[

f

(

t

i+1,P1(ti+1)zi+1+P

2

(t
i+1)ui

)

−

−A

′(t
i+1)P1(ti+1)zi+1

]

]

, (17)

x

i+1 = P

1

(t
i+1)zi+1+P

2

(t
i+1)ui+1, i= 0,...,N−1, (18)

approximating the IVP (1), (3) on [t
0

,T], 
onverges and has the �rst order of

a

ura
y: max
0≤i≤N

‖x(t
i

)−x

i

‖=O(h), h→ 0 ( max
0≤i≤N

‖z(t
i

)− z

i

‖=O(h),

max
0≤i≤N

‖u(t
i

)−u

i

‖=O(h), h→ 0).
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Remark. If in Theorem we do not require the additional smoothness for f,

A,B and C

2

(i.e., f ∈ C([t+,∞)×Rn,Rn),
∂ f

∂x
∈ C([t+,∞)×Rn,L(Rn)),

A,B ∈C

1([t+,∞),L(Rn)) and C
2

∈C

1([t+,∞),(0,∞))), then the method (15)�(18)


onverges, but may not have the �rst order of a

ura
y: max
0≤i≤N

‖x(t
i

)−x

i

‖= o(1),

h→ 0.
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The model of a radio engineering devi
e

A voltage sour
e e(t),
nonlinear resistan
es ϕ, ϕ

0

, ψ,

a nonlinear 
ondu
tan
e h,

a linear resistan
e r,

a linear 
ondu
tan
e g,

an indu
tan
e L and

a 
apa
itan
e C are given.

Let e(t)∈C([0,∞),R),
ϕ(y),ϕ

0

(y),ψ(y),h(y)∈C1(R,R),
r, g, L, C> 0.

The model of the 
ir
uit Fig. 1 is des
ribed

by the system with the variables

x

1

= I

L

, x

2

=U

C

, x

3

= I:

L

d

dt

x

1

+x

2

+ rx

3

= e(t)−ϕ
0

(x
1

)−ϕ(x
3

), (19)

C

d

dt

x

2

+gx

2

−x

3

=−h(x
2

), (20)

x

2

+ rx

3

= ψ(x
1

−x

3

)−ϕ(x
3

). (21)

The ve
tor form of the system is the DAE

d

dt

[Ax]+Bx= f(t,x), (22)

where x= (x
1

,x
2

,x
3

)T ∈ R3

Fig. 1. The diagram of the ele
tri
 
ir
uit

A=





L 0 0

0 C 0

0 0 0





B=





0 1 r

0 g −1
0 1 r





f(t,x) =





e(t)−ϕ
0

(x
1

)−ϕ(x
3

)
−h(x

2

)
ψ(x

1

−x

3

)−ϕ(x
3

)





M. Filipkovska (FAU) 20/43



Lagrange stability of the model of a radio engineering devi
e.

The parti
ular 
ases.

ϕ
0

(y) = α
1

y

2k−1, ϕ(y) = α
2

y

2l−1, ψ(y) = α
3

y

2j−1, h(y) = α
4

y

2s−1, (23)

ϕ
0

(y) = α
1

y

2k−1, ϕ(y) = α
2

siny, ψ(y) = α
3

siny, h(y) = α
4

siny, (24)

k, l, j,s ∈ N, α
i

> 0, i= 1,4, y ∈ R.

For ea
h initial point (t
0

,x0) satisfying x0
2

+ rx

0

3

= ψ(x0
1

−x

0

3

)−ϕ(x0
3

), there
exists a unique global solution of the IVP (22), x(t

0

) = x

0

(x(t
0

) = (I
L

(t
0

),U
C

(t
0

), I(t
0

))T) for the fun
tions of the form (23), if j≤ k, j≤ s

and α
3

is su�
iently small, and for the fun
tions of the form (24), if α
2

+α
3

< r.

If, additionally, sup
t∈[0,∞)

|e(t)|<+∞ or

+∞
∫

t

0

|e(t)|dt<+∞, then for the initial points

(t
0

,x0) the DAE (22) is Lagrange stable (in both 
ases), i.e., every solution of the

DAE is bounded. In parti
ular, these requirements are ful�lled for voltages of the

form

e(t) = β (t+α)−n, e(t) = βe−αt, e(t) = βe
− (t−α)2

σ2 , e(t) = β sin(ωt+θ ), (25)

where α > 0, β ,σ ,ω ∈ R, n ∈ N, θ ∈ [0,2π ].
[M.S. Filipkovska, Lagrange stability of semilinear di�erential-algebrai
 equations and

appli
ation to nonlinear ele
tri
al 
ir
uits, Journal of Mathemati
al Physi
s, Analysis,

Geometry, 2018℄
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Lagrange stability. The numeri
al solution

L= 500 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.2, t
0

= 0, x

0

= (10,−10,5)T

ϕ
0

(y) = y

3

, ϕ(y) = siny, ψ(y) = siny, h(y) = siny, e(t) = (2t+10)−2

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

6

8

10

t

I L
(t

)

0 100 200 300 400 500 600 700 800 900 1000
−10

−8

−6

−4

−2

0

2

t

U
C
(t

)

Fig. 2. The 
urrent I

L

(t) Fig. 3. The voltage U

C

(t)

0 100 200 300 400 500 600 700 800 900 1000
−1

0

1

2

3

4

5

t

I(
t)

Fig. 4. The 
urrent I(t)
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Lagrange stability. The numeri
al solution

L= 500 ·10−6 , C= 0.5 ·10−6 , r= 2, g= 0.2, t
0

= 0, x

0

= (0,0,0)T,
ϕ
0

(y) = y

3

, ϕ(y) = y

3

, h(y) = y

3

, ψ(y) = y

3

, e(t) = 100e

−t sin(5t)

−5 0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

t

I L
(t

)

−5 0 5 10 15 20 25 30
0
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3

4
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7
x 10

−5

t

U
C
(t

)

Fig. 5. The 
urrent I

L

(t) Fig. 6. The voltage U

C

(t)
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t
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Fig. 7. The 
urrent I(t)
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Lagrange stability. The numeri
al solution

L= 300 ·10−6, C= 0.5 ·10−6, r= 2.6, g= 0.2, t
0

= 0, x

0

= (π/6,0.5,0)T,
ϕ
0

(y) = y

3

, ϕ(y) = siny, ψ(y) = siny, h(y) = siny, e(t) = 200sin(0.5t)−0.2

0 100 200 300 400 500 600 700 800 900 1000
−1.5
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−0.5

0

0.5
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t
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)

0 100 200 300 400 500 600 700 800 900 1000
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0
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)

Fig. 8. The 
urrent I

L

(t) Fig. 9. The voltage U

C

(t)
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Fig. 10. The 
urrent I(t)
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The global solution. The numeri
al solution

L= 1000 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.3, t
0

= 0, x

0 = (0,0,0)T

ϕ
0

(y) = y

3

, ϕ(y) = y

3

, ψ(y) = y

3

, h(y) = y

3

, e(t) =−t2

0 50 100 150 200 250 300 350 400 450 500

−60

−50

−40

−30

−20

−10

0

t

I L
(t

)

0 50 100 150 200 250 300 350 400 450 500
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0
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)

Fig. 11. The 
urrent I

L

(t) Fig. 12. The voltage U

C

(t)
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Fig. 13. The 
urrent I(t)
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Lagrange instability of the radio engineering devi
e model

Consider the system (19)�(21) with the nonlinear resistan
es and 
ondu
tan
e

ϕ
0

(y) =−y2, ϕ(y) = y

3, ψ(y) = y

3, h(y) = y

2. (26)

It is assumed that there exists M

e

= sup
t∈[t

0

,∞)

|e(t)|<+∞. Choose

Ω =

{

(x
1

,x
2

)T ∈ R2 | x
1

>m

1

,m
1

= max
{

1+
√
M

e

, 3

√

g+ r

−1,3CL−1,
√

max
{

3

−1(L(rC)−1− r),0
}

}

, x
2

<−rx
1

−x

3

1

−m

2

,

m

2

= max
{

g−2CL

−1
r,0

}

}

.

(27)

Then by Theorem 3 for any initial moment t

0

and any initial 
urrents and

voltage I

L

(t
0

), U
C

(t
0

), I(t
0

) satisfying U
C

(t
0

)+ rI(t
0

) = ψ(I
L

(t
0

)− I(t
0

))−
−ϕ(I(t

0

)) and su
h that (I
L

(t
0

),U
C

(t
0

))T ∈ Ω there exists a unique distribution

of the 
urrents and voltages in the 
ir
uit Fig. 1 only for t

0

≤ t< T ( [t
0

,T) is
some �nite interval ) and the 
urrents and voltages are unbounded.

It means that there exists a unique solution of the Cau
hy problem for the DAE

(22) with the fun
tions (26), e(t) su
h that sup
t∈[t

0

,∞)

|e(t)|<+∞, and the initial


ondition x(t
0

) = (I
L

(t
0

),U
C

(t
0

), I(t
0

))T, and this solution has a �nite es
ape

time.
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Lagrange instability. The numeri
al solution

L= 10 ·10−6, C= 0.5 ·10−6, r= 2, g= 0.2,
ϕ
0

(x
1

)=−x2
1

, ϕ(x
3

)=x

3

3

, h(x
2

)=x

2

2

, ψ(x
1

−x

3

)=(x
1

−x

3

)3, e(t)=2sin t,

t

0

= 0, x

0

= (2.45,−20.625125,2.5)T
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Fig. 14. The 
urrent I

L

(t) Fig. 15. The voltage U

C

(t) Fig. 16. The 
urrent

I(t)
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It is known that the dynami
s of ele
tri
al 
ir
uits is modeled using DAEs whi
h, in

general, 
annot be redu
ed to an expli
it ODE.

The mathemati
al model of a time-varying nonlinear ele
tri
al 
ir
uit

Fig. 17. The diagram of the ele
tri
 
ir
uit

A 
urrent I(t), a voltage U(t), resistan
es R
1

(t), R
2

(t), ϕ
1

(I
1

), ϕ
2

(I
2

), ϕ
3

(I
31

),
a 
ondu
tan
e G

3

(t), an indu
tan
e L(t) and a 
apa
itan
e C are given.

A transient pro
ess in the ele
tri
al 
ir
uit (Fig. 17) is des
ribed by the system

d

dt

[L(t)I
1

(t)]+R

1

(t)I
1

(t) =U(t)−ϕ
1

(I
1

(t))−ϕ
3

(I
31

(t)), (28)

I

1

(t)− I

31

(t)− I

2

(t) = I(t)+G

3

(t)ϕ
3

(I
31

(t)), (29)

R

2

(t)I
2

(t) = ϕ
3

(I
31

(t))−ϕ
2

(I
2

(t)), (30)
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Denote x

1

(t) = I

1

(t), x
2

(t) = I

31

(t) and x
3

(t) = I

2

(t).

The ve
tor form of the system (28)�(30) is the time-varying semilinear DAE (1):

d

dt

[A(t)x]+B(t)x= f(t,x),

where

x=





x

1

x

2

x

3



 ,A(t) =





L(t) 0 0

0 0 0

0 0 0



 ,B(t)=





R

1

(t) 0 0

1 −1 −1
0 0 R

2

(t)



 ,

f(t,x) =





U(t)−ϕ
1

(x
1

)−ϕ
3

(x
2

)
I(t)+G

3

(t)ϕ
3

(x
2

)
ϕ
3

(x
2

)−ϕ
2

(x
3

)



 .

The initial 
ondition (3): x(t
0

) = x

0

, x

0

= (I
1

(t
0

), I
31

(t
0

), I
2

(t
0

))T.

It is assumed that the fun
tions L(t), R
1

(t), R
2

(t) and G
3

(t) are positive for all
t ∈ [t+,∞).

The proje
tions x

p

j

(t) = P

j

(t)x ∈ X

j

(t) of a ve
tor x have the form

x

p

1

(t) = x

p

1

= (x
1

,x
1

,0)T, x
p

2

(t) = x

p

2

= (0,x
2

−x

1

,x
3

)T.

Denote z= x

1

, u= x

2

−x

1

, w= x

3

, then x

p

1

= (z,z,0)T, x

p

2

= (0,u,w)T.
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Using the introdu
ed notation, the equations (29)�(30) 
an be rewritten as

w =−I(t)−u−G

3

(t)ϕ
3

(u+ z), (31)

u= ψ(t,z,u), where ψ(t,z,u)=−I(t)−
(

G

3

(t)+R

−1
2

(t)
)

ϕ
3

(u+ z)+

+R

−1
2

(t)ϕ
2

(

− I(t)−u−G

3

(t)ϕ
3

(u+ z)
)

. (32)

By Theorem 1 for ea
h initial point (t
0

,x
0

) ∈ [t+,∞)×R3

satisfying the

algebrai
 equations (i.e., (t
0

,x
0

) ∈ L

t+)

x

1

−x

2

−x

3

= I(t)+G

3

(t)ϕ
3

(x
2

), (33)

R

2

(t)x
3

= ϕ
3

(x
2

)−ϕ
2

(x
3

), (34)

there exists a unique global solution x(t) of the IVP (1), (3) if

L,R
1

,R
2

∈ C

1([t+,∞),R), I,U,G
3

∈C([t+,∞),R), ϕ
j

∈ C

1(R), j= 1,2,3;
L(t)> 0, R

1

(t)> 0, R

2

(t)> 0, G

3

(t)> 0 for all t ∈ [t+,∞);
1) for ea
h t ∈ [t+,∞) and ea
h z ∈R there exists a unique u ∈ R satisfying the

equality (32);

2) for ea
h t∗ ∈ [t+,∞), z∗ ∈ R and ea
h u∗,w∗ ∈ R satisfying the equalities

(31), (32), one has the relation

ϕ ′
3

(u∗+ z∗)+
[

ϕ ′
2

(w∗)+R

2

(t∗)
][

1+G

3

(t∗)ϕ ′
3

(u∗+ z∗)
]

6= 0; (35)

3) there exists R> 0 su
h that −
(

ϕ
1

(z)+ϕ
3

(u+ z)
)

z≤ R

1

(t)z2 for all

t ∈ [t+,∞), u,w ∈R, z ∈ R, |z| ≥ R, satisfying the equalities (31), (32).
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A similar assertion takes pla
e a

ording to Theorem 2, if the above 
onditions

are satis�ed with the following 
hanges: the 
ondition 1) does not 
ontain the

requirement that u be unique; the 
ondition 2) is repla
ed by the following:

2*) for ea
h t∗ ∈ [t+,∞), z∗ ∈R and ea
h u

j

∗,w
j

∗ ∈ R, j= 1,2, satisfying the

equalities (31), (32), the relation

ϕ ′
3

(u
2

+ z∗)+
[

ϕ ′
2

(w
2

)+R

2

(t∗)
][

1+G

3

(t∗)ϕ ′
3

(u
1

+ z∗)
]

6= 0

holds for any u

k

∈ [u1∗ ,u
2

∗], wk

∈ [w1

∗ ,w
2

∗ ], k= 1,2.

If, additionally,

∞
∫

t

0

k(t)dt< ∞, where k(t) = 2L

−1(t)(|L′(t|+ |U(t)|), the

fun
tions I(t), R−1
2

(t), G
3

(t) are bounded for all t ∈ [t+,∞), and ϕ
3

(x
2

), ϕ
2

(x
3

)
are bounded for x

2

∈ R and x

3

∈R respe
tively, then the DAE (1) is Lagrange

stable by Theorem 3.
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The parti
ular 
ases.

The the 
onditions 1), 2) are satis�ed for the fun
tions ϕ
2

, ϕ
3

whi
h are

in
reasing (nonde
reasing) on R, for example,

ϕ
2

(y) = ay

2k−1, ϕ
3

(y) = by

2m−1, ϕ
1

(y) = 
y

2l−1, a,b,
> 0, k,m, l ∈ N, (36)

and if b is su�
iently small, m≤ l, sup
t∈[t+,∞)

|I(t)|< ∞ and R

2

(t)≥K

0

= 
onst> 0,

t ∈ [t+,∞), then the 
ondition 3) is also ful�lled.

Note that in this 
ase the mapping ψ(t,z,u) is not globally 
ontra
tive with
respe
t to u. Obviously, the 
ondition 1) is satis�ed, if ψ(t,z,u) is globally

ontra
tive with respe
t to u for any t, z, i.e., there exists a 
onstant α < 1 su
h

that

∣

∣ψ(t,z,u
1

)−ψ(t,z,u
2

)
∣

∣≤ α|u
1

−u

2

| for any t ∈ [t+,∞), z ∈ R, u
1

,u
2

∈R.
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The numeri
al solution

L(t) = 500, R

1

(t) = e

−t
, R

2

(t) = 2+ e

−t
, G

3

(t) = (t+1)−1,
I(t) = sint, U(t) = (t+1)−1,
ϕ
i

(y) = y

3

, i= 1,2,3, t

0

= 0, x

0

= (0,0,0)T
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The numeri
al solution

L(t) = 500(t+1)−1, R
1

(t) = e

−t
, R

2

(t) = 2+ e

−t
, G

3

(t) = (t+1)−1,
I(t) = (t+1)−1−1, U(t) = (t+1)−1,
ϕ
i

(y) = y

3

, i= 1,2,3, t

0

= 0, x

0

= (0,0,0)T
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A model for a gas pipeline �ow

Consider a mathemati
al model for a gas pipeline �ow (the �ow on a single

pipe), assuming that the temperature is identi
ally equal to T

0

= 
onst. The

model 
onsists of the isothermal Euler equations

ρ
t

+(ρv)
x

= 0,

(ρv)
t

+(p+ρv2)
x

=− λ

2D

ρv|v|−gρh
x

,
(ISO1)

and the equation of state for a real gas in the form

p= RT

0

ρz(p), (ISGE)

x ∈ [0,L], t ∈ [0,t
1

)⊆ [0,∞], L< ∞ is the length of the pipe

ρ = ρ(t,x), v= v(t,x), p= p(t,x) are respe
tively the density, velo
ity and

pressure

g is the gravitational 
onstant, and R is the spe
i�
 gas 
onstant

λ is the pipe fri
tion 
oe�
ient, and D is the pipe diameter

h= h(x) is the height pro�le of the pipe over ground

z= z(p) is the 
ompressibility fa
tor

[P. Doms
hke, B. Hiller, J. Lang, V. Mehrmann, R. Morandin, C. Tis
hendorf. Gas

Network Modeling: An Overview, 2021 (Preprint)℄
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Assuming (ρv2)
x

to be negligibly small and introdu
ing the variable ϕ = ρv
(the mass �ow rate by 
ross se
tion area), we obtain the semilinear model for

the isothermal Euler equations with the same gas state equation:

ρ
t

=−ϕ
x

, (37)

ϕ
t

=−p
x

−gρh
x

−0.5λD−1ϕ |ϕ |ρ−1, (38)

0=−p+RT

0

ρz(p). (39)

Denote A=





1 0 0

0 1 0

0 0 0





, B=





0 − d

dx

0

−gh
x

0 − d

dx

0 0 −1





, f(u)=





0

− λ
2D

ϕ|ϕ|
ρ

RT

0

ρz(p)





and

u= (ρ ,ϕ ,p)T. Then we 
an write the system (37)�(39) as:

A

d

dt

u(t)+Bu(t) = f(u(t)), (40)

where u= u(t)(x) = (ρ(t,x),ϕ(t,x),p(t,x))T, x ∈ [0,L], t ∈ [0,T]⊂ [0,t
1

). The
initial 
ondition has the form:

u(0) = u

0

, u

0

= u

0

(x) = (ρ(0,x),ϕ(0,x),p(0,x))T, x ∈ [0,L], (41)

where p(0,x) is 
hosen so as to satisfy the equation (39) for t= 0, x ∈ [0,L].
We will assume that u(t,x) satis�es suitable boundary 
onditions, for example,

ϕ(t,0) = ϕ
l

(t), p(t,0) = p

l

(t), t ∈ [0,T], (42)

i.e., u(t)(0) = u

l

(t) = (ρ(t,0),ϕ
l

(t),p
l

(t))T, where ϕ
l

(t) and p
l

(t) are given.
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Consider the IVP for time-invariant semilinear DAE

d

dt

[Au(t)]+Bu(t) = f(t,u(t)), t ∈ [t
0

,T], (43)

u(t
0

) = u

0

, (44)

where A,B : X→ Y are 
losed linear operators with the domains D

A

, D

B

,

D=D

A

∩D
B

6= {0}, and X,Y are real Bana
h spa
es.

Theorem [L.A. Vlasenko, Evolution models with impli
it and degenerate

di�erential equations, 2006℄. Let the pen
il λA+B satisfy (4), where C

1

> 0

and C

2

> 0 are 
onstants. Assume that f ∈ C([t
0

,T]×X,Y) satis�es the Lips
hitz

ondition

‖f(t,u)− f(t,v)‖ ≤M‖u−v‖, u,v ∈ X, (45)

where the 
onstant M is su
h that

M‖Q
2

‖‖G−1|< 1. (46)

Then for ea
h initial point u

0

∈D satisfying

Q

2

Bu

0

=Q

2

f(t
0

,u
0

),

there exists a unique global solution of the IVP (43), (44) on [t
0

,T].
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Outlooks

1

The extension of the results to the 
ase when X,Y are Bana
h spa
es, A(t),
B(t) (t ∈ [t+,∞)) are 
losed linear operators from X to Y with the domains

D

A(t), DB(t), D=D

A(t)∩DB(t) 6= 0.

2 λA(t)+B(t) is a regular pen
il of index ν (ν ∈N), i.e., there exist fun
tions

C

1

: [t+,∞)→ (0,∞), C
2

: [t+,∞)→ (0,∞) su
h that for every t ∈ [t+,∞)

‖R(λ ,t)‖ ≤ C

1

(t)|λ |ν−1, |λ | ≥ C

2

(t). (47)

[Rutkas A.G., Vlasenko L.A. Existen
e of solutions of degenerate nonlinear

di�erential operator equations, Nonlinear Os
illations, 2001℄

Then for ea
h t ∈ [t+,∞) there exist the two pairs of mutually 
omplementary

proje
tors P

j

(t), Q
j

(t), j= 1,2, (7) whi
h generate the dire
t de
ompositions

of D and Y (5) su
h that the operators A(t), B(t) have the blo
k

representations (6), where A

−1
1

(t) and B−1
2

(t) exist.

In general, the order of pole of the resolvent (A(t)+ µB(t))−1 at the point

µ = 0 is 
alled the index of the regular pen
il λA(t)+B(t).
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Example. Let ν = 2 and X=Y =D= Rn

or Cn

. Then there exist the dire
t

de
ompositions

D

2

(t) =D

20

(t)+̇D
21

(t), Y

2

=Y

20

(t)+̇Y
21

(t) (D
20

=D∩KerA) (48)

that generate the two pairs of mutually 
omplementary proje
tors

P

2k

(t) : D→ X

j

(t), Q
2k

(t) : Y→ Y

2k

, k= 0,1, su
h that the DAE (2)

A(t)x′(t)+B(t)x(t) = f(t,x(t)) is redu
ed to the equivalent system

P

1

(t)
d

dt

x(t) =−G−1(t)B(t)P
1

(t)x(t)+P

1

(t)G−1(t)f(t,x(t))],

G

−1(t)A(t)P
21

(t)
d

dt

x(t) =−P
20

(t)x(t)+P

20

(t)G−1(t)f(t,x(t)),

P

21

(t)G−1(t)f(t,x(t))−P

21

(t)x(t) = 0.

(49)
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Consider impli
it ordinary di�erential equations (ODEs) of the form

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), t ∈ [t+,∞), (1)

A(t)
d

dt

x(t)+B(t)x(t) = f(t,x(t)), (2)

where t+ ≥ 0, A(t),B(t) (t ∈ [t+,∞)) are 
losed linear operators from X to Y

with the domains D

A(t), DB(t), D=D

A(t)∩DB(t) 6= {0}, X,Y are Bana
h spa
es,

f : [t+,∞)×X→Y.

The time-varying operators A(t), B(t) 
an be degenerate.

The di�erential equations (DEs) (1) and (2) with a degenerate (for

some t) operator A(t) are 
alled time-varying (nonautonomous)

degenerate DEs or time-varying di�erential-algebrai


equations (DAEs). In the terminology of DAEs, equations of the form (1),

(2) are 
ommonly referred to as semilinear.

We study the initial value problem (the Cau
hy problem) for the DAEs (1), (2)

with the initial 
ondition

x(t
0

) = x

0

. (3)
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Fields of appli
ation of the theory of DAEs are 
ontrol theory,

radioele
troni
s, 
yberneti
s, me
hani
s, roboti
s te
hnology, e
onomi
s, e
ology

and 
hemi
al kineti
s.

In parti
ular, semilinear DAEs are used in modelling

transient pro
esses in ele
tri
al 
ir
uits

gas �ow in networks

dynami
s of neural networks

dynami
s of 
omplex me
hani
al and te
hni
al systems (e.g., robots)

multi-se
toral e
onomi
 models

kineti
s of 
hemi
al rea
tions

Noti
e that any type of a PDE 
an be represented as a DAE in

in�nite-dimensional spa
es (an abstra
t DAE) and, possibly, a 
omplementary

boundary 
ondition.
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Model of a gas �ow for a single pipe

We 
onsider the mathemati
al model of a gas pipeline whi
h 
onsists of the

isothermal Euler equations of the form

ρ
t

=−ϕ
x

, (4)

ϕ
t

=−p
x

−gρh
x

−0.5λD−1ϕ |ϕ |ρ−1
(5)

and the equation of state for a real gas in the form

p= RT

0

ρz(p), (6)

x ∈ [0,L], t ∈ [0,t
1

)⊆ [0,∞], where [t
0

,t
1

) is the time interval, L< ∞ is the

pipe length and T

0

is the temperature

ρ = ρ(t,x), ϕ = ϕ(t,x) (ϕ := ρv, v is the velo
ity) and p= p(t,x) are
respe
tively the density, �ow rate and pressure

g is the gravitational 
onstant, and R is the spe
i�
 gas 
onstant

λ is the pipe fri
tion 
oe�
ient, and D is the pipe diameter

h= h(x) is the height pro�le of the pipe over ground

z= z(p) is the 
ompressibility fa
tor

[P. Benner, S. Grundel, C. Himpe, C. Hu
k, T. Streubel, C. Tis
hendorf. Gas

Network Ben
hmark Models, 2018℄
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Denote A=



1 0 0

0 1 0

0 0 0



, B=




0 − d

dx

0

−gh
x

0 − d

dx

0 0 −1



, f(u)=




0

− λ
2D

ϕ|ϕ|
ρ

RT

0

ρz(p)




and

u= (ρ ,ϕ ,p)T. Then we 
an write the system (4)�(6) as:

A

d

dt

u(t)+Bu(t) = f(u(t)), (7)

where u= u(t)(x) = (ρ(t,x),ϕ(t,x),p(t,x))T, x ∈ [0,L], t ∈ [0,T]⊂ [0,t
1

). The
initial 
ondition has the form:

u(0) = u

0

, u

0

= u

0

(x) = (ρ(0,x),ϕ(0,x),p(0,x))T, x ∈ [0,L], (8)

where p(0,x) is 
hosen so as to satisfy the equation (6) for t= 0, x ∈ [0,L]. We

will assume that u(t,x) satis�es suitable boundary 
onditions, for example,

ϕ(t,0) = ϕ
l

(t), p(t,0) = p

l

(t), t ∈ [0,T], (9)

i.e., u(t)(0) = u

l

(t) = (ρ(t,0),ϕ
l

(t),p
l

(t))T, where ϕ
l

(t) and p
l

(t) are given.

Then we 
onsider the IVP (1), (3), where X=Y = L

2

and

A(t),B(t) : H
1

0

[0,L] = {u(x) ∈ H

1[0,L] | u(t)(0) = u

l

(t)} → L

2

for ea
h t ∈ [0,t
1

).
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[P. Benner, S. Grundel, C. Himpe, C. Hu
k, T. Streubel, C. Tis
hendorf. Gas

Network Ben
hmark Models, 2018℄

[Azevedo-Perdi
oulis, T.-P., Jank, G. Modelling aspe
ts of des
ribing a gas

network through a DAE system. 2007℄

The gas network is 
onsidered to be des
ribed by a 
onne
ted �nite graph

G= (V,E,ψ), where V denotes a set of verti
es with |V|= n, and E denotes a set

of edges with |E|=m. The mapping ψ : E→ V×V is 
alled the in
iden
e map,

where ψ
1

(e) = v

1

is the initial vertex and ψ
2

(e) = v

2

is the �nal vertex.

We de�ne a �ow ϕ : E→R and a pressure-drop p : E→R on every edge, and a

nodal-pressure Φ : V→ R and a nodal-�ow F : V→ R on every vertex.

The Kir
hho� First Law (KFL) says that the �ow rate vanishes at any vertex of

the graph:The Kir
hho� Se
ond Law (KSL) says that the pressure drop vanishes

at every fundamental 
ir
uit of the graph.

Noti
e that the network may 
omprise valves, reservoirs, 
ompressor stations,

supplying sour
es, and regulators.

The isothermal Euler equations are linearised around the operation levels

(p∗,ϕ∗), when
e we set p= p∗+∆p and ϕ = ϕ∗+∆ϕ , with ∆p and ∆ϕ as the

deviations from the pressure-drop and �ow, respe
tively, from the referen
e values

p∗ and ϕ∗.
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Dis
retizing the gas net with respe
t to the spa
e variable x, we obtain the gas

network model in the form of a DAE of a type

∂

∂ t
(Au) = Bu+ f(t,u), (10)

where u= (∆ϕ ,Φ,u
q

,u
p

)T, u
q

denotes a 
ontrol devi
e 
ontrolling the �ow in

some edges by a ��ow�, u

p

denotes a 
ontrol devi
e 
ontrolling the �ow in some

edges by a �pressure� and A is a 
ertain degenerate matrix. The gas network

model also may in
lude the parameters denoting 
ontrol devi
es 
ontrolling the

pressure in the edges or nodes either through �ow or pressure.
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Assume that the 
hara
teristi
 operator pen
il λA(t)+B(t) (λ ∈ C is a

parameter), asso
iated with the linear part of the DAE (1) or (2), is a regular

pen
il of index not higher than 1: for ea
h t≥ t+ the pen
il λA(t)+B(t) be
regular and there exist fun
tions C

1

: [t+,∞)→ (0,∞), C
2

: [t+,∞)→ (0,∞) su
h
that for every t ∈ [t+,∞) the pen
il resolvent R(λ ,t) = (λA(t)+B(t))−1 satis�es

the 
onstraint

‖R(λ ,t)‖ ≤ C

1

(t), |λ | ≥ C

2

(t). (11)

Then for ea
h t ∈ [t+,∞), there exist the two pairs of mutually 
omplementary

proje
tors

P

j

(t) : D→ D

j

(t) and Q

j

(t) : Y→ Y

j

(t), j= 1,2,

whi
h generate the dire
t de
ompositions

D=D

1

(t)+̇D
2

(t), Y =Y

1

(t)+̇Y
2

(t) su
h that (12)

the pair of subspa
es X

1

(t), Y
1

(t) and X
2

(t), Y
2

(t) are invariant under the

operators A(t), B(t), and A

j

(t) = A(t)|
D

j

(t) , Bj(t) = B(t)|
D

j

(t) : D
j

(t)→Y

j

(t),

j= 1,2, are su
h that A

2

(t) = 0, and there exist A

−1
1

(t) and B−1
2

(t) if

D

1

(t) 6= {0}, D
2

(t) 6= {0} respe
tively (D

2

(t) =KerA(t)∩D, Y
1

(t) =A(t)D)

A(t)=A

1

(t)+̇A
2

(t), B(t)=B

1

(t)+̇B
2

(t) : D
1

(t)+̇D
2

(t)→ Y

1

(t)+̇Y
2

(t) (13)

[Rutkas A.G., Vlasenko L.A. Existen
e of solutions of degenerate nonlinear di�erential

operator equations, Nonlinear Os
illations, 2001℄
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For ea
h t ∈ [t+,∞) the proje
tors 
an be determined by the formulas

[Rutkas A.G., Vlasenko L.A. Nonlinear Os
illations, 2001℄

P

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

R(λ ,t)A(t)dλ , P

2

(t) = I

X

−P

1

(t),

Q

1

(t) =
1

2π i

∮

|λ |=C
2

(t)

A(t)R(λ ,t)dλ , Q

2

(t) = I

Y

−Q

1

(t).
(14)

and the auxiliary operator G(t) =A(t)+B(t)P
2

(t) : D→Y has the bounded

inverse G

−1(t) ∈ (Y,X).
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Let X=Y =D= Rn

.

For ea
h t any x ∈ Rn


an be uniquely represented in the form

x= x

p

1

(t)+x

p

2

(t), x

p

i

(t) = P

i

(t)x ∈ X

i

(t).

The DAE (1) [A(t)x(t)]′+B(t)x(t) = f(t,x(t)) is redu
ed to the equivalent system

[P
1

(t)x(t)]′=
[
P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]
P

1

(t)x(t)+G

−1(t)Q
1

(t)f(t,x(t)),

G

−1(t)Q
2

(t)[f(t,x(t))−A

′(t)P
1

(t)x(t)]−P

2

(t)x(t) = 0 or

x

′
p

1

(t) =
[
P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+B(t)]
]
x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x), (15)

G

−1(t)Q
2

(t)[f(t,x
p

1

(t)+x

p

2

(t))−A

′(t)x
p

1

(t)]−x

p

2

(t) = 0. (16)

Introdu
e the manifold

L

t+ = {(t,x) ∈ [t+,∞)×R
n |Q

2

(t)[B(t)x+A

′(t)P
1

(t)x− f(t,x)] = 0}. (17)

The 
onsisten
y 
ondition (t
0

,x
0

) ∈ L

t+ for the initial point (t
0

,x
0

) is one of

the ne
essary 
onditions for the existen
e of a solution of the initial value problem

(1), (3).

V

′
(15)

(t,x
p

1

(t)) = ∂V
∂t

(t,x
p

1

(t))+
(

∂V
∂z

(t,x
p

1

(t)),
[
P

′
1

(t)−G

−1(t)Q
1

(t)[A′(t)+

B(t)]
]
x

p

1

(t)+G

−1(t)Q
1

(t)f(t,x
p

1

(t)+x

p

2

(t))
)
is the derivative of the fun
tion V(t,z)

along the traje
tories of the equation (15), where V(t,z) is a 
ontinuously di�erentiable

and positive de�nite s
alar fun
tion.
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Main results:

Theorems on the existen
e and uniqueness of global solutions

Some advantages: the restri
tions of the type of the global Lips
hitz


ondition (in
luding 
ontra
tive mapping) are not used.

Theorem on the Lagrange stability of the DAE (the boundedness of

solutions)

Theorem on the Lagrange instability of the DAE (solutions have �nite

es
ape time)

Theorem on the ultimate boundedness (dissipativity) of the DAE (the

ultimate boundedness of solutions)

Theorems on the Lyapunov stability and instability of the equilibrium

state of the DAE

Theorems on asymptoti
 stability and asymptoti
 stability in the large

of the equilibrium state (
omplete stability of the DAE)

Numeri
al methods

The obtained theorems were used for the study of 
ertain mathemati
al models of

ele
tri
al 
ir
uits with nonlinear and time-varying elements.
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The IVP (1), (3):

d

dt

[A(t)x(t)]+B(t)x(t) = f(t,x(t)), x(t
0

) = x

0

.

De�nitions

Let f(t,0) ≡ 0 and f : [t+,∞)×U

x

R

(0)→ Rn

, where

U

x

R

(0) = {x ∈R
n | ‖x‖< R}.

An equilibrium position (a stationary solution) x∗(t)≡ 0 of the DAE (1)

(f(t,0) ≡ 0) is 
alled Lyapunov stable, or simply stable, if for ea
h ε > 0 (ε <R)

and ea
h t

0

∈ [t+,∞) there exists a number δ = δ (ε,t
0

)> 0 (δ ≤ ε) su
h that for

any 
onsistent initial point (t
0

,x
0

) satisfying the 
ondition ‖x
0

‖< δ there exists a

global solution x(t) of the IVP (1), (3) and this solution satis�es the inequality

‖x(t)‖< ε for all t ∈ [t
0

,∞).

If, in addition, there exists δ̃ = δ̃ (t
0

)> 0 (δ̃ ≤ δ ) su
h that for ea
h solution x(t)

with an initial point (t
0

,x
0

) satisfying the 
ondition ‖x
0

‖< δ̃ the requirement

lim
t→∞

x(t) = 0 is ful�lled, then x∗(t)≡ 0 is 
alled asymptoti
ally Lyapunov stable,

or simply asymptoti
ally stable.

If in the previous de�nition the number δ is independent of t

0

, then the solution

is 
alled uniformly Lyapunov stable or uniformly stable (on [t+,∞)).
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An equilibrium position x∗(t)≡ 0 of the DAE (1) (f(t,0) ≡ 0) is 
alled

Lyapunov unstable, or simply unstable, if for some ε > 0 (ε < R), t

0

∈ [t+,∞)
and any δ > 0 there exist a solution xδ (t) of the IVP (1), (3) and a time moment

t

1

> t

0

su
h that ‖x
0

‖< δ and ‖xδ (t1)‖ ≥ ε.

Let f(t,0) ≡ 0 and f : [t+,∞)×Rn → Rn

.

If the equilibrium position x∗(t)≡ 0 of the DAE (1) (f(t,0) ≡ 0) is asymptoti
ally

stable and, moreover, for ea
h point (t
0

,x
0

) ∈ L
t+ there exists a global solution

x(t) of the IVP (1), (3) and lim
t→∞

x(t) = 0, then x∗(t)≡ 0 is 
alled asymptoti
ally

stable in the large, and the DAE is 
alled 
ompletely stable or asymptoti
ally

stable.

Remark. Sin
e the Lagrange instability of a solution implies its Lyapunov

instability, the theorems on the Lagrange instability of DAEs 
an also be treated

as Lyapunov instability theorems.

Asymptoti
 stability in the large for expli
it ODEs was 
onsidered in

[Krasovsky N.N. Some problems of the theory of stability of motion, 1959℄.
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B

r

1

(0) = {z ∈ R
n | ‖z‖ ≤ r

1

},

B

x

p

1

,x
p

2

r

1

,r
2

(0) = {x ∈ R
n | ‖x

p

i

(t)‖ ≤ r

i

,x
p

i

(t) = P

i

(t)x, i = 1,2}.
(18)

Theorem 6 (Lyapunov stability and asymptoti
 stability of equilibrium position

of the DAE). Let f ∈C([t+,∞)×U

x

R

(0),Rn), f(t,0)≡ 0,

∂ f/∂x ∈ C([t+,∞)×U

x

R

(0),L(Rn)), A,B ∈ C

1([t+,∞),L(Rn)), and the pen
il

λA(t)+B(t) satisfy (11), where C

2

∈C1([t+,∞),(0,∞)). Assume that for ea
h

t∗ ∈ [t+,∞) and x∗
p

1

(t∗) = 0, x

∗
p

2

(t∗) = 0 the operator

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is

invertible. Then the following statements are true:

1. Let there exist numbers r

1

,r
2

> 0, r

1

+ r

2

< R, and a positive de�nite

fun
tion V ∈C1([t+,∞)×B

r

1

(0),R) su
h that for all t ∈ [t+,∞), x ∈ B
x

p

1

,x
p

2

r

1

,r
2

(0)

the following inequality holds:

V

′
(15)

(t,x
p

1

(t)) ≤ 0. (19)

Then the equilibrium position x∗(t)≡ 0 of the DAE (1) is Lyapunov stable.
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2. Let there exist numbers r

1

,r
2

> 0, r

1

+ r

2

<R, and positive de�nite fun
tions

V ∈ C

1([t+,∞)×B

r

1

(0),R), W ∈ C(B
r

1

(0),R), and U ∈C(B
r

1

(0),R) su
h that

V(t,z)≤W(z) for all t ∈ [t+,∞), z ∈ B
r

1

(0), and

V

′
(15)

(t,x
p

1

(t))≤−U
(
x

p

1

(t)
)

(20)

for all t ∈ [t+,∞), x ∈ B

x

p

1

,x
p

2

r

1

,r
2

(0), x
p

1

(t) 6= 0;

also, let

G

−1(t)Q
2

(t)[f(t,P
1

(t)x+P

2

(t)x)−A

′(t)P
1

(t)x]→ 0

as x→ 0 uniformly in t on [T,∞) for some T> t+. (21)

Then the equilibrium position x∗(t)≡0 of the DAE (1) is asymptoti
ally

Lyapunov stable.
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Theorem 7 (Lyapunov instability of equilibrium position of the DAE).

Let f ∈C([t+,∞)×U

x

R

(0),Rn), f(t,0)≡ 0, ∂ f/∂x ∈ C([t+,∞)×U

x

R

(0),L(Rn)),

A,B ∈C1([t+,∞),L(Rn)), and the pen
il λA(t)+B(t) satisfy (11), where

C

2

∈C1([t+,∞),(0,∞)). Assume that for ea
h t∗ ∈ [t+,∞) and x∗
p

1

(t∗) = 0,

x

∗
p

2

(t∗) = 0 the operator Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is

invertible. Let there exist numbers T≥ t+ and r

1

,r
2

> 0, r

1

+ r

2

< R, and a

fun
tion V ∈C1([T,∞)×B

r

1

(0),R) su
h that

1. V(t,z)→ 0 uniformly in t on [T,∞) as ‖z‖→ 0;

2. there exists a positive fun
tion U ∈ C(B
r

1

(0),[0,∞)) su
h that

V

′
(15)

(t,x
p

1

(t))≥U

(
x

p

1

(t)
)
> 0 or V

′
(15)

(t,x
p

1

(t))≤−U
(
x

p

1

(t)
)
< 0 (22)

for all t ∈ [T,∞), x ∈ B
x

p

1

,x
p

2

r

1

,r
2

(0), x
p

1

(t) 6= 0;

3. for ea
h ∆
1

> 0 and ea
h ∆
2

> 0, ∆
i

≤ r

i

, there exist x

p

1

(T) 6= 0 and x

p

2

(T)

su
h that ‖x
p

i

(T)‖ < ∆
i

, i= 1,2, and V(T,x
p

1

(T))V′
(15)

(T,x
p

1

(T))> 0

(i.e., the sign of the fun
tion V 
oin
ides with the sign of the derivative V

′
(15)

at

(T,x
p

1

(T))).

Then the equilibrium position x∗(t)≡ 0 of the DAE (1) is Lyapunov

unstable.
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Theorem 8 (asymptoti
 stability in the large or 
omplete stability of the DAE).

Let f ∈C([t+,∞)×Rn,Rn), f(t,0) ≡ 0, ∂ f/∂x ∈ C([t+,∞)×Rn,L(Rn)),

A,B ∈C1([t+,∞),L(Rn)), the pen
il λA(t)+B(t) satisfy (11), where

C

2

∈C1([t+,∞),(0,∞)). Let the 
onditions 1), 2) of Theorem 1 or 1), 2) of

Theorem 2 (on the global solvability), as well as 
ondition (21), be satis�ed.

Assume that there exist positive de�nite fun
tions V ∈ C

1([t+,∞)×Rn,R),

W ∈ C(Rn,R) and U ∈ C(Rn,R) su
h that

1. V(t,z) ≤W(z) for all t ∈ [t+,∞), z ∈ Rn

;

2. V(t,z)→ ∞ uniformly in t on [t+,∞) as ‖z‖→ ∞;

3. for all (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ , xp
1

(t) 6= 0 (x

p

i

(t) = P

i

(t)x, i= 1,2), the

inequality (20) holds.

Then the equilibrium position x∗(t)≡ 0 of the DAE (1) is asymptoti
ally

stable in the large (the DAE (1) is 
ompletely stable).
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The 
onditions 1), 2) of Theorem 1 (on the global solvability):

1) for ea
h t ∈ [t+,∞) and ea
h x

p

1

(t) ∈X
1

(t) there exists a unique

x

p

2

(t) ∈ X

2

(t) su
h that (t,x
p

1

(t)+x

p

2

(t)) ∈ L

t+ ;

2) for ea
h t∗ ∈ [t+,∞), x∗
p

i

(t∗) ∈ X

i

(t∗), i= 1,2, su
h that

(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗)) ∈ L

t+ the operator Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) : X
2

(t∗)→Y

2

(t∗),

Φ
t∗,x∗

p

1

(t∗),x∗
p

2

(t∗) =
[

∂
∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

∗
p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is

invertible;

The 
onditions 1), 2) of Theorem 2 (on the global solvability):

1) for ea
h t ∈ [t+,∞), x
p

1

(t) ∈ X

1

(t) there exists x

p

2

(t) ∈ X

2

(t) su
h that

(t,x
p

1

(t)+x

p

2

(t)) ∈ L
t+ ;

2) for ea
h t∗ ∈ [t+,∞), x∗
p

1

(t∗) ∈ X

1

(t∗), x
i

p

2

(t∗) ∈X2

(t∗) su
h that

(t∗,x
∗
p

1

(t∗)+x

i

p

2

(t∗)) ∈ L

t+ , i= 1,2, the operator fun
tion Φ
t∗,x∗

p

1

(t∗)(xp2(t∗))

de�ned by Φ
t∗,x∗

p

1

(t∗) : X
2

(t∗)→ L(X
2

(t∗),Y2

(t∗)),Φ
t∗,x∗

p

1

(t∗)(xp2(t∗)) =[
∂

∂x

[
Q

2

(t∗)f(t∗,x
∗
p

1

(t∗)+x

p

2

(t∗))
]
−B(t∗)

]
P

2

(t∗), is basis invertible on

[x1
p

2

(t∗),x
2

p

2

(t∗)].
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Outlooks

1

It is planned to extend the obtained results to the 
ase when X,Y are Bana
h

spa
es, f : [t+,∞)×X→Y and A(t),B(t) : X→Y (t ∈ [t+,∞)) are 
losed

linear operators with the domains D

A(t), DB(t), D=D

A(t)∩DB(t) 6= {0}.

In this 
ase we will require that A(t), B(t) be strongly 
ontinuously

di�erentiable on [t+,∞) (i.e., for ea
h d ∈D the fun
tions A(t)d, B(t)d be


ontinuously di�erentiable on [t+,∞)).

2

It is planned to 
onsider semilinear time-varying DAEs of index higher than 1.

A regular pen
il λA(t)+B(t) is a regular pen
il of index ν (ν ∈N) if there

exist fun
tions C

1

,C
2

: [t+,∞)→ (0,∞) su
h that for every t ∈ [t+,∞)

‖R(λ ,t)‖ ≤ C

1

(t)|λ |ν−1, |λ | ≥ C

2

(t). (23)

[Rutkas A.G., Vlasenko L.A. Existen
e of solutions of degenerate nonlinear

di�erential operator equations, Nonlinear Os
illations, 2001℄

Then for ea
h t ∈ [t+,∞) there exist the two pairs of mutually 
omplementary

proje
tors P

j

(t), Q
j

(t), j= 1,2, (14) whi
h generate the dire
t

de
ompositions of D and Y (12) su
h that the operators A(t), B(t) have the

blo
k representations (13), where A

−1
1

(t) and B−1
2

(t) exist.

In general, the order of pole of the resolvent (A(t)+ µB(t))−1 at the point

µ = 0 is 
alled the index of the regular pen
il λA(t)+B(t).
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