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Differential-Algebraic Equations (DAEs) are also called descriptor,
algebraic-differential and degenerate differential equations.

Fields of application of the theory of semilinear DAEs are
radio engineering, control problems, cybernetics, robotics technology, economics,
mechanics, chemical kinetics, and gas industry.

Study of DAEs (solvability, structure, index, stability, numerical methods:
K. Weierstrass (1867), L. Kronecker (1890), V.P. Skripnik (1964), Gear C.W.
(1971), A.G. Rutkas (1975), R.E. Showalter (1975), S.L. Campbell (1976), Yu.E.
Boyarintsev (1977), A. Favini (1977), V.F. Chistyakov (1980), L.R. Petzold,

L.A. Vlasenko, E. Hairer, Ch. Lubich, P. Kunkel, V. Mehrmann, R. Mérz,
C. Tischendorf, A.A. Shcheglova A.M. Samoilenko, R. Riaza, Yu.E. Gliklikh, A.
Yonchev and others.

Nonregular DAEs: A.G. Rutkas, P. Kunkel, V. Mehrmann, S.M. Chuiko, V.F.
Chistyakov, E.V. Chistyakova, S.P. Zubova and others.
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Consider the initial value (Cauchy) problem for an implicit differential equation

d
a[AX]—i—BX:f(t,X), (1)
X(to) =Xy, (2)

where t € [t4,00), t. >0, x €R", f € C([t4,o) x R", R™) and A, B € L(R",R™)
are linear operators (or m X n matrices).

In the case when m # n or m =n and the operator A is noninvertible
(degenerate), the equation (1) is called a differential-algebraic equation (DAE)
or degenerate differential equation. In the DAE terminology, equations of the form
(1) are called semilinear.

e The pencil AA + B is called regular if n = m =rk(1A + B).

Otherwise, if n # m or n =m and rk(AA + B) < n, the pencil is called
singular or nonregular (irregular).

@ The semilinear DAE with the singular pencil is called singular or
nonregular.

The function x(t) is called a solution of the equation (1) on [tg,t1), t1 < oo, if
x(t) € C([to,t1),R™), (Ax)(t) € C'([to,t1),R™) and x(t) satisfies (1) on [to,t1)-
If the function x(t) additionally satisfies the initial condition (2), then it is called a
solution of the initial value problem (IVP).



The IVP (1), (2): %[AX]—I—BX:f(t,X), x(tp) = Xo.

A solution x(t) of the IVP (1), (2) is called global (or defined in the future) if it
exists on [tg,o0).

A solution x(t) of the IVP (1), (2) is called Lagrange stable if it is global and

sup [x(t)] < e
t€fto,)

A solution x(t) of the IVP (1), (2) has a finite escape time (is blow-up in
finite time) and is called Lagrange unstable if it exists on some finite interval
[to,T) and is unbounded, i.e., t%liqrwnOHx(t)H = oo,

The equation (1) is called Lagrange stable if every solution of the IVP (1), (2)
is Lagrange stable (the DAE is Lagrange stable for every consistent initial point).

The equation (1) is called Lagrange unstable if every solution of the IVP (1),
(2) is Lagrange unstable.
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Solutions of the equation (1) are called ultimately bounded, if there exists a
constant K > 0 (K is independent of the choice of tg, x¢) and for each solution
x(t) with an initial point (tg,xo) there exists a number 7= 7(tg,xo) > to such
that ||x(t)|| < K for all t € [tg + T,00).

The equation (1) is called ultimately bounded or dissipative, if for any
consistent initial point (tg,Xo) there exists a global solution of the IVP (1), (2)
and all solutions are ultimately bounded.

If the number T does not depend on the choice of t, then the solutions of (1)
are called uniformly ultimately bounded and the equation (1) is called uniformly
ultimately bounded or uniformly dissipative.
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Main results:
o Theorems on the existence and uniqueness of global solutions

Some advantages: the restrictions of the type of the global Lipschitz
condition are not used and the requirements for the smoothness of the
nonlinear part of the DAE are weakened.

o Theorem on the Lagrange stability of the DAE (the boundedness of
solutions)

o Theorem on the Lagrange instability of the DAE (the blow-up of
solutions in finite time)

o Theorem on the ultimate boundedness (dissipativity) of the DAE (the
ultimate boundedness of solutions)

@ The application of the obtained theorems to the study of isothermal models
of gas networks are shown.

See [M. Filipkovska, Qualitative analysis of nonregular differential-algebraic
equations and the dynamics of gas networks,
https://doi.org/10.48550/arXiv.2309. 00186].

Earlier, certain models of nonlinear electrical circuits, including, in the conditions
of incomplete data, and inverse problems were considered [M.S. Filipkovska,
Lagrange stability and instability of irregular semilinear differential-algebraic

equations and applications. Ukrainian Math. J. 70(6), 947-979 (2018))


https://doi.org/10.48550/arXiv.2309.00186

The block structure of the singular operator pencil LA +B
There exist the direct decompositions of spaces
R™ = X+ X, = Xg, +Xg, +Xp, R™ =YY, =Y, +Ye, 4V (3)
such that the singular operator pencil AA + B takes the block form

AAg + By 0 AAg+Bg is a purely singular pencil,
0 AA 4By |7 AA.+B; is a regular pencil.

We introduce the projectors onto subspaces of the decompositions (3):
S:R"=Xs, F:R™" =Y, S;:R" =X, Fi :R™" =Y, P:R"—=X;, Q:R™"=Y,.

0 0 By 0
FAgen Agen=F1AS1[x Bgen=F1BS1|y Buna=F1BS2|x,, Bov =F2BS[x |

A 0 B B . .
Ay = ( gen )7 B, — ( gen und ) (X =X, +Xg, = Y5 =Y, Yy, (5)

@ If rk(AA+B) =m < n, the corresponding system of equations is underdetermined:
Ag= (Agen 0), Bs= (Bgen Bund) : Xs; +Xs, = Ys, Ys=Ys,, Ys, ={0}. (6)

@ If rk(AA+B)=n <m, the corresponding system of equations is overdetermined:

A B ;
A= sen , Bg= sen ) Xs =Y, +Ys,, Xs=Xs,, Xs, ={0}. 7
0 Boy Lo v
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Suppose that AA; + B; is a regular pencil of index not higher than 1 (index 0 or 1):
301,Cz>0:H(lAr—i-Br)_ngCl, 4| > C. (8)
Then there exist the real spectral projectors of Riss type P; : X, — X;, Qi : Y = Y,
i=1,2, which decompose spaces X;, Y, into direct sums of subspaces

X, =X14Xy, Y=Y 4Y,. (9)

A1 0 B1 0 . .
A= 0 0 , Br= 0 B, X14+Xs -+ Y1+Ys. (10)

By P;: R = X;, Qi: R™ — Y; denote the extensions of the projectors P, Q;.
Introduce the extensions of the operators from the block representations to R™:
As =FA, A, = QA, By = FB, B, = QB, Agen = F1A, Bgen = F1BS), Bynq = F1BSs,
Bov =F2BS1, A; =Q;, B; = Q;B e L(R™,R™), j=1,2.

Also, introduce the semi-inverse operators (the extensions of the inverse operators to
R™): ALy € LR™ RY) (e, Al RD = ALY, =X, (Yo, +Y: = Ker(Aber))
and Azl = Aben) |y, ) and AT B0 e Lrm RY),

[M.S. Filipkovska, A block form of a singular pencil of operators and a method of
obtaining it. Visnyk of V.N. Karazin Kharkiv National University. Ser. “Mathematics,
Applied Mathematics and Mechanics” 89, 33-58 (2019)),

[M.S. Filipkovska, Lagrange stability and instability of irregular semilinear
differential-algebraic equations and applications. Ukrainian Math. J. 70(6), 947-979

(2018)].



Application of the block structure of the DAE operator coefficients

With respect to the decompositions (3), (9) any vector x € R" can be
uniquely represented as the sum

X=Xs; X5y +X1+X2, X5, =9ix€X;, x;=PixeX;,i=1,2.

The DAE (1) &[Ax(t)] +Bx(t) = f(t,x) is equivalent to the system

d _

axsl :Aée;)(Flf(t,X) _Bgenxsl _BundXSQ)a (11)

d _

axpl :‘A(l 1) (Qlf(t,X)—lepl), (12)
0 =B Qo (t,x) — Xy, (13)
0= FZf(taX) - Sovxsla (14)

We introduce the manifold

Lo, = {(6:%) € [tese9) X R? | (F3 + Qu) [Bx — £(t,x)] = 0} =
={(t,x) € [ts,o0) x R" | (t,x) satisfies the equations (13), (14) }.

M. Filipkovska (FAU; ) 9/23



The derivative V{;;) 15 (t,%s;,Xp, ) of the function V along the trajectories of

the system (or the derivative of V with respect to the system) (11), (12) has the
form

av av
Vit 2) (6:Xs1,Xpy ) = W(t,xsl Xp, ) + m(taxm Xpy ) - X(t,x) =
$17pP1
aV A% _
= G (6% Xp1 ) 3 (6, ) AL (BLf(t, %) = Byonxs, — Bunaxs,) | +
s1
av _
g (e xp) - [T (Quf(43) - By, )| (15)
P1
where
Y(t,x) _ -A(ggr}) (Flfl(tax) - Bgenxsl - BundXSQ) (16)
AT (Quf(t,%) — Bixp, )

is a vector consisting of the right-hand sides of the equations (11) and (12).
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Theorem 1 (the global solvability). Let f € C([t4,) x R?,R™),
%f € C([t+,o0) x R",L(R",R™)), AA+B is a singular pencil of operators such
that its regular block AA, + B, from (4) has the index not higher than 1, and the
following conditions are fulfilled:

© For any fixed t € [t4,0), x5, € X, X5, € Ds,, where Dy, C X, is a some
set, and xp,, € Xy, there exists a unique xp, € X» such that
(t,Xs; + Xy +Xp; +Xp,) € L. ;

© For any fixed t., x. = x5, +x{, +x}, +x;, such that (t.,x.) € L, and
xg, € Ds,, the operator @, . defined by

CIDt*7X* = [%(t*,x*) —B:| PQZ X2 —)Yz (17)

is invertible.

© There exists a number R > 0, a positive definite function
V € C'([t4,) x Dg, x Dp,,IR), where a set D, x Dy, C X;, x X; is such
that Dg; X Dp; D {||(xs;,%p, )|l = R}, and a function
X € C([t+,0) X (0,00),R) such that:
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Q V(t,xs,,%Xp, ) — oo uniformly in t on each finite interval [a,b) C [t,) as
[ (x5 s %py )| = oo;

O for all (t,xs, +xs, +Xp, +Xp,) € Lg, , for which x,, € D, and
|l(xs,,%p, )|l > R, the inequality
V/(11),(12) (t>XS1 >XD1) < X(t>v(t7XS1 7XP1))7 (18)

where V211)_(12)(t7X517XD1) has the form (15), is satisfied;

@ the differential inequality dv/dt < x(t,v) (t € [t4,0)) does not have positive
solutions with finite escape time.

Then for each initial point (to,x0) € Ly, , where Soxq € Dy, the initial value
problem (1), (2) has a unique global (i.e., on [tg,o0)) solution x(t) for which the
choice of the function ¢s, € C([to,o°),Ds,) with the initial value ¢s, (to) = S2x0
uniquely defines the component S>x(t) = @5, (t) when rank(AA +B) < n; when
rank(AA + B) =n, the component Sax is absent.
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Let us choose the function y in the form

x(t,v) =k(t) U(v), (19)
where k € C([t4,0),R) and U € C(0, o).

Then in Theorem 1 all conditions remain unchanged, except for condition 3
which takes the form:

3. There exists a number R > 0, a positive definite function
V € C'([t4,) x Dg, x Dp,,IR), where a set D, x Dy, C X;, x X; is such
that Dg, X Dy, D {||(xs;,%p, )|l = R}, and functions k € C([t4,),R),
U € C(0,00) such that:

@ condition (a) of Theorem 1 holds, i.e., V(t,Xs,,Xp,) — o uniformly in t on
each finite interval [a,b) C [t4,0) as ||(xs, ,Xp, )|| = oo

@ for all (t,xs, +Xs, +Xp, +Xp,) € Lg, , for which xg, € D, and
|l(xs,,%p, )|l > R, the following inequality holds:

V(11),(12) (t7X51 7XP1) < k(t)U(V(t>XS1 >XD1)); (20)
0 - —w (vwo>0i tant)
—— = (Vo IS some constant).
Vo U(V)
Also, we can weaken some requirements of Theorem 1 and, as a consequence,
some requirements of another theorems as well.



Let us choose the positive definite scalar function V(t,xs,,xp, ), which will be
called a Lyapunov type function, in the form

V(t,Xsl aXpl) = ((Xsl aXpl)) (Xsl 7Xp1 ))H = (H(t)(xsl 7Xp1 )7 (X51 aXpl))) (21)
where H € C([t4,0),L(X;; x X1)) is a positive definite self-adjoint operator

function such that H(t 1 Xs, = X5, x {0} and H(t X; — {0} x X for

®)x,, ®)]x, :

any fixed t.

Due to the properties of the operator function H, the function (21) satisfies
the conditions of Theorem 1 (however, of course, the conditions on the derivative
Véu)’(lz)(t,xsl,xpl) in these theorems need to be checked).

The operator H(t) € L(X;, x X;) has the block structure

H(t) = <Hs6(t) HIO(t)) X, x X — X, x Xy, (22)

where Hg, € C([t4,),L(Xs,)) and H; € C([t4,),L(X;)) are positive definite
self-adjoint operator functions.

VE11),(12)(‘5;X51 aXp1) = (%H(t)(xsl 7Xp1)a (Xsl yXpy )) =+
2 (Hsl (t)Xsl 5 {Aéen> (Flf( ) Bgenxsl - Bun(lXSQ)} ) +
2(Hi (x5, [AT Y (Quf(6,%) — By, )| ).



Theorem 1(Lagrange stability). Let f € C([t4,) x R*,R™),
%f € C([t+,o0) x R",L(R",R™)), AA+B is a singular pencil of operators such
that its regular block A A, + B, from (4) has the index not higher than 1, and
conditions 1, 2 of Theorem 1 as well as the following conditions hold:

© There exists a number R > 0, a positive definite function
V € C([t4,) x Dg; x Dy, ,R), where a set Dy, x D, C X, x Xy is such
that Dg, X Dy, D {||(xs;,%p, )|l > R}, and a function
X € C([t+,00) x (0,00),R) such that:

0 V(t,xs,,Xp,) — o uniformly in t on [t4,e0) as ||(xs,,Xp, )|| = oo

@ for all (t,xs, +xXs, +Xp, +Xp,) € Ly, , for which x,, € D, and
l(xs,,%p, )|l = R, the inequality (18) is satisfied;

© the differential inequality dv/dt < x(t,v) (t € [t4+,0)), does not have
unbounded positive solutions for t € [t, ).

Then for each initial point (to,x0) € Ly, , where Soxq € Dy, the initial value
problem (1), (2) has a unique global solution x(t) for which the choice of the
function ¢, € C([to,°),Ds,) with the initial value ¢, (to) = S2xo uniquely defines
the component Syx(t) = ¢s, (t) when rank(AA +B) < n.

Let, in addition to the above conditions, the following conditions also hold:
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@ For all (t,xs; +xs, +Xp, +Xp,) € L¢, . for which x, € Dg, and
llxs, +Xs, +Xp, | <M < e (M is an arbitrary constant), the inequality

[13p || < Kinr < oo

or the inequality ||Qaf(t,xs, + X, +Xp;, +Xp,)|| < Kum < oo, where
Ky = K(M) is some constant, is satisfied.

Q |[|Faf(t,x)|| < +oo for all (t,x) € L¢, such that Syx € Dy, and |[x|| < C <o
(C is an arbitrary constant).

Then, for the initial points (to,xo) € Ly, where Saxg € D, and any function
95, € C([to,0),Ds, ) satisfying the relations ¢s, (to) = S2xo and

sup || s, (t)|| < 4oo, the equation (1), where Sox = ¢, (t), is Lagrange stable;
te[t07°°)
when rank(AA 4+ B) =n < m, the component S;x is absent.
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A model of a gas flow for a single pipe (in the isothermal case)

Consider a mathematical model for a gas pipeline flow (the flow on a single
pipe), assuming that the temperature is identically equal to To = const. The
model consists of the isothermal Euler equations

op + aX(pV) =0,
) 23
di(pv)+dip = _;Lf_DPV|V|_gpslope )

and the equation of state for a real gas in the form
p = RTopz(p), (24)
e x€[0,L], t € .# C[0,00), .Z is a time interval, L < o is the pipe length
e p=p(t,x), v=v(t,x), p=p(t,x) are respectively the density, velocity and
pressure
g is the gravitational constant, and R is the specific gas constant
Mg is the pipe friction coefficient, and D is the pipe diameter

Slope = Slope (X) is the slope of the pipe

z=1z(p) is the compressibility factor
[P. Domschke, B. Hiller, J. Lang, V. Mehrmann, R. Morandin, C. Tischendorf. Gas
Network Modeling: An Overview, 2021 (Preprint)]



Further, we denote by q := pv a mass flow by the cross-sectional area equal
to 1, assume that the directions of gas flows in pipes are known and that
Slope(X) = sin 0, where the parameter 6 denotes the angle of the pipe slope, and
discretize the equations (23). Then we obtain the spatially discretized equations

dpr —q
2
; It —|— L O,A{ 2 (25)
aqu — D1 . r )
r = T AN < 2
Tt 4+ L + prgsin O 2D p, (26)
pr = RsToprz(pr). (27)

where Qr(t) = q(tvL)' pr(t) = p(t,L), pr(t’) = p(taL) and QI(t’) = Q(tvo)'
pi(t) :=p(t,0). If we represent the pipe as a graph consisting of an edge and two
vertices (nodes), define the vertices as the left and right nodes and fix the edge
orientation from the left node to the right node, then q.(t), p.(t) and p,(t) are
defined at the right end of pipe and q(t), pi(t) are defined at the left end of pipe.
In general, previously, the pipe is divided into parts of a short length through the
introduction of artificial nodes and the specified spatial discretization are
performed on each part (subpipe).

Suppose that the functions ¢, and p; are given, that is, we consider the
boundary conditions of the form

q(t,L) = q:(t), p(t,0) =pi(t), te s,



We introduce the variable vector x = (p;,q;,pr)T (we denote it by x for
convenience and comparison with further results, since the original variable x is
already absent from the equations) and denote

1 0 0 0 Lt 0
A=[0 1 0],B=|gsin6 0 L',
0 0 O 0 0 1
—L1q.(t)
f(t,x) = | L 'pi(t) —0.54D'qfp, 1 | . (28)
RSTOPrZ(pr)

Then the system (25)—(27) can be written in the vector form
d
a[AX]—I—BX:f(t,X), te s, (29)

where A, B € R®*3 and f € C(.# x R3,R?). The initial condition for (29) can be
given as
x(to) =x0,  x0=(p/,a,p})" (30)

where p¥ and p? have to satisfy the equation (27) for t = to, i.e.,
p? = RSTOPrOZ(p?)-
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In general, the DAE (29) is regular (since the pencil AA + B is regular), but if
any of the input parameters (i.e., q.(t) or pi(t)) is not specified, then the system
(25)—(27) is underdetermined and the corresponding DAE is singular (nonregular).
Also, if it is required to realize the evolution of some variable (i.e., p;, or p;, or q)
such that it becomes equal to the prescribed function, then this system is
overdetermined and the corresponding DAE is singular.

A model of a gas network (in the isothermal case)

In [M. Filipkovska, Qualitative analysis of nonregular differential-algebraic
equations and the dynamics of gas networks,
https://doi.org/10.48550/arXiv.2309.00186|, a mathematical model of a
gas network in the form of the singular (nonregular) DAE (1) is presented.

The gas network consists of pipes, valves, regulators and compressors, and is
similar to that presented in [Kreimeier, T., Sauter, H., Streubel, S.T., Tischendorf,
C., Walther, A. Solving Least-Squares Collocated Differential Algebraic Equations
by Successive Abs-Linear Minimization — A Case Study on Gas Network
Simulation, 2022 [Preprint]].
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Thank you for your attention!
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