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Di�erential-Algebrai Equations (DAEs) are also alled desriptor,

algebrai-di�erential and degenerate di�erential equations.

Fields of appliation of the theory of semilinear DAEs are

radio engineering, ontrol problems, ybernetis, robotis tehnology, eonomis,

mehanis, hemial kinetis, and gas industry.

Study of DAEs (solvability, struture, index, stability, numerial methods:

K. Weierstrass (1867), L. Kroneker (1890), V.P. Skripnik (1964), Gear C.W.

(1971), A.G. Rutkas (1975), R.E. Showalter (1975), S.L. Campbell (1976), Yu.E.

Boyarintsev (1977), A. Favini (1977), V.F. Chistyakov (1980), L.R. Petzold,

L.A. Vlasenko, E. Hairer, Ch. Lubih, P. Kunkel, V. Mehrmann, R. M�arz,

C. Tishendorf, A.A. Shheglova A.M. Samoilenko, R. Riaza, Yu.E. Gliklikh, A.

Yonhev and others.

Nonregular DAEs: A.G. Rutkas, P. Kunkel, V. Mehrmann, S.M. Chuiko, V.F.

Chistyakov, E.V. Chistyakova, S.P. Zubova and others.
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Consider the initial value (Cauhy) problem for an impliit di�erential equation

d

dt

[Ax]+Bx= f(t,x), (1)

x(t
0

) = x

0

, (2)

where t ∈ [t+,∞), t+ ≥ 0, x ∈ R
n

, f ∈ C([t+,∞)×R
n,Rm) and A, B ∈ L(Rn,Rm)

are linear operators (or m×n matries).

In the ase when m 6= n or m= n and the operator A is noninvertible

(degenerate), the equation (1) is alled a di�erential-algebrai equation (DAE)

or degenerate di�erential equation. In the DAE terminology, equations of the form

(1) are alled semilinear.

The penil λA+B is alled regular if n=m= rk(λA+B).

Otherwise, if n 6=m or n=m and rk(λA+B)< n, the penil is alled

singular or nonregular (irregular).

The semilinear DAE with the singular penil is alled singular or

nonregular.

The funtion x(t) is alled a solution of the equation (1) on [t
0

,t
1

), t
1

≤ ∞, if

x(t) ∈ C([t
0

,t
1

),Rn), (Ax)(t) ∈ C

1([t
0

,t
1

),Rm) and x(t) satis�es (1) on [t
0

,t
1

).
If the funtion x(t) additionally satis�es the initial ondition (2), then it is alled a

solution of the initial value problem (IVP).
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The IVP (1), (2):

d

dt

[Ax]+Bx= f(t,x), x(t
0

) = x

0

.

A solution x(t) of the IVP (1), (2) is alled global (or de�ned in the future) if it

exists on [t
0

,∞).

A solution x(t) of the IVP (1), (2) is alled Lagrange stable if it is global and

sup
t∈[t

0

,∞)

‖x(t)‖< ∞.

A solution x(t) of the IVP (1), (2) has a �nite esape time (is blow-up in

�nite time) and is alled Lagrange unstable if it exists on some �nite interval

[t
0

,T) and is unbounded, i.e., lim
t→T−0

‖x(t)‖= ∞.

The equation (1) is alled Lagrange stable if every solution of the IVP (1), (2)

is Lagrange stable (the DAE is Lagrange stable for every onsistent initial point).

The equation (1) is alled Lagrange unstable if every solution of the IVP (1),

(2) is Lagrange unstable.
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Solutions of the equation (1) are alled ultimately bounded, if there exists a

onstant K> 0 (K is independent of the hoie of t

0

, x

0

) and for eah solution

x(t) with an initial point (t
0

,x
0

) there exists a number τ = τ(t
0

,x
0

)≥ t

0

suh

that ‖x(t)‖<K for all t ∈ [t
0

+ τ,∞).

The equation (1) is alled ultimately bounded or dissipative, if for any

onsistent initial point (t
0

,x
0

) there exists a global solution of the IVP (1), (2)

and all solutions are ultimately bounded.

If the number τ does not depend on the hoie of t

0

, then the solutions of (1)

are alled uniformly ultimately bounded and the equation (1) is alled uniformly

ultimately bounded or uniformly dissipative.
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Main results:

Theorems on the existene and uniqueness of global solutions

Some advantages: the restritions of the type of the global Lipshitz

ondition are not used and the requirements for the smoothness of the

nonlinear part of the DAE are weakened.

Theorem on the Lagrange stability of the DAE (the boundedness of

solutions)

Theorem on the Lagrange instability of the DAE (the blow-up of

solutions in �nite time)

Theorem on the ultimate boundedness (dissipativity) of the DAE (the

ultimate boundedness of solutions)

The appliation of the obtained theorems to the study of isothermal models

of gas networks are shown.

See [M. Filipkovska, Qualitative analysis of nonregular di�erential-algebrai

equations and the dynamis of gas networks,

https://doi.org/10.48550/arXiv.2309.00186℄.

Earlier, ertain models of nonlinear eletrial iruits, inluding, in the onditions

of inomplete data, and inverse problems were onsidered [M.S. Filipkovska,

Lagrange stability and instability of irregular semilinear di�erential-algebrai

equations and appliations. Ukrainian Math. J. 70(6), 947�979 (2018)℄
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The blok struture of the singular operator penil λA+B

There exist the diret deompositions of spaes

R
n =X

s

+̇X
r

=X

s

1

+̇X
s

2

+̇X
r

, R
m =Y

s

+̇Y
r

=Y

s

1

+̇Y
s

2

+̇Y
r

(3)

suh that the singular operator penil λA+B takes the blok form

(

λA
s

+B

s

0

0 λA
r

+B

r

)

,
λA

s

+B

s

is a purely singular penil,

λA
r

+B

r

is a regular penil.
(4)

We introdue the projetors onto subspaes of the deompositions (3):

S : Rn→X

s

, F : Rm→Y

s

, S

i

: Rn→X

s

i

, F

i

: Rm→Y

s

i

, P : Rn→X

r

, Q : Rm→Y

r

.

A

s

=

(

A

gen

0

0 0

)

, B
s

=

(

B

gen

B

und

B

ov

0

)

:X
s

=X

s

1

+̇X
s

2

→Y

s

=Y

s

1

+̇Y
s

2

, (5)

∃A−1
gen

, A

gen

=F
1

AS

1

∣

∣

X

s

1

,B

gen

=F
1

BS

1

∣

∣

X

s

1

,B

und

=F
1

BS

2

|
X

s

2

,B

ov

=F
2

BS

1

|
X

s

1

If rk(λA+B) =m< n, the orresponding system of equations is underdetermined:

A

s

=(A
gen

0), B
s

=(B
gen

B

und

) :X
s

1

+̇X
s

2

→Y

s

, Y

s

=Y

s

1

, Y
s

2

= {0}. (6)

If rk(λA+B) = n<m, the orresponding system of equations is overdetermined:

A

s

=

(

A

gen

0

)

, B
s

=

(

B

gen

B

ov

)

:X
s

→Y

s

1

+̇Y
s

2

, X

s

=X

s

1

, X
s

2

= {0}. (7)
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Suppose that λA
r

+B

r

is a regular penil of index not higher than 1 (index 0 or 1):

∃C
1

,C
2

> 0 :

∥

∥

∥
(λA

r

+B

r

)−1
∥

∥

∥
≤C

1

, |λ | ≥ C

2

. (8)

Then there exist the real spetral projetors of Riss type P̃

i

: X
r

→X

i

, Q̃

i

:Y
r

→Y

i

,

i= 1,2, whih deompose spaes X

r

, Y

r

into diret sums of subspaes

X

r

=X

1

+̇X
2

, Y

r

=Y

1

+̇Y
2

. (9)

A

r

=

(

A

1

0

0 0

)

, B

r

=

(

B

1

0

0 B

2

)

:X
1

+̇X
2

→Y

1

+̇Y
2

. (10)

By P

i

: Rn →X

i

, Q

i

: Rm →Y

i

denote the extensions of the projetors P̃

i

, Q̃

i

.

Introdue the extensions of the operators from the blok representations to R
n

:

A
s

= FA, A
r

=QA, B
s

= FB, B
r

=QB, A
gen

= F

1

A, B
gen

= F

1

BS

1

, B
und

= F

1

BS

2

,

B
ov

= F

2

BS

1

, A
j

=Q

j

, B
j

=Q

j

B ∈ L(Rn,Rm), j= 1,2.

Also, introdue the semi-inverse operators (the extensions of the inverse operators to

R
m

): A
(−1)
gen

∈ L(Rm,Rn) (i.e., A
(−1)
gen

R
m =A

(−1)
gen

Y

s

1

=X

s

1

(Y

s

2

+̇Y
r

=Ker(A
(−1)
gen

))

and A

−1
gen

=A
(−1)
gen

∣

∣

Y

s

1

) and A
(−1)
1

,B
(−1)
2

∈ L(Rm,Rn).

[M.S. Filipkovska, A blok form of a singular penil of operators and a method of

obtaining it. Visnyk of V.N. Karazin Kharkiv National University. Ser. �Mathematis,

Applied Mathematis and Mehanis� 89, 33�58 (2019)℄,

[M.S. Filipkovska, Lagrange stability and instability of irregular semilinear

di�erential-algebrai equations and appliations. Ukrainian Math. J. 70(6), 947�979

(2018)℄.
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Appliation of the blok struture of the DAE operator oe�ients

With respet to the deompositions (3), (9) any vetor x ∈ R
n

an be

uniquely represented as the sum

x= x

s

1

+x

s

2

+x

1

+x

2

, x

s

i

= S

i

x ∈ X

s

i

, x
i

= P

i

x ∈X

i

, i= 1,2.

The DAE (1)

d

dt

[Ax(t)]+Bx(t) = f(t,x) is equivalent to the system

d

dt

x

s

1

=A
(−1)
gen

(

F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)

, (11)

d

dt

x

p

1

=A
(−1)
1

(

Q

1

f(t,x)−B
1

x

p

1

)

, (12)

0=B
(−1)
2

Q

2

f(t,x)−x

p

2

, (13)

0= F

2

f(t,x)−B
ov

x

s

1

, (14)

We introdue the manifold

L

t∗ = {(t,x) ∈ [t∗,∞)×R
n | (F

2

+Q

2

)[Bx− f(t,x)] = 0}=
= {(t,x) ∈ [t∗,∞)×R

n | (t,x) satis�es the equations (13), (14) }.
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The derivative V

′
(11),(12)(t,xs1 ,xp1) of the funtion V along the trajetories of

the system (or the derivative of V with respet to the system) (11), (12) has the

form

V

′
(11),(12)(t,xs1 ,xp1) =

∂V

∂ t
(t,x

s

1

,x
p

1

)+
∂V

∂ (x
s

1

,x
p

1

)
(t,x

s

1

,x
p

1

) ·ϒ(t,x) =

=
∂V

∂ t
(t,x

s

1

,x
p

1

)+
∂V

∂x
s

1

(t,x
s

1

,x
p

1

) ·
[

A
(−1)
gen

(

F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)

]

+

+
∂V

∂x
p

1

(t,x
s

1

,x
p

1

) ·
[

A
(−1)
1

(

Q

1

f(t,x)−B
1

x

p

1

)

]

, (15)

where

ϒ(t,x) =

(

A
(−1)
gen

(

F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)

A
(−1)
1

(

Q

1

f(t,x)−B
1

x

p

1

)

)

(16)

is a vetor onsisting of the right-hand sides of the equations (11) and (12).
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Theorem 1 (the global solvability). Let f ∈ C([t+,∞)×R
n,Rm),

∂
∂x f ∈ C([t+,∞)×R

n,L(Rn,Rm)), λA+B is a singular penil of operators suh

that its regular blok λA
r

+B

r

from (4) has the index not higher than 1, and the

following onditions are ful�lled:

1

For any �xed t ∈ [t+,∞), x
s

1

∈ X

s

1

, x

s

2

∈D

s

2

, where D

s

2

⊂X

s

2

is a some

set, and x

p

1

∈ X

1

, there exists a unique x

p

2

∈ X

2

suh that

(t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ ;

2

For any �xed t∗, x∗ = x

∗
s

1

+x

∗
s

2

+x

∗
p

1

+x

∗
p

2

suh that (t∗,x∗) ∈ L

t+ and

x

∗
s

2

∈D

s

2

, the operator Φ
t∗,x∗ de�ned by

Φ
t∗,x∗ =

[

∂Q
2

f

∂x
(t∗,x∗)−B

]

P

2

: X
2

→Y

2

(17)

is invertible.

3

There exists a number R> 0, a positive de�nite funtion

V ∈ C

1([t+,∞)×D

s

1

×D

p

1

,R), where a set D

s

1

×D

p

1

⊂X

s

1

×X

1

is suh

that D

s

1

×D

p

1

⊃ {‖(x
s

1

,x
p

1

)‖ ≥ R}, and a funtion

χ ∈ C([t+,∞)× (0,∞),R) suh that:
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a

V(t,x
s

1

,x
p

1

)→ ∞ uniformly in t on eah �nite interval [a,b)⊂ [t+,∞) as
‖(x

s

1

,x
p

1

)‖→ ∞;

b

for all (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L
t+ , for whih xs2 ∈D

s

2

and

‖(x
s

1

,x
p

1

)‖ ≥R, the inequality

V

′
(11),(12)(t,xs1 ,xp1)≤ χ

(

t,V(t,x
s

1

,x
p

1

)
)

, (18)

where V

′
(11),(12)(t,xs1 ,xp1) has the form (15), is satis�ed;



the di�erential inequality dv/dt≤ χ(t,v) (t ∈ [t+,∞)) does not have positive

solutions with �nite esape time.

Then for eah initial point (t
0

,x
0

) ∈ L

t+ , where S2x0 ∈D

s

2

, the initial value

problem (1), (2) has a unique global (i.e., on [t
0

,∞)) solution x(t) for whih the

hoie of the funtion φ
s

2

∈ C([t
0

,∞),D
s

2

) with the initial value φ
s

2

(t
0

) = S

2

x

0

uniquely de�nes the omponent S

2

x(t) = φ
s

2

(t) when rank(λA+B)< n; when

rank(λA+B) = n, the omponent S

2

x is absent.
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Let us hoose the funtion χ in the form

χ(t,v) = k(t)U(v), (19)

where k ∈C([t+,∞),R) and U ∈ C(0,∞).

Then in Theorem 1 all onditions remain unhanged, exept for ondition 3

whih takes the form:

3. There exists a number R> 0, a positive de�nite funtion

V ∈ C

1([t+,∞)×D

s

1

×D

p

1

,R), where a set D

s

1

×D

p

1

⊂X

s

1

×X

1

is suh

that D

s

1

×D

p

1

⊃ {‖(x
s

1

,x
p

1

)‖ ≥ R}, and funtions k ∈ C([t+,∞),R),
U ∈C(0,∞) suh that:

1

ondition (a) of Theorem 1 holds, i.e., V(t,x
s

1

,x
p

1

)→ ∞ uniformly in t on

eah �nite interval [a,b)⊂ [t+,∞) as ‖(x
s

1

,x
p

1

)‖→ ∞;

2

for all (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L
t+ , for whih xs2 ∈D

s

2

and

‖(x
s

1

,x
p

1

)‖ ≥R, the following inequality holds:

V

′
(11),(12)(t,xs1 ,xp1)≤ k(t)U

(

V(t,x
s

1

,x
p

1

)
)

; (20)

3

∞
∫

v

0

dv

U(v)
= ∞ (v

0

> 0 is some onstant).

Also, we an weaken some requirements of Theorem 1 and, as a onsequene,

some requirements of another theorems as well.
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Let us hoose the positive de�nite salar funtion V(t,x
s

1

,x
p

1

), whih will be

alled a Lyapunov type funtion, in the form

V(t,x
s

1

,x
p

1

) =
(

(x
s

1

,x
p

1

),(x
s

1

,x
p

1

)
)

H

=
(

H(t)(x
s

1

,x
p

1

),(x
s

1

,x
p

1

)
)

, (21)

where H ∈C([t+,∞),L(X
s

1

×X

1

)) is a positive de�nite self-adjoint operator

funtion suh that H(t)
∣

∣

X

s

1

: X
s

1

→X

s

1

×{0} and H(t)
∣

∣

X

1

: X
1

→{0}×X

1

for

any �xed t.

Due to the properties of the operator funtion H, the funtion (21) satis�es

the onditions of Theorem 1 (however, of ourse, the onditions on the derivative

V

′
(11),(12)(t,xs1 ,xp1) in these theorems need to be heked).

The operator H(t) ∈ L(X
s

1

×X

1

) has the blok struture

H(t) =

(

H

s

1

(t) 0

0 H

1

(t)

)

: X
s

1

×X

1

→ X

s

1

×X

1

, (22)

where H

s

1

∈ C([t+,∞),L(X
s

1

)) and H
1

∈ C([t+,∞),L(X
1

)) are positive de�nite

self-adjoint operator funtions.

V

′
(11),(12)(t,xs1 ,xp1) =

(

d

dt

H(t)(x
s

1

,x
p

1

),(x
s

1

,x
p

1

)
)

+

2

(

H

s

1

(t)x
s

1

,
[

A
(−1)
gen

(

F

1

f(t,x)−B
gen

x

s

1

−B
und

x

s

2

)

])

+

2

(

H

1

(t)x
p

1

,
[

A
(−1)
1

(

Q

1

f(t,x)−B
1

x

p

1

)

])

.
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Theorem 1(Lagrange stability). Let f ∈C([t+,∞)×R
n,Rm),

∂
∂x f ∈ C([t+,∞)×R

n,L(Rn,Rm)), λA+B is a singular penil of operators suh

that its regular blok λA
r

+B

r

from (4) has the index not higher than 1, and

onditions 1, 2 of Theorem 1 as well as the following onditions hold:

3

There exists a number R> 0, a positive de�nite funtion

V ∈ C

1([t+,∞)×D

s

1

×D

p

1

,R), where a set D

s

1

×D

p

1

⊂X

s

1

×X

1

is suh

that D

s

1

×D

p

1

⊃ {‖(x
s

1

,x
p

1

)‖ ≥ R}, and a funtion

χ ∈ C([t+,∞)× (0,∞),R) suh that:

1

V(t,x
s

1

,x
p

1

)→ ∞ uniformly in t on [t+,∞) as ‖(x
s

1

,x
p

1

)‖→ ∞;

2

for all (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L
t+ , for whih xs2 ∈D

s

2

and

‖(x
s

1

,x
p

1

)‖ ≥R, the inequality (18) is satis�ed;

3

the di�erential inequality dv/dt≤ χ(t,v) (t ∈ [t+,∞)), does not have
unbounded positive solutions for t ∈ [t+,∞).

Then for eah initial point (t
0

,x
0

) ∈ L

t+ , where S2x0 ∈D

s

2

, the initial value

problem (1), (2) has a unique global solution x(t) for whih the hoie of the

funtion φ
s

2

∈C([t
0

,∞),D
s

2

) with the initial value φ
s

2

(t
0

) = S

2

x

0

uniquely de�nes

the omponent S

2

x(t) = φ
s

2

(t) when rank(λA+B)< n.

Let, in addition to the above onditions, the following onditions also hold:
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5

For all (t,x
s

1

+x

s

2

+x

p

1

+x

p

2

) ∈ L

t+ , for whih xs
2

∈D

s

2

and

‖x
s

1

+x

s

2

+x

p

1

‖ ≤M< ∞ (M is an arbitrary onstant), the inequality

‖x
p

2

‖ ≤K

M

< ∞

or the inequality ‖Q
2

f(t,x
s

1

+x

s

2

+x

p

1

+x

p

2

)‖ ≤K

M

< ∞, where
K

M

=K(M) is some onstant, is satis�ed.

6 ‖F
2

f(t,x)‖ <+∞ for all (t,x) ∈ L

t+ suh that S

2

x ∈D

s

2

and ‖x‖ ≤ C< ∞
(C is an arbitrary onstant).

Then, for the initial points (t
0

,x
0

) ∈ L

t+ where S

2

x

0

∈D

s

2

and any funtion

φ
s

2

∈C([t
0

,∞),D
s

2

) satisfying the relations φ
s

2

(t
0

) = S

2

x

0

and

sup
t∈[t

0

,∞)

‖φ
s

2

(t)‖ <+∞, the equation (1), where S

2

x= φ
s

2

(t), is Lagrange stable;

when rank(λA+B) = n<m, the omponent S

2

x is absent.
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A model of a gas �ow for a single pipe (in the isothermal ase)

Consider a mathematial model for a gas pipeline �ow (the �ow on a single

pipe), assuming that the temperature is identially equal to T

0

= onst. The

model onsists of the isothermal Euler equations

∂
t

ρ + ∂
x

(ρv) = 0,

∂
t

(ρv)+ ∂
x

p=−
λ
fr

2D

ρv|v|−gρ s
lope

(23)

and the equation of state for a real gas in the form

p= RT

0

ρz(p), (24)

x ∈ [0,L], t ∈ I ⊂ [0,∞), I is a time interval, L< ∞ is the pipe length

ρ = ρ(t,x), v= v(t,x), p= p(t,x) are respetively the density, veloity and

pressure

g is the gravitational onstant, and R is the spei� gas onstant

λ
fr

is the pipe frition oe�ient, and D is the pipe diameter

s

lope

= s

lope

(x) is the slope of the pipe

z= z(p) is the ompressibility fator

[P. Domshke, B. Hiller, J. Lang, V. Mehrmann, R. Morandin, C. Tishendorf. Gas

Network Modeling: An Overview, 2021 (Preprint)℄
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Further, we denote by q := ρv a mass �ow by the ross-setional area equal

to 1, assume that the diretions of gas �ows in pipes are known and that

s

lope

(x)≡ sinθ , where the parameter θ denotes the angle of the pipe slope, and

disretize the equations (23). Then we obtain the spatially disretized equations

dρ
r

dt

+
q

r

−q

l

L

= 0, (25)

dq

l

dt

+
p

r

−p

l

L

+ρ
r

g sinθ =−
λ
fr

2D

q

2

l

ρ
r

, (26)

p

r

= R

s

T

0

ρ
r

z(p
r

). (27)

where q

r

(t) := q(t,L), p
r

(t) := p(t,L), ρ
r

(t) := ρ(t,L) and q
l

(t) := q(t,0),
p

l

(t) := p(t,0). If we represent the pipe as a graph onsisting of an edge and two

verties (nodes), de�ne the verties as the left and right nodes and �x the edge

orientation from the left node to the right node, then q

r

(t), p
r

(t) and ρ
r

(t) are
de�ned at the right end of pipe and q

l

(t), p
l

(t) are de�ned at the left end of pipe.

In general, previously, the pipe is divided into parts of a short length through the

introdution of arti�ial nodes and the spei�ed spatial disretization are

performed on eah part (subpipe).

Suppose that the funtions q

r

and p

l

are given, that is, we onsider the

boundary onditions of the form

q(t,L) = q

r

(t), p(t,0) = p

l

(t), t ∈ I .
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We introdue the variable vetor x= (ρ
r

,q
l

,p
r

)T (we denote it by x for

onveniene and omparison with further results, sine the original variable x is

already absent from the equations) and denote

A=





1 0 0

0 1 0

0 0 0



 , B=





0 −L−1
0

g sinθ 0 L

−1

0 0 1



 ,

f(t,x) =





−L−1
q

r

(t)
L

−1
p

l

(t)−0.5λ
fr

D

−1
q

2

l

ρ−1
r

R

s

T

0

ρ
r

z(p
r

)



 . (28)

Then the system (25)�(27) an be written in the vetor form

d

dt

[Ax]+Bx= f(t,x), t ∈ I , (29)

where A, B ∈ R
3×3

and f ∈ C(I ×R
3,R3). The initial ondition for (29) an be

given as

x(t
0

) = x

0

, x

0

= (ρ0

r

,q0
l

,p0
r

)T. (30)

where ρ0

r

and p

0

r

have to satisfy the equation (27) for t= t

0

, i.e.,

p

0

r

= R

s

T

0

ρ0

r

z(p0
r

).
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In general, the DAE (29) is regular (sine the penil λA+B is regular), but if

any of the input parameters (i.e., q

r

(t) or p
l

(t)) is not spei�ed, then the system

(25)�(27) is underdetermined and the orresponding DAE is singular (nonregular).

Also, if it is required to realize the evolution of some variable (i.e., p

r

, or ρ
r

, or q

l

)

suh that it beomes equal to the presribed funtion, then this system is

overdetermined and the orresponding DAE is singular.

A model of a gas network (in the isothermal ase)

In [M. Filipkovska, Qualitative analysis of nonregular di�erential-algebrai

equations and the dynamis of gas networks,

https://doi.org/10.48550/arXiv.2309.00186℄, a mathematial model of a

gas network in the form of the singular (nonregular) DAE (1) is presented.

The gas network onsists of pipes, valves, regulators and ompressors, and is

similar to that presented in [Kreimeier, T., Sauter, H., Streubel, S.T., Tishendorf,

C., Walther, A. Solving Least-Squares Colloated Di�erential Algebrai Equations

by Suessive Abs-Linear Minimization � A Case Study on Gas Network

Simulation, 2022 [Preprint℄℄.
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Thank you for your attention!
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