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Di�erential-Algebrai
 Equations (DAEs) are also 
alled des
riptor,

algebrai
-di�erential and degenerate di�erential equations.

Fields of appli
ation of the theory of semilinear DAEs are

radio engineering, 
ontrol problems, 
yberneti
s, roboti
s te
hnology, e
onomi
s,

me
hani
s, 
hemi
al kineti
s, and gas industry.

Study of DAEs (solvability, stru
ture, index, stability, numeri
al methods:

K. Weierstrass (1867), L. Krone
ker (1890), V.P. Skripnik (1964), Gear C.W.

(1971), A.G. Rutkas (1975), R.E. Showalter (1975), S.L. Campbell (1976), Yu.E.

Boyarintsev (1977), A. Favini (1977), V.F. Chistyakov (1980), L.R. Petzold,

L.A. Vlasenko, E. Hairer, Ch. Lubi
h, P. Kunkel, V. Mehrmann, R. M�arz,

C. Tis
hendorf, A.A. Sh
heglova A.M. Samoilenko, R. Riaza, Yu.E. Gliklikh, A.

Yon
hev and others.

Nonregular DAEs: A.G. Rutkas, P. Kunkel, V. Mehrmann, S.M. Chuiko, V.F.

Chistyakov, E.V. Chistyakova, S.P. Zubova and others.
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Consider the initial value (Cau
hy) problem for an impli
it di�erential equation

d

dt

[Ax]+Bx= f(t,x), (1)

x(t
0

) = x

0

, (2)

where t ∈ [t+,∞), t+ ≥ 0, x ∈ R
n

, f ∈ C([t+,∞)×R
n,Rm) and A, B ∈ L(Rn,Rm)

are linear operators (or m×n matri
es).

In the 
ase when m 6= n or m= n and the operator A is noninvertible

(degenerate), the equation (1) is 
alled a di�erential-algebrai
 equation (DAE)

or degenerate di�erential equation. In the DAE terminology, equations of the form

(1) are 
alled semilinear.

The pen
il λA+B is 
alled regular if n=m= rk(λA+B).

Otherwise, if n 6=m or n=m and rk(λA+B)< n, the pen
il is 
alled

singular or nonregular (irregular).

The semilinear DAE with the singular pen
il is 
alled singular or

nonregular.

The fun
tion x(t) is 
alled a solution of the equation (1) on [t
0

,t
1

), t
1

≤ ∞, if

x(t) ∈ C([t
0

,t
1

),Rn), (Ax)(t) ∈ C

1([t
0

,t
1

),Rm) and x(t) satis�es (1) on [t
0

,t
1

).
If the fun
tion x(t) additionally satis�es the initial 
ondition (2), then it is 
alled a

solution of the initial value problem (IVP).
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The IVP (1), (2):

d

dt

[Ax]+Bx= f(t,x), x(t
0

) = x

0

.

A solution x(t) of the IVP (1), (2) is 
alled global (or de�ned in the future) if it

exists on [t
0

,∞).

A solution x(t) of the IVP (1), (2) is 
alled Lagrange stable if it is global and

sup
t∈[t

0

,∞)

‖x(t)‖< ∞.

A solution x(t) of the IVP (1), (2) has a �nite es
ape time (is blow-up in

�nite time) and is 
alled Lagrange unstable if it exists on some �nite interval

[t
0

,T) and is unbounded, i.e., lim
t→T−0

‖x(t)‖= ∞.

The equation (1) is 
alled Lagrange stable if every solution of the IVP (1), (2)

is Lagrange stable (the DAE is Lagrange stable for every 
onsistent initial point).

The equation (1) is 
alled Lagrange unstable if every solution of the IVP (1),

(2) is Lagrange unstable.
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Solutions of the equation (1) are 
alled ultimately bounded, if there exists a


onstant K> 0 (K is independent of the 
hoi
e of t

0

, x

0

) and for ea
h solution

x(t) with an initial point (t
0

,x
0

) there exists a number τ = τ(t
0

,x
0

)≥ t

0

su
h

that ‖x(t)‖<K for all t ∈ [t
0

+ τ,∞).

The equation (1) is 
alled ultimately bounded or dissipative, if for any


onsistent initial point (t
0

,x
0

) there exists a global solution of the IVP (1), (2)

and all solutions are ultimately bounded.

If the number τ does not depend on the 
hoi
e of t

0

, then the solutions of (1)

are 
alled uniformly ultimately bounded and the equation (1) is 
alled uniformly

ultimately bounded or uniformly dissipative.

M. Filipkovska (FAU; ) 5 / 23



Main results:

Theorems on the existen
e and uniqueness of global solutions

Some advantages: the restri
tions of the type of the global Lips
hitz


ondition are not used and the requirements for the smoothness of the

nonlinear part of the DAE are weakened.

Theorem on the Lagrange stability of the DAE (the boundedness of

solutions)

Theorem on the Lagrange instability of the DAE (the blow-up of

solutions in �nite time)

Theorem on the ultimate boundedness (dissipativity) of the DAE (the

ultimate boundedness of solutions)

The appli
ation of the obtained theorems to the study of isothermal models

of gas networks are shown.

See [M. Filipkovska, Qualitative analysis of nonregular di�erential-algebrai


equations and the dynami
s of gas networks,

https://doi.org/10.48550/arXiv.2309.00186℄.

Earlier, 
ertain models of nonlinear ele
tri
al 
ir
uits, in
luding, in the 
onditions

of in
omplete data, and inverse problems were 
onsidered [M.S. Filipkovska,

Lagrange stability and instability of irregular semilinear di�erential-algebrai


equations and appli
ations. Ukrainian Math. J. 70(6), 947�979 (2018)℄

M. Filipkovska (FAU; ) 6 / 23

https://doi.org/10.48550/arXiv.2309.00186


The blo
k stru
ture of the singular operator pen
il λA+B

There exist the dire
t de
ompositions of spa
es

R
n =X

s

+̇X
r

=X

s

1

+̇X
s

2

+̇X
r

, R
m =Y

s

+̇Y
r

=Y

s

1

+̇Y
s

2

+̇Y
r

(3)

su
h that the singular operator pen
il λA+B takes the blo
k form

(

λA
s

+B

s

0

0 λA
r

+B

r

)

,
λA

s

+B

s

is a purely singular pen
il,

λA
r

+B

r

is a regular pen
il.
(4)

We introdu
e the proje
tors onto subspa
es of the de
ompositions (3):

S : Rn→X

s

, F : Rm→Y

s

, S

i

: Rn→X

s

i

, F

i

: Rm→Y

s

i

, P : Rn→X

r

, Q : Rm→Y

r

.

A

s

=

(

A

gen

0

0 0

)

, B
s

=

(

B

gen

B

und

B

ov

0

)

:X
s

=X

s

1

+̇X
s

2

→Y

s

=Y

s

1

+̇Y
s

2

, (5)

∃A−1
gen

, A

gen

=F
1

AS

1

∣

∣

X

s

1

,B

gen

=F
1

BS

1

∣

∣

X

s

1

,B

und

=F
1

BS

2

|
X

s

2

,B

ov

=F
2

BS

1

|
X

s

1

If rk(λA+B) =m< n, the 
orresponding system of equations is underdetermined:

A

s

=(A
gen

0), B
s

=(B
gen

B

und

) :X
s

1

+̇X
s

2

→Y

s

, Y

s

=Y

s

1

, Y
s

2

= {0}. (6)

If rk(λA+B) = n<m, the 
orresponding system of equations is overdetermined:

A

s

=

(

A

gen

0

)

, B
s

=

(

B

gen

B

ov

)

:X
s

→Y

s

1

+̇Y
s

2

, X

s

=X

s

1

, X
s

2

= {0}. (7)
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Suppose that λA
r

+B

r

is a regular pen
il of index not higher than 1 (index 0 or 1):

∃C
1

,C
2

> 0 :

∥

∥

∥
(λA

r

+B

r

)−1
∥

∥

∥
≤C

1

, |λ | ≥ C

2

. (8)

Then there exist the real spe
tral proje
tors of Riss type P̃

i

: X
r

→X

i

, Q̃

i

:Y
r

→Y

i

,

i= 1,2, whi
h de
ompose spa
es X

r

, Y

r

into dire
t sums of subspa
es

X

r

=X

1

+̇X
2

, Y

r

=Y

1

+̇Y
2

. (9)

A

r

=

(

A

1

0

0 0

)

, B

r

=

(

B

1

0

0 B

2

)

:X
1

+̇X
2

→Y

1

+̇Y
2

. (10)

By P

i

: Rn →X

i

, Q

i

: Rm →Y

i

denote the extensions of the proje
tors P̃

i

, Q̃

i

.

Introdu
e the extensions of the operators from the blo
k representations to R
n

:

A
s

= FA, A
r

=QA, B
s

= FB, B
r

=QB, A
gen

= F

1

A, B
gen

= F

1

BS

1

, B
und

= F

1

BS

2

,

B
ov

= F

2

BS

1

, A
j

=Q

j

, B
j

=Q

j

B ∈ L(Rn,Rm), j= 1,2.

Also, introdu
e the semi-inverse operators (the extensions of the inverse operators to

R
m

): A
(−1)
gen

∈ L(Rm,Rn) (i.e., A
(−1)
gen

R
m =A

(−1)
gen

Y

s

1

=X

s

1

(Y

s

2

+̇Y
r

=Ker(A
(−1)
gen

))

and A

−1
gen

=A
(−1)
gen

∣

∣

Y

s

1

) and A
(−1)
1

,B
(−1)
2

∈ L(Rm,Rn).

[M.S. Filipkovska, A blo
k form of a singular pen
il of operators and a method of

obtaining it. Visnyk of V.N. Karazin Kharkiv National University. Ser. �Mathemati
s,

Applied Mathemati
s and Me
hani
s� 89, 33�58 (2019)℄,

[M.S. Filipkovska, Lagrange stability and instability of irregular semilinear

di�erential-algebrai
 equations and appli
ations. Ukrainian Math. J. 70(6), 947�979

(2018)℄.
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Appli
ation of the blo
k stru
ture of the DAE operator 
oe�
ients

With respe
t to the de
ompositions (3), (9) any ve
tor x ∈ R
n


an be

uniquely represented as the sum

x= x

s

1

+x

s

2

+x

1

+x

2

, x

s

i

= S

i

x ∈ X

s

i

, x
i

= P

i

x ∈X

i

, i= 1,2.

The DAE (1)

d

dt

[Ax(t)]+Bx(t) = f(t,x) is equivalent to the system

d

dt

x

s

1

=A
(−1)
gen

(

F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)

, (11)

d

dt

x

p

1

=A
(−1)
1

(

Q

1

f(t,x)−B
1

x

p

1

)

, (12)

0=B
(−1)
2

Q

2

f(t,x)−x

p

2

, (13)

0= F

2

f(t,x)−B
ov

x

s

1

, (14)

We introdu
e the manifold

L

t∗ = {(t,x) ∈ [t∗,∞)×R
n | (F

2

+Q

2

)[Bx− f(t,x)] = 0}=
= {(t,x) ∈ [t∗,∞)×R

n | (t,x) satis�es the equations (13), (14) }.
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The derivative V

′
(11),(12)(t,xs1 ,xp1) of the fun
tion V along the traje
tories of

the system (or the derivative of V with respe
t to the system) (11), (12) has the

form

V

′
(11),(12)(t,xs1 ,xp1) =

∂V

∂ t
(t,x

s

1

,x
p

1

)+
∂V

∂ (x
s

1

,x
p

1

)
(t,x

s

1

,x
p

1

) ·ϒ(t,x) =

=
∂V

∂ t
(t,x

s

1

,x
p

1

)+
∂V

∂x
s

1

(t,x
s

1

,x
p

1

) ·
[

A
(−1)
gen

(

F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)

]

+

+
∂V

∂x
p

1

(t,x
s

1

,x
p

1

) ·
[

A
(−1)
1

(

Q

1

f(t,x)−B
1

x

p

1

)

]

, (15)

where

ϒ(t,x) =

(

A
(−1)
gen

(

F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)

A
(−1)
1

(

Q

1

f(t,x)−B
1

x

p

1

)

)

(16)

is a ve
tor 
onsisting of the right-hand sides of the equations (11) and (12).
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Theorem 1 (the global solvability). Let f ∈ C([t+,∞)×R
n,Rm),

∂
∂x f ∈ C([t+,∞)×R

n,L(Rn,Rm)), λA+B is a singular pen
il of operators su
h

that its regular blo
k λA
r

+B

r

from (4) has the index not higher than 1, and the

following 
onditions are ful�lled:

1

For any �xed t ∈ [t+,∞), x
s

1

∈ X

s

1

, x

s

2

∈D

s

2

, where D

s

2

⊂X

s

2

is a some

set, and x

p

1

∈ X

1

, there exists a unique x

p

2

∈ X

2

su
h that

(t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ ;

2

For any �xed t∗, x∗ = x

∗
s

1

+x

∗
s

2

+x

∗
p

1

+x

∗
p

2

su
h that (t∗,x∗) ∈ L

t+ and

x

∗
s

2

∈D

s

2

, the operator Φ
t∗,x∗ de�ned by

Φ
t∗,x∗ =

[

∂Q
2

f

∂x
(t∗,x∗)−B

]

P

2

: X
2

→Y

2

(17)

is invertible.

3

There exists a number R> 0, a positive de�nite fun
tion

V ∈ C

1([t+,∞)×D

s

1

×D

p

1

,R), where a set D

s

1

×D

p

1

⊂X

s

1

×X

1

is su
h

that D

s

1

×D

p

1

⊃ {‖(x
s

1

,x
p

1

)‖ ≥ R}, and a fun
tion

χ ∈ C([t+,∞)× (0,∞),R) su
h that:
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a

V(t,x
s

1

,x
p

1

)→ ∞ uniformly in t on ea
h �nite interval [a,b)⊂ [t+,∞) as
‖(x

s

1

,x
p

1

)‖→ ∞;

b

for all (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L
t+ , for whi
h xs2 ∈D

s

2

and

‖(x
s

1

,x
p

1

)‖ ≥R, the inequality

V

′
(11),(12)(t,xs1 ,xp1)≤ χ

(

t,V(t,x
s

1

,x
p

1

)
)

, (18)

where V

′
(11),(12)(t,xs1 ,xp1) has the form (15), is satis�ed;




the di�erential inequality dv/dt≤ χ(t,v) (t ∈ [t+,∞)) does not have positive

solutions with �nite es
ape time.

Then for ea
h initial point (t
0

,x
0

) ∈ L

t+ , where S2x0 ∈D

s

2

, the initial value

problem (1), (2) has a unique global (i.e., on [t
0

,∞)) solution x(t) for whi
h the


hoi
e of the fun
tion φ
s

2

∈ C([t
0

,∞),D
s

2

) with the initial value φ
s

2

(t
0

) = S

2

x

0

uniquely de�nes the 
omponent S

2

x(t) = φ
s

2

(t) when rank(λA+B)< n; when

rank(λA+B) = n, the 
omponent S

2

x is absent.

M. Filipkovska (FAU; ) 12 /23



Let us 
hoose the fun
tion χ in the form

χ(t,v) = k(t)U(v), (19)

where k ∈C([t+,∞),R) and U ∈ C(0,∞).

Then in Theorem 1 all 
onditions remain un
hanged, ex
ept for 
ondition 3

whi
h takes the form:

3. There exists a number R> 0, a positive de�nite fun
tion

V ∈ C

1([t+,∞)×D

s

1

×D

p

1

,R), where a set D

s

1

×D

p

1

⊂X

s

1

×X

1

is su
h

that D

s

1

×D

p

1

⊃ {‖(x
s

1

,x
p

1

)‖ ≥ R}, and fun
tions k ∈ C([t+,∞),R),
U ∈C(0,∞) su
h that:

1


ondition (a) of Theorem 1 holds, i.e., V(t,x
s

1

,x
p

1

)→ ∞ uniformly in t on

ea
h �nite interval [a,b)⊂ [t+,∞) as ‖(x
s

1

,x
p

1

)‖→ ∞;

2

for all (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L
t+ , for whi
h xs2 ∈D

s

2

and

‖(x
s

1

,x
p

1

)‖ ≥R, the following inequality holds:

V

′
(11),(12)(t,xs1 ,xp1)≤ k(t)U

(

V(t,x
s

1

,x
p

1

)
)

; (20)

3

∞
∫

v

0

dv

U(v)
= ∞ (v

0

> 0 is some 
onstant).

Also, we 
an weaken some requirements of Theorem 1 and, as a 
onsequen
e,

some requirements of another theorems as well.
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Let us 
hoose the positive de�nite s
alar fun
tion V(t,x
s

1

,x
p

1

), whi
h will be


alled a Lyapunov type fun
tion, in the form

V(t,x
s

1

,x
p

1

) =
(

(x
s

1

,x
p

1

),(x
s

1

,x
p

1

)
)

H

=
(

H(t)(x
s

1

,x
p

1

),(x
s

1

,x
p

1

)
)

, (21)

where H ∈C([t+,∞),L(X
s

1

×X

1

)) is a positive de�nite self-adjoint operator

fun
tion su
h that H(t)
∣

∣

X

s

1

: X
s

1

→X

s

1

×{0} and H(t)
∣

∣

X

1

: X
1

→{0}×X

1

for

any �xed t.

Due to the properties of the operator fun
tion H, the fun
tion (21) satis�es

the 
onditions of Theorem 1 (however, of 
ourse, the 
onditions on the derivative

V

′
(11),(12)(t,xs1 ,xp1) in these theorems need to be 
he
ked).

The operator H(t) ∈ L(X
s

1

×X

1

) has the blo
k stru
ture

H(t) =

(

H

s

1

(t) 0

0 H

1

(t)

)

: X
s

1

×X

1

→ X

s

1

×X

1

, (22)

where H

s

1

∈ C([t+,∞),L(X
s

1

)) and H
1

∈ C([t+,∞),L(X
1

)) are positive de�nite

self-adjoint operator fun
tions.

V

′
(11),(12)(t,xs1 ,xp1) =

(

d

dt

H(t)(x
s

1

,x
p

1

),(x
s

1

,x
p

1

)
)

+

2

(

H

s

1

(t)x
s

1

,
[

A
(−1)
gen

(

F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)

])

+

2

(

H

1

(t)x
p

1

,
[

A
(−1)
1

(

Q

1

f(t,x)−B
1

x

p

1

)

])

.
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Theorem 1(Lagrange stability). Let f ∈C([t+,∞)×R
n,Rm),

∂
∂x f ∈ C([t+,∞)×R

n,L(Rn,Rm)), λA+B is a singular pen
il of operators su
h

that its regular blo
k λA
r

+B

r

from (4) has the index not higher than 1, and


onditions 1, 2 of Theorem 1 as well as the following 
onditions hold:

3

There exists a number R> 0, a positive de�nite fun
tion

V ∈ C

1([t+,∞)×D

s

1

×D

p

1

,R), where a set D

s

1

×D

p

1

⊂X

s

1

×X

1

is su
h

that D

s

1

×D

p

1

⊃ {‖(x
s

1

,x
p

1

)‖ ≥ R}, and a fun
tion

χ ∈ C([t+,∞)× (0,∞),R) su
h that:

1

V(t,x
s

1

,x
p

1

)→ ∞ uniformly in t on [t+,∞) as ‖(x
s

1

,x
p

1

)‖→ ∞;

2

for all (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L
t+ , for whi
h xs2 ∈D

s

2

and

‖(x
s

1

,x
p

1

)‖ ≥R, the inequality (18) is satis�ed;

3

the di�erential inequality dv/dt≤ χ(t,v) (t ∈ [t+,∞)), does not have
unbounded positive solutions for t ∈ [t+,∞).

Then for ea
h initial point (t
0

,x
0

) ∈ L

t+ , where S2x0 ∈D

s

2

, the initial value

problem (1), (2) has a unique global solution x(t) for whi
h the 
hoi
e of the

fun
tion φ
s

2

∈C([t
0

,∞),D
s

2

) with the initial value φ
s

2

(t
0

) = S

2

x

0

uniquely de�nes

the 
omponent S

2

x(t) = φ
s

2

(t) when rank(λA+B)< n.

Let, in addition to the above 
onditions, the following 
onditions also hold:
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5

For all (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ , for whi
h xs
2

∈D

s

2

and

‖x
s

1

+x

s

2

+x

p

1

‖ ≤M< ∞ (M is an arbitrary 
onstant), the inequality

‖x
p

2

‖ ≤K

M

< ∞

or the inequality ‖Q
2

f(t,x
s

1

+x

s

2

+x

p

1

+x

p

2

)‖ ≤K

M

< ∞, where
K

M

=K(M) is some 
onstant, is satis�ed.

6 ‖F
2

f(t,x)‖ <+∞ for all (t,x) ∈ L

t+ su
h that S

2

x ∈D

s

2

and ‖x‖ ≤ C< ∞
(C is an arbitrary 
onstant).

Then, for the initial points (t
0

,x
0

) ∈ L

t+ where S

2

x

0

∈D

s

2

and any fun
tion

φ
s

2

∈C([t
0

,∞),D
s

2

) satisfying the relations φ
s

2

(t
0

) = S

2

x

0

and

sup
t∈[t

0

,∞)

‖φ
s

2

(t)‖ <+∞, the equation (1), where S

2

x= φ
s

2

(t), is Lagrange stable;

when rank(λA+B) = n<m, the 
omponent S

2

x is absent.
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A model of a gas �ow for a single pipe (in the isothermal 
ase)

Consider a mathemati
al model for a gas pipeline �ow (the �ow on a single

pipe), assuming that the temperature is identi
ally equal to T

0

= 
onst. The

model 
onsists of the isothermal Euler equations

∂
t

ρ + ∂
x

(ρv) = 0,

∂
t

(ρv)+ ∂
x

p=−
λ
fr

2D

ρv|v|−gρ s
lope

(23)

and the equation of state for a real gas in the form

p= RT

0

ρz(p), (24)

x ∈ [0,L], t ∈ I ⊂ [0,∞), I is a time interval, L< ∞ is the pipe length

ρ = ρ(t,x), v= v(t,x), p= p(t,x) are respe
tively the density, velo
ity and

pressure

g is the gravitational 
onstant, and R is the spe
i�
 gas 
onstant

λ
fr

is the pipe fri
tion 
oe�
ient, and D is the pipe diameter

s

lope

= s

lope

(x) is the slope of the pipe

z= z(p) is the 
ompressibility fa
tor

[P. Doms
hke, B. Hiller, J. Lang, V. Mehrmann, R. Morandin, C. Tis
hendorf. Gas

Network Modeling: An Overview, 2021 (Preprint)℄
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Further, we denote by q := ρv a mass �ow by the 
ross-se
tional area equal

to 1, assume that the dire
tions of gas �ows in pipes are known and that

s

lope

(x)≡ sinθ , where the parameter θ denotes the angle of the pipe slope, and

dis
retize the equations (23). Then we obtain the spatially dis
retized equations

dρ
r

dt

+
q

r

−q

l

L

= 0, (25)

dq

l

dt

+
p

r

−p

l

L

+ρ
r

g sinθ =−
λ
fr

2D

q

2

l

ρ
r

, (26)

p

r

= R

s

T

0

ρ
r

z(p
r

). (27)

where q

r

(t) := q(t,L), p
r

(t) := p(t,L), ρ
r

(t) := ρ(t,L) and q
l

(t) := q(t,0),
p

l

(t) := p(t,0). If we represent the pipe as a graph 
onsisting of an edge and two

verti
es (nodes), de�ne the verti
es as the left and right nodes and �x the edge

orientation from the left node to the right node, then q

r

(t), p
r

(t) and ρ
r

(t) are
de�ned at the right end of pipe and q

l

(t), p
l

(t) are de�ned at the left end of pipe.

In general, previously, the pipe is divided into parts of a short length through the

introdu
tion of arti�
ial nodes and the spe
i�ed spatial dis
retization are

performed on ea
h part (subpipe).

Suppose that the fun
tions q

r

and p

l

are given, that is, we 
onsider the

boundary 
onditions of the form

q(t,L) = q

r

(t), p(t,0) = p

l

(t), t ∈ I .
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We introdu
e the variable ve
tor x= (ρ
r

,q
l

,p
r

)T (we denote it by x for


onvenien
e and 
omparison with further results, sin
e the original variable x is

already absent from the equations) and denote

A=





1 0 0

0 1 0

0 0 0



 , B=





0 −L−1
0

g sinθ 0 L

−1

0 0 1



 ,

f(t,x) =





−L−1
q

r

(t)
L

−1
p

l

(t)−0.5λ
fr

D

−1
q

2

l

ρ−1
r

R

s

T

0

ρ
r

z(p
r

)



 . (28)

Then the system (25)�(27) 
an be written in the ve
tor form

d

dt

[Ax]+Bx= f(t,x), t ∈ I , (29)

where A, B ∈ R
3×3

and f ∈ C(I ×R
3,R3). The initial 
ondition for (29) 
an be

given as

x(t
0

) = x

0

, x

0

= (ρ0

r

,q0
l

,p0
r

)T. (30)

where ρ0

r

and p

0

r

have to satisfy the equation (27) for t= t

0

, i.e.,

p

0

r

= R

s

T

0

ρ0

r

z(p0
r

).
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In general, the DAE (29) is regular (sin
e the pen
il λA+B is regular), but if

any of the input parameters (i.e., q

r

(t) or p
l

(t)) is not spe
i�ed, then the system

(25)�(27) is underdetermined and the 
orresponding DAE is singular (nonregular).

Also, if it is required to realize the evolution of some variable (i.e., p

r

, or ρ
r

, or q

l

)

su
h that it be
omes equal to the pres
ribed fun
tion, then this system is

overdetermined and the 
orresponding DAE is singular.

A model of a gas network (in the isothermal 
ase)

In [M. Filipkovska, Qualitative analysis of nonregular di�erential-algebrai


equations and the dynami
s of gas networks,

https://doi.org/10.48550/arXiv.2309.00186℄, a mathemati
al model of a

gas network in the form of the singular (nonregular) DAE (1) is presented.

The gas network 
onsists of pipes, valves, regulators and 
ompressors, and is

similar to that presented in [Kreimeier, T., Sauter, H., Streubel, S.T., Tis
hendorf,

C., Walther, A. Solving Least-Squares Collo
ated Di�erential Algebrai
 Equations

by Su

essive Abs-Linear Minimization � A Case Study on Gas Network

Simulation, 2022 [Preprint℄℄.
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Thank you for your attention!
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