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Abstract

We consider the networks. The network is defined by a metric graph, G = {E, V }, and
state equations on the set of edges E with some compatibility conditions at the vertices.
There are applications of such models in transportation networks as well as for mechanical
structures of beams. The state equations for dynamic problems are the wave equations
on the graphs. The steady state equations are vectorial ordinary differential equations.
The control problems on networks are considered for the system of wave equations. The
optimum design problems for networks are considered for the steady state equations. The
so-called Turnpike Property is shown to hold for the control problems with infinite horizon,
which makes it possible to consider control and design bilevel optimization problems on
networks. The cost for optimum design is the optimal cost for control.

This dissertation focuses on the development and application of the Topological Deriva-
tive Method in shape and topology optimization of networks. The singular perturbation
of the tree graph is obtained, e.g., by nucleation of a small cycle. The size of the cycle
is determined by the shape optimization technique in singularly perturbed domains. The
small cycle changes the structure of the control system for the wave equation. That is
why the small cycle is the singular perturbation of the control system on networks.

The original contribution of the dissertation includes among others:

1) The proof of Turnpike Property for abstract wave equations and the network. The
results are obtained for the optimality system including the state equation, the adjoint
state equation, and the sufficient optimality conditions for the wave equation and the
steady state model.

2) The constructive form of topological derivative for complex networks including the
network of Timoshenko beams with the cost for optimum design defined by the control
problems with steady state equations.

3) The analysis of optimality conditions for nonlinear steady state equations in the
form of local Pontryagin’s maximum principle.

4) Numerical methods for solution of combined control and design problems on net-
works using Matlab with programs presented in Appendix.

Partial Differential Equations (PDEs) are considered on graphs, primarily of the tree
structure. The singular perturbation of the shape is defined by a nucleation of a small
cycle with the size ε→ 0. The cycle can be called a hole in the network. The location of
the hole in the graph can be determined by the topological derivative method.

Optimal Control Problems (OCPs) are considered in the networks. The state equations
defined on the graph are of evolution type, e.g., the wave equation for the networks. The
steady state of the network is governed by specific Elliptic Boundary Value Problems
(EBVPs).

Optimality conditions for optimal control problems arising in network modeling are
derived. For the nonlinear state equations, we confine ourselves to the steady state net-
work models. Therefore, we consider only control systems described by nonlinear ordinary
differential equations. First, we derive optimality conditions for the nonlinear problem
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for a single beam. These conditions are formulated in terms of the local Pontryagin max-
imum principle and the matrix Riccati equation. Then the optimality conditions for the
control problem for networks posed on an arbitrary planar graph are discussed. Two
simple numerical examples for the single-beam problem are considered.

The optimal control problems for linear state equations are introduced. The optimal
distributed control problems for the Timoshenko beams are considered on networks. We
employ the Steklov-Poincaré operator to convert the beam network model into a linear
system of equations and utilize domain decomposition methods to enable topological
changes. Specifically, the Timoshenko beams are known for their ability to model more
complex mechanical behavior compared to simpler beam models. We present a method
for computing such an optimality system and the topological derivative for tracking type
of cost functionals, thereby enabling effective control and optimization of Timoshenko
beam networks. Numerical examples validate our analytical results.

The optimal boundary control problems for the wave equation are considered on net-
works. Time interval (0, T ) for T → +∞ is fixed for the dynamic control problems. The
so-called turnpike property is shown for the state equation, the adjoint state equation
as well as the optimal cost. The shape and topology optimization is performed for the
network with the shape functional given by the optimality system of control problem.
The set of admissible shapes for the network is compact in finite dimensions, thus the use
of turnpike property is possible. The topology optimization is analyzed for an example of
nucleation of a small cycle at the internal node of network. The topological derivative of
the cost is introduced and evaluated in the framework of domain decomposition technique.
Numerical examples are provided.

We refer the reader to Lions’ book [53] for optimal control theory, to Lewiński et
al. [50] for optimum design methods, to Novotny et al. [63, 62, 64] for the topological
derivative method in optimum design.
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Chapter 1

Introduction

We consider optimal control problems and optimum design for networks. Such problems
arise for example in gas and water transportation pipelines with compressors. Another
important example could be the network of Timoshenko beams to model a bike. We are
interested primarily in the dynamic control problems which can be reduced to the static
control problems under appropriate conditions.

If we consider beams then we could have:

• Single load case and the elastic energy function;

• Multiply load case.

We use a more sophisticated model, where this cost for optimum design takes into
account a set of parameters which are called controls. Therefore, the multiply load case
is achieved by using the optimal control theory. The cost of design is determined by the
optimality system for the control of networks. A specific choice is to define the design
cost by the optimum value of control problem. For such a general shape functional we
can use shape derivatives and topological derivatives for numerical solutions of design
problems. This approach is new and efficient and combines the theory of optimal con-
trol of distributed parameters system with the modern technique of shape and topology
optimization. We use also the so-called Turnpike Property of dynamic control problems
with infinite horizons in order to use the steady state optimal problems for the numerical
solutions of dynamic control problems.

The literature on control and optimization includes various foundational works and
advancements. Lions’ seminal contribution [53] is important in fundamental principles
within optimal control theory. Furthermore, Leugering and Kogut’s book [37] uses an
optimality system of optimization, enriching our understanding of complex systems. In
shape optimization, Soko lowski and Zolésio’s book [88] is devoted to the shape sensitivity
analysis for unilateral problems describing such physical phenomena as contact problems
in elasticity, elasto-plastic torsion problems, and the obstacle problem. In topological
derivatives, the works by Soko lowski and Żochowski [87], Soko lowski and Lewiński [51],
and Soko lowski and Leugering [46] contribute significantly to understanding optimization

1



2 CHAPTER 1. INTRODUCTION

in structural design. Asymptotic analysis in singularly perturbed geometrical domains
is needed. Moreover, Novotny’s books [63, 62, 64] recall the classical approach to shape
optimization problems and extend the analysis to some singular perturbations of the
reference domains for elliptic boundary value problems. The topological derivative can
be considered as the singular limit of the classical shape derivative. In our dissertation,
the optimal control theory is combined with the topological derivative method of shape
optimization.

1.1 Motivation

In engineering, the optimum design of mechanical structures under specific loads is a
popular task. To give a representative example, we refer e.g., to [84] for shape optimization
approach in optimum design of prosthetic feet. Common objective functions encompass
compliance, average stress, or structure volume [8], while the range of permissible shapes
may be constrained by design limitations.

Typically, the optimization of a structure’s design or, more broadly, a domain involves
an iterative process marked by incremental enhancements. Although shape optimiza-
tion methods are effective for various modifications, including topology-altering changes
like merging or splitting substructures, they are generally unsuitable for generating new
subdomains [33], such as introducing holes in a structure (See Fig. 1.1). The strategic
determination of where to create openings in the domain stands as a pivotal aspect of
topology design [9, 23].

Ω Ωε Γ

Figure 1.1: Topology change by creation of a hole (continuum).

Contrary to the suggestive nature of the term, the term “holes” within this domain
does not necessarily denote emptiness. Depending on the context, these “holes” can
signify material inclusions or variations [5, 83], concealed objects within a medium [12],
or impediments influencing the flow of gases or liquids [15].

The utilization of topological derivatives extends to diverse scenarios, including opti-
mal compliance problems [52, 86], shape functionals within the realm of linear elasticity
[51, 62], as well as applications to semilinear elliptic systems [35], spectral problems [61],
heat diffusion [62], and Helmholtz problems [80, 69].

Frequently, optimization methods integrate topological derivatives with level-set tech-
niques to address the limitation of the latter, which prohibits the generation of new
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subdomains [3, 4, 60, 92]. Overviews of the fields of use for topological gradients are
given by [42] and [62].

The utilization of topological derivatives within beam networks revolves around op-
timizing the objective functional through vertex splitting, thereby inducing changes in
the graph’s configuration [22, 45, 46]. This process entails initially removing the targeted
vertex and segments of its adjoining edges. In contrast to the situation in continuous do-
mains, where the boundaries of a hole formation are typically enclosed, the altered graph
lacks such a descriptive feature in relation to the void. Consequently, careful consideration
is essential to define the desired structure post-reconnection following this modification
(refer to Fig. 1.2). In Fig. 1.2, (a) is a Network, G is a star graph of the network, and
Gε is a graph in which the central node is replaced by a small cycle of size of ε.

P0

P1 P2

P3

(a) Network

G

P0

P2P1

P3

(b) Star

ε

Gε P2P1

P3

(c) Star with cycle

Figure 1.2: Topology change by creation of a small cycle .

Indeed, the optimum design of arrays of significant trusses and frames, as well as
Michell Structures is studied in the monograph by Lewiński et al.[50]. Michell poses the
query of safely and economically transmitting given loads to specified support zones with-
out a priori assumptions on bar layout. The request for volume minimization transforms
into maximizing virtual work, shifting the problem from trusses to optimal design of con-
tinuum bodies. Michell structures, optimal solutions to these problems, have inspired en-
gineers and designers across disciplines, extending into modern fields like mechatronics and
biotechnology in recent years. We refer the reader to [93, 49, 70, 1, 48, 47, 85, 7, 91, 16, 71]
for modeling and optimum design or/and topology optimization in structural mechanics.

1.2 Main Idea

We consider networks, which are described by partial differential equations (PDEs) on
metric graphs. The first problem to solve is the optimal control problem. We consider
the dynamic state equation, e.g., the wave equation. We perform shape and topology
optimization of a cost functional, i.e., the shape functional. we are interested in problems
with the turnpike property, which allows us to simplify numerical methods. In such a
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case, the dynamic problem could be simply replaced by a static problem, for which we
can use shape derivatives and topological derivatives for numerical solutions for the design
of networks.

We consider state equations for Timoshenko beams and some other models of elastic
structure for networks. We start with the description of shape optimization methods for
networks.

The boundary variations technique in shape optimization is applied to the minimiza-
tion of the functional

Ω 7→ J(Ω), (1.1)

which means the mapping from the geometrical domain to the scalar cost functional. As
for applications, we will concentrate on equations of mathematical physics and mechanical
engineering. This implies that Ω is representative of a physical body and, as a mathe-
matical object, is the integration domain of a system of ordinary and more importantly
PDEs describing the physical process of interest. In such a case, a composed mapping is
considered. First

Ω 7→ y(Ω) (1.2)

is the solution of the state equation in the spatial domain, then the value of the cost
function is given by y(Ω) 7→ I(y(Ω)). Therefore, the composite mapping is given by

Ω 7→ y(Ω) 7−→ I(y(Ω)). (1.3)

With (1.1) we associate shape gradients and the shape Hessians with respect to changes in
Ω. The underlying state equations lead to corresponding material and shape derivatives
for (1.2). Finally, with (1.3) we associate a so-called adjoint state equation to simplify
the expression for the shape gradient of the composed mapping.

For regular perturbations of Ω, we use boundary variation techniques such that we
restrict the analysis to the case of a family Ωτ with τ → 0 and Ω0 = Ω. This approach has
its origin in fluid mechanics. As a result, a function J(·), originally defined as a function
on domains is represented by a function of one variable in the vicinity of τ = 0+,

τ 7→ J (Ωτ ) . (1.4)

The case of singular domain perturbations is also investigated. By singular perturba-
tions, we mean the introduction and evolution of holes or cracks. If a hole Bε(x) is present
in Ωε, we consider a small parameter ε→ 0+and the shape functional being parametrized
by

ε 7→ J (Ωε) .

In such a case, an asymptotic analysis of the state equation is performed and the following
formula is justified

J (Ωε) = J(Ω) + f(ε)TΩ(x) + o(f(ε)),

with the function
x→ TΩ(x)
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denoted as the topological derivative of J(Ω) at x ∈ Ω.
Two methods of shape sensitivity analysis can be used for shape and topology op-

timization. The first method is the so-called velocity method originated from the fluid
mechanics [88]. The second is the so-called topological derivative method which is based
on the singular perturbations of the geometrical domains [64]. The first method replaces
the mapping defined on the sets Ω → y(x) := y(Ω;x) by the mapping defined on the
interval (−τ0, τ0) ∋ τ → yτ (x) := y (Ωτ ;x). Let us note that the function x → yτ (x)
is defined on the set Ωτ only. The second method uses the approximation of the solu-
tion y (x→ Ωε;x) in the domain with the small hole ε → Ωε := Ω\ωε by the solution
x→ y(Ω;x) in the intact domain Ω. The second method will be considered in particular
for graphs in this dissertation.

1.3 Optimal Control Problems Governed by PDEs

In optimal control problems, we have a state equation and a tracking cost functional
to be minimized. First, we derive the optimality system, which usually contains state
equations, adjoint state equations, and optimality conditions. In the case of linear state
equations, the associated optimality system admits a unique optimal control. In the case
of nonlinear state equations, the solution of the optimality system is not unique. In the
case of static problems of ODEs, Pontryagin’s Maximum Principle is considered.

For the optimal value of cost, the shape and topological optimization of the network
is studied. To this end, the shape and topological derivatives are introduced. We perform
the design concerning the length of the edges. The topological derivatives are computed
with respect to the nucleation of the small cycles.

1.4 Modeling, Control, and Design of Networks

The network structure is defined by a graph G = (V,E), where V represents the set
of nodes, E is the set of edges, and nv := #V , ne := #E. In the context of planar
graphs, it is crucial to distinguish between one-dimensional “out-of-plane” evolution and
two-dimensional “in-plane” evolution. This distinction necessitates the consideration of a
function y(x), which can be scalar, two-dimensional, or three-dimensional. In the latter

two cases, local coordinate systems
(
eij
)j=1,··· ,d
i=1,··· ,ne

, d ∈ {2, 3} are required. For instance, in

the 2D case, the expression for y on edge Ei takes the form:

yi(x) = y1i(x)ei + y2i(x)e⊥i ,

where ei denotes the local unit vector in the direction of the edge. So y1i describes the
longitudinal part of the displacement, while y2i gives the lateral one.

In a network, we distinguish between single and multiple nodes. Multiple nodes inside
the graph are called vM ∈ VM ⊂ V , while single nodes are ∂V = V \VM . They differ in
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their boundary conditions. Dirichlet (clamped) nodes are permitted

vD ∈ VD := {vj ∈ ∂V | vj is jammed } ⊂ V,

Neumann (free) nodes

vN ∈ VN := {vj ∈ ∂V | vj is free } ⊂ V,

and controlled nodes

vC ∈ VC := {vj ∈ ∂V | vj is controlled } ⊂ V.

We have V = VD ∪VN ∪VC ∪VM . Further, we define the index set ϵJ as the set of indices
for all edges adjacent to the node vJ , and dJ as the degree of the node vJ . So it is

VM = {v ∈ V | d(v) > 1}.

Let Li denote the length of the edge i and ϵi,j the orientation of the outer normal vector
on the boundary (the nodes of the edge), i.e.,

ϵi,j :=


−1 if the i-th edge starts at node vj,

+1 if the i-th edge ends at node vj,

0 otherwise .

Figure 1.3 illustrates a single edge along with its local coordinate system. The coor-
dinate system is centered at the node v1, with parameters ϵi,1 = −1 and ϵi,2 = 1 applied.

ei1

ei2

ei3 v1 v2

Figure 1.3: The local coordinate system of an edge.

The geometrical set associated with the graph is denoted by Ω. We consider a single
edge, a cross of three edges, and a cross with a small cycle of six edges. If the system
of PDEs is defined on the graph we can consider the shape sensitivity analysis of the
state equation with respect to the domain perturbations of Ω. Thus we have the shape
and material derivatives for regular perturbations and the topological derivatives for the
singular perturbations. On edges, there are given PDEs, with the solutions yi on Ei. For
a single edge, the model of interest is a beam or wave equation.

1. Timoshenko Beams model (TB): A linear system of hyperbolic dynamic or elliptic
static equations;

2. Geometrically Exact Beams model (GEB): Nonlinear beam;
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3. Intrinsic Geometrically Exact Beams model (IGEB): A system of semilinear hyper-
bolic equations (weak formulation is used for approximation in space, then ODEs
are solved);

4. Scalar wave equations.

In the vertices, there are two sorts of continuity conditions, the continuity for solutions
and for fluxes which are the Kirchhoff conditions. They are also called transmission
conditions. We consider the boundary optimal control problems for the second-order
hyperbolic problems (wave equations) and distributed optimal control for the TB and
static IGEB. The optimal value of the cost for control problems is subject to design with
respect to the geometry

Ω → G = (E, V ) → y → J(Ω).

We evaluate the shape and the topological derivatives of the shape functional

Ω → J(Ω).

The singular perturbation of the geometrical domain Ω means e.g. the nucleation of a
small cycle of the size ε→ 0.

Remark In section 2.3.2 of [89] we have the Timoshenko beam model derived directly from
GEB. We need the steady state models of beams (the models without time derivatives):

- from geometrically exact beams;

- from Timoshenko beams.

This way we could define two optimum design problems for steady state models:

- nonlinear beam or networks of beams by IGEB modeling;

- linear beam or networks of beams by Timoshenko modeling.

The solution of optimization problems will be tested if possible for time-dependent models
of beams or networks.

The shape functional may be given by the optimal value of the cost for OCP in the
case of a specific state equation. In such a case there are two techniques for solving the
optimum design problems. The first strategy is Pontryagin’s Maximum Principle for the
total optimization problem i.e., control and design together. The second possibility is
decomposition into the control problem at the lower level and the design problem at the
upper level. In such a case, a unique optimal control is determined by an optimality
system. In particular, the solution of an optimality system becomes simple in some cases
with quadratic cost and without control and state constraints.
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1.5 Principal Notations

Ω a bounded open domain in R
u control

y the state of the system

SO(3)
{
S ∈ R3×3 : det(S) = 1,S−1 = S⊤}

Ck(Ω) space of k-times continuously differentiable functions on Ω̄, k integer ⩾ 0

D(Ω) space of infinitely differentiable functions in Ω, with compact support in Ω,

endowed with the inductive limit topology of Schwartz

D ′(Ω) dual space of D(Ω), space of distributions on Ω

L2(Ω) space (equivalence class) of functions square integrable on Ω

Hm(Ω) (Sobolev space of order m) space of functions φ such that

φ ∈ L2(Ω),
∂φ

∂xi
∈ L2(Ω), . . . , Dαφ ∈ L2(Ω) ∀α, |α| ⩽ m

Hm
0 (Ω) {φ | φ ∈ Hm(Ω), Dαp = 0 on Γ, |α| ⩽ m− 1}

U a Hilbert space on R
Uad ( set of admissible controls) a closed, convex subset of U

ũ is the skew-symmetric matrix defined by

ũ =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 for any u = (u1, u2, u3)
⊤ ∈ R3

1.6 Outline and Main Results

We now give a brief description of the contents of the various chapters.
In Chapter 2, we present a list of models under consideration, including the Geomet-

rically Exact Beams model and the Timoshenko Beams model, among others. Then, we
study a detailed analysis of the characteristics of these models and their applications.

In Chapter 3, our analysis of the optimality conditions is performed for the nonlin-
ear steady state models. Such an analysis can be useful for the real systems governed
by the networks of Nonlinear Partial Differential Equations. The practical examples for
our framework include e.g., the Gas and Hydrogen Distribution (GHD) Networks [28],
[27], and the Geometrically Exact Beams (GEB) Networks which lead to the Intrinsic
Geometrically Exact Beams (IGEB) network models [44], [77]. The GHD Networks are
modeled by quasilinear hyperbolic systems. The IGEB Networks are governed by semi-
linear hyperbolic systems under some assumptions on the transformation of GEB models.
The steady state equations for two types of networks are given by ODEs.

In Chapter 4, we present the optimality system for both static and evolution opti-
mization problems. We introduce the network model and provide the exact solution for
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both the 1D and 3D Timoshenko Beams models. Additionally, we employ the domain
decomposition method to facilitate topology changes. Furthermore, we present numerical
examples for both models to demonstrate their effectiveness and applicability in practical
situations.

In Chapter 5, we consider two optimal control problems. The first problem, termed as
optimal control for evolution wave problem (OCE), is governed by an evolution equation.
In order to define the second problem, denoted as optimal control for static problem
(OCS), the evolution state equation is reduced to the steady state equation. The optimal
controls are given by the appropriate optimality systems, see [53]. In order to justify
the approximation of (OCE) by (OCS), we study the turnpike property of the couple
(OCE)-(OCS). For recent reviews on the turnpike property in optimal control, see [24]
and the references therein. Several forms of the turnpike phenomenon have been studied in
detail, for example, the exponential turnpike property (see [90]) and the interval turnpike
property, see [21]. Numerical issues and the turnpike phenomenon in optimal shape design
with parabolic PDEs have been studied in [41].

Numerical results are presented in Chapter 3,4,5. All programs in Matlab are in the
Appendix A. The numerical results confirm the theoretical results of the dissertation.
The results of the dissertation are published in Control and Cybernetics (2024), a paper
is submitted to the Journal of Geometric Analysis and the third paper is in preparation.
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Chapter 2

Modeling of Beams

The first part of this dissertation is dedicated to deriving suitable descriptions of thin
structures. These thin structures are commonly modeled as one-dimensional continua,
i.e., the objects themselves and associated quantities are parameterized by only one spatial
variable. All the models here are defined on a single edge.

2.1 Nonlinear Beams

The networks of elastic beams are of primal importance for applications we have in mind.
Thus, we describe in detail the nonlinear models of beams that lead to semilinear state
equations for static and evolution problems. The optimal steady state can be determined
by solving the control problem for the static model. The practical examples for our
framework include e.g., the Geometrically Exact Beams (GEB) networks which lead to
the Intrinsic Geometrically Exact Beams (IGEB) network models [44], [77]. The IGEB
networks are governed by semilinear hyperbolic systems under some assumptions on the
transformation of GEB models. The steady state equations for two kinds of networks are
given by ODEs. For convenience, we omit the index of edges.

2.1.1 Geometrically Exact Beams Model

The mathematical framework describing geometrically exact beams focuses on the position
of the beam’s centerline and the orientation of its cross sections with a fixed coordinate
system. In the GEB context, the system state is denoted as (p,R). This state includes
the position of the centerline, denoted as p(x, t) ∈ R3, and the orientation of the cross

sections, represented by the columns {bj}3j=1 of the rotation matrix R(x, t) ∈ SO(3). For
visual reference, we could refer to Fig. 2.1. The figure illustrates three pivotal states of
a deformable beam: the unchanged reference beam; the initial beam characterized by a
curvature described as Υc = vec

(
R⊤ d

dx
R
)
, where R = [b1, b2, b3]; and the beam at time

t, represented by the state variables p and R = [b1, b2, b3], where the operator vec is

basically the inverse operation of the operator (̃·), that is vec(ũ) = u.

11
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0 xe1e1

e3

e2

Ω

b1(x)

b3(x)

b2(x)

Before deformation

Ω0

b1(x, t)

b3(x, t)

b2(x, t)

At time t

Ωt

Figure 2.1: The straight reference beam (bottom), the beam before deformation (upper
left), and the beam at time t (upper right).

For a beam with a length L > 0 positioned within the domain (0, L) × (0, T ), the
governing system is defined as follows:[

∂t 0
(∂tp̃) ∂t

] [[
R 0
0 R

]
Myv

]
=

[
∂x 0

(∂xp̃) ∂x

] [ [
R 0
0 R

]
z

]
+

[
ϕ̄
ψ̄

]
, (2.1)

given external forces and moments ϕ̄(x, t), ψ̄(x, t) ∈ R3, the mass matrix M(x) ∈ S6
++(the

set of positive definite symmetric matrices), the flexibility (or compliance) matrix C(x) ∈
S6
++ and the curvature before deformation Υc(x), and where yv, z depend on (p,R) :

yv =

[
R⊤∂tp

vec
(
R⊤∂tR

) ] , s =

[
R⊤∂xp− e1

vec
(
R⊤∂xR

)
− Υc

]
, z = C−1s. (2.2)

and yv(x, t) ∈ R6 represents linear and angular velocities, and z(x, t) ∈ R6 represents
internal forces and moment.

2.1.2 Intrinsic Geometrically Exact Beams Model

Consider the Intrinsic Geometrically Exact Beams (IGEB) model for a single beam. The
governing semilinear system consists of twelve equations. The state variable is denoted as

y =

[
yv
z

]
expressed on a moving basis. That is, GEB model (2.1) and IGEB model (2.3) are related
by the nonlinear transformation. We use yfv , zf , ylv, and zl to denote the first and last
three components of yv and z respectively. The notation Φ̄(x, t) and Ψ̄(x, t) ∈ R3 is
employed for external forces and moments expressed in the moving basis. Within the
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domain (0, L) × (0, T ), the governing system of IGEB reads:

[
M 0
0 C

]
∂ty −

[
0 I6
I6 0

]
∂xy −Ay = −B(yv, z)

[
Myv
Cz

]
+


Φ̄
Ψ̄
0
0

 , (2.3)

where

A =


0 0 Υ̃c 0

0 0 ẽ1 Υ̃c

Υ̃c ẽ1 0 0

0 Υ̃c 0 0

 , B(yv, z) =


ỹlv 0 0 z̃f

ỹfv ỹlv z̃f z̃l

0 0 ỹlv ỹfv

0 0 0 ỹlv

 , (2.4)

and I6 is the identity matrix with the size 6 × 6. The system (2.3) is semilinear because
of the presence on the right-hand side of the quadratic terms

(v, z) 7→ B(yv, z)

[
Myv
Cz

]
.

We introduce the matrix E(x) ∈ R6×6, which contains information about curvature and
twist at rest, and the matrix QP(x) ∈ S12

++, defined by

E =

[
Υ̃c 0

ẽ1 Υ̃c

]
, QP = diag(M,C).

We present in a simple example, that of a single beam clamped at x = 0 and controlled
via velocity free at x = L. The IGEB system with boundary conditions reads

∂ty + Ā(x)∂xy + B̄(x)y = ḡ(x, y) in (0, L) × (0, T )

v(0, t) = 0 for t ∈ (0, T )

z(l, t) = 0 for t ∈ (0, T )

y(x, 0) = y0(x) for x ∈ (0, L)

(2.5)

where the coefficients Ā, B̄ and the source ḡ depend on M,C and R, and y0(x) is the
initial velocity. The governing system is derived by left-multiplying Eq. (2.3) by the
inverse of QP . Specifically, the functions Ā(x) and B̄(x) are defined over the interval
[0, L] and map to R12×12,

Ā = −
(
QP)−1

[
0 I6
I6 0

]
, B̄ =

(
QP)−1

[
0 −E
E⊤ 0

]
. (2.6)

The function ḡ : [0, L] × R12 → R12 is defined by

ḡ(x, u) = QP(x)−1G(u)QP(x)u
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for all x ∈ [0, L] and u =
(
u⊤1 , u

⊤
2 , u

⊤
3 , u

⊤
4

)⊤ ∈ R12 with each uj ∈ R3, where the map G is
defined by

G(u) = −


ũ2 0 0 ũ3
ũ1 ũ2 ũ3 ũ4
0 0 ũ2 ũ1
0 0 0 ũ2

 .
For the static problem, the nonlinear transformation results in yv = 0. Denote L(z) :=[

0 z̃f

z̃f z̃l

]
and we have a steady state system:

{
−∂xz = E(x)z − L(z)Cz + f(x)e1, in (0, L)

z(L) = 0.
(2.7)

where ∂x = ∂
∂x

, f(x) is the distributed control and e1 = (1, 0, 0, 0, 0, 0)⊤ ∈ R6.

2.2 Timoshenko Beams

The Timoshenko beam theory allows for cross-sections that are not perpendicular to the
center line of the beam, and is more suitable for short or anisotropic beams. It is also well-
suited for problems with vibrating beams [34, 55]. More information about the modeling
of Timoshenko beams can for example be found in [39, 40].

2.2.1 Notation and Parameters

One can prove the following representation for Ei, the so-called Rodrigues formula

Ei = Ei(ϕ) = cosϕI + sinϕẽi + (1 − cosϕ)eie
⊤
i

ϕ:=ϕei= I +
sinϕ

ϕ
ϕ̃+

1 − cosϕ

ϕ2
ϕ̃

2
.

(2.8)

For dynamic, cross sections’ orientation by the columns {bj}3j=1 of Ei(x, t) ∈ SO(3). The
displacements in the x-, y-, and z-directions are denoted by rx,i, ry,i, and rz,i, respectively.
These quantities are integrated into the displacement vector for steady state

ri(x) := Ei(ϕ) (rx,i(x), ry,i(x), rz,i(x))⊤

as well as for dynamic model

ri(x, t) := Ei(ϕ(t)) (rx,i(x, t), ry,i(x, t), rz,i(x, t))
⊤ .

Similarly, the rotations in the x-, y-, and z- directions are represented by φx,i, φy,i, and
φz,i, respectively, and combined into the rotation vector for steady state

φi(x) := Ei(ϕ) (φx,i(x), φy,i(x), φz,i(x))⊤



2.2. TIMOSHENKO BEAMS 15

as well as for dynamic problem

φi(x, t) := Ei(ϕ(t)) (φx,i(x, t), φy,i(x, t), φz,i(x, t))
⊤ .

External loads, including distributed forces acting along the beam, are assumed to be
piecewise continuous and can be summarized for steady state into the function

fi ∈ PC (0, Li)
3 , fi(x) := Ei(ϕ) (fx,i(x), fy,i(x), fz,i(x))⊤ ,

as well as for dynamic problems

fi ∈ L1 (PC (0, Li) ; (0, T ))3 , fi(x, t) := Ei(ϕ(t)) (fx,i(x, t), fy,i(x, t), fz,i(x, t))
⊤ .

Similarly, distributed moments are combined for steady state into the vector function

mi ∈ PC (0, Li)
3 , mi(x) := Ei(ϕ) (mx,i(x),my,i(x),mz,i(x))⊤ ,

as well as for dynamic model

mi ∈ L1 (PC (0, Li) ; (0, T ))3 , mi(x, t) := Ei(ϕ(t)) (mx,i(x, t),my,i(x, t),mz,i(x, t))
⊤ .

The combined displacement and rotation of a Timoshenko beam can be represented for
steady state by six-dimensional vector functions as follows:

ui(x) :=

(
ri(x)
φi(x)

)
and qi(x) :=

(
fi(x)
mi(x)

)
.

For the dynamic model, we use the notation:

ui(x, t) :=

(
ri(x, t)
φi(x, t)

)
and qi(x, t) :=

(
fi(x, t)
mi(x, t)

)
.

These vector functions will be extensively used in the subsequent sections of this study.
The notation and parameters employed in the model are presented 2.1. The coefficients
kxi , ksi , c

x
i , cyi , and czi are the stiffness and damping coefficients in the i-th edge, which

are beam-specific and depend on the material properties and geometry of the beam. The
internal forces F x

i , F
y
i , F

z
i : [0, Li] → R3 of a Timoshenko beam are given by

F x
i (x) := kxi r

′
x,i(x),

F y
i (x) := ksi

(
r′y,i(x) − φz,i(x)

)
,

F z
i (x) := ksi

(
r′z,i(x) + φy,i(x)

)
,

as well as for dynamic problems,

F x
i (x, t) := kxi r

′
x,i(x, t),

F y
i (x, t) := ksi

(
r′y,i(x, t) − φz,i(x, t)

)
,

F z
i (x, t) := ksi

(
r′z,i(x, t) + φy,i(x, t)

)
,
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Table 2.1: Physical parameters of the Timoshenko beam model

Parameter Physical significance Parameter Physical significance

κi shear coefficient kxi := EiAi axial stiffness
Gi(N/m

2) shear modulus ksi := κiGiAi shear stiffness

Ai(m
2) cross-section area cxi := GiI

t

i torsional stiffness

Ei(N/m
2) elastic modulus cyi := EiI

y

i bending stiffnesses

I
t

i(m
4) torsion constant (w.r.t. the y-axis)

I
y

i (m
4) second moments of area czi = EiI

z

i bending stiffnesses
(w.r.t. the y-axis) (w.r.t. the z-axis)

I
z

i (m
4) second moments of area ρi(kg/m3) mass per unit length

(w.r.t. the z-axis)

and the internal moments Mx
i ,M

y
i ,M

z
i : [0, Li] → R3 by

Mx
i (x) := cxi φ

′
x,i(x),

My
i (x) := cyiφ

′
y,i(x),

M z
i (x) := cziφ

′
z,i(x),

as well as for dynamic problems

Mx
i (x, t) := cxi φ

′
x,i(x, t),

My
i (x, t) := cyiφ

′
y,i(x, t),

M z
i (x, t) := cziφ

′
z,i(x, t).

These functions can also be represented in global coordinates as:

Fi(x) : = Ei(ϕ) (F x
i (x), F y

i (x), F z
i (x))⊤ ,

Mi(x) : = Ei(ϕ) (Mx
i (x),My

i (x),M z
i (x))⊤ .

For dynamic, we have

Fi(x, t) : = Ei(ϕ(t)) (F x
i (x, t), F y

i (x, t), F z
i (x, t))⊤ ,

Mi(x, t) : = Ei(ϕ(t)) (Mx
i (x, t),My

i (x, t),M z
i (x, t))⊤ .

These equations show the complex interrelation between internal forces and moments,
providing insightful information about the behavior of Timoshenko beam structures.

2.2.2 Dynamic Modeling of Timoshenko Beams

We use the notation ∂ttr := r̈ and ∂xxr := r′′. The PDE dynamic equations of the
Timoshenko beam model in 3D in local coordinates are described in the following forms
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[89],

ρiAir̈x,i(x, t) = kxi r
′′
x,i(x, t) + fx,i(x, t), (2.9a)

ρiI
t

iφ̈x,i(x, t) = cxi φ
′′
x,i(x, t) +mx,i(x, t), (2.9b)

ρiAir̈y,i(x, t) = ksi
(
r′′y,i(x, t) − φ′

z,i(x, t)
)

+ fy,i(x, t), (2.9c)

ρiAir̈z,i(x, t) = ksi
(
r′′z,i(x, t) + φ′

y,i(x, t)
)

+ fz,i(x, t), (2.9d)

ρiI
y

i φ̈y,i(x, t) = cyiφ
′′
y,i(x, t) − ksi

(
r′z,i(x, t) + φy,i(x, t)

)
+my,i(x, t) (2.9e)

ρiI
z

i φ̈z,i(x, t) = cziφ
′′
z,i(x, t) + ksi

(
r′y,i(x, t) − φz,i(x, t)

)
+mz,i(x, t). (2.9f)

We also call this the full model. This system comprises six equations that govern
the displacements and rotations of the beam. The first two equations relate to the dis-
placements along the x-axis and rotations about the x-axis, respectively. The next two
equations are concerned with the forces acting along the y and z axes, respectively. And
the final two relate to the moments.

When there is no initial shear and either the initial twist is zero or the second moments
of area coincide, the simplified diagonal uncoupled constitutive laws are employed. This
is expressed as:

CN :=

 kxi 0 0
0 ksi 0
0 0 ksi

 , CM :=

 cxi 0 0
0 cyi 0
0 0 czi

 .

The material inertia matrix is defined as follows:

CI =

 I
t

i 0 0

0 I
y

i 0

0 0 I
z

i

 .

The Eq. (2.9) in global coordinates can be written as

ρiAir̈i(x, t) = CN(r′′i (x, t) + êi1φ
′
i(x, t)) + Fi(x, t),

ρiCIφ̈i = CMφi(x, t) + êi1CN(r′i(x, t) + êi1φi(x, t)) +Mi(x, t).
(2.10)

Beam models are employed to characterize thin deformable structures, implying that,
according to common understanding, their characteristic dimension is significantly greater
in one spatial direction than in the perpendicular plane. Using the geometrical attributes
of beams facilitates the establishment of a constrained motion, leading to the reduction
of the full three-dimensional unknowns to spatially one-dimensional quantities based on
specific assumptions. For example, we reduce the three-dimensional beam equations to
one-dimension in the following case with governing PDE holding for (x, t) ∈ [0, Li]× [0, T ]
(See [56]):

ρiAir̈z,i(x, t) = ksi
(
r′′z,i(x, t) + φ′

y,i(x, t)
)

+ fz,i(x, t),

ρiI
y

i φ̈y,i(x, t) = cyiφ
′′
y,i(x, t) − ksi

(
r′z,i(x, t) + φy,i(x, t)

)
+my,i(x, t).

(2.11)
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There is no transformation from local coordinate to global. We only consider the rz,i and
φy,i. The Timoshenko beams model of concern is shown in Fig. 2.2 and we call this the
reduced model. At the origin 0, the deflection and the rotational angle are zero for time
t, namely, rz,i(0, t) = φy,i(0, t) = 0.

Assumption 1 The axial deformation of the Timoshenko beam is not taken into
account in this model.

0 x Li

φy,i(x, t)

rz,i(x, t)

Figure 2.2: Displacement and bending of a single beam.

2.2.3 Static Modeling of Timoshenko Beams

In addition to the dynamic model, we extend our analysis to the static model, thereby
providing a comprehensive overall perspective on the behavior of the beam under varying
conditions. In 3D, the static Timoshenko beam equation system for a single beam in local
coordinate is represented in Eq. (2.12),

fx,i(x) + kxi r
′′
x,i(x) = 0, (2.12a)

mx,i(x) + cxi φ
′′
x,i(x) = 0, (2.12b)

fy,i(x) + ksi
(
r′′y,i(x) − φ′

z,i(x)
)

= 0, (2.12c)

fz,i(x) + ksi
(
r′′z,i(x) + φ′

y,i(x)
)

= 0, (2.12d)

my,i(x) + cyiφ
′′
y,i(x) − ksi

(
r′z,i(x) + φy,i(x)

)
= 0, (2.12e)

mz,i(x) + cziφ
′′
z,i(x) + ksi

(
r′y,i(x) − φz,i(x)

)
= 0. (2.12f)

Similarly, the static system in the global coordinate is given by,

CN(r′′i (x, t) + ẽi1φ
′
i(x, t)) + Fi(x, t) = 0,

CMφi(x, t) + êi1CN(r′i(x, t) + ẽi1φi(x, t)) +Mi(x, t) = 0.
(2.13)

The reduced system is described in the following forms:

fz,i(x) + ksi
(
r′′z,i(x) + φ′

y,i(x)
)

= 0,

my,i(x) + cyiφ
′′
y,i(x) − ksi

(
r′z,i(x) + φy,i(x)

)
= 0.

(2.14)
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This static model provides additional insights into the structural response of Timo-
shenko beams and complements the dynamic analysis by considering the beam’s behavior
under equilibrium conditions. The optimal control problem is formulated based on this
static model, thus highlighting its significance in guiding optimization strategies for the
Timoshenko beams systems.
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Chapter 3

Necessary and Sufficient Optimality
Conditions for the Nonlinear Model

Networks are governed by state equations on metric graphs. Evaluation state equations are
of type wave equation, i.e., hyperbolic partial differential equations static state equations
are ordinary differential equations. We consider optimal control problems for evolution
state equations. In such a case, the so-called Turnpike Property occurs, therefore the
static state equation can be used for control and design of the network.

In this chapter, the optimization problems are considered for nonlinear steady state
ordinary differential equations. The results obtained can be applied to control and design
of networks with nonlinear evolution equations. The results are obtained in the framework
of the local Pontryagin maximum principle, see [68].

The control and shape problems are considered within the same mathematical frame-
work for necessary and sufficient optimality conditions. For numerical methods, two
approaches are possible. The first is approximate then optimize. The second is optimized
and then approximate. Numerical results are obtained for the latter approach.

The results are published in [68].

3.1 Preliminaries

3.1.1 Formulation of the First-Order Necessary Optimality Con-
ditions for an Autonomous Problem on the Interval [0, 1]

Consider the following autonomous problem of optimal control:

J(x, u) =
∫ 1

0
F (x(t), u(t))dt→ min,

ẋ(t) = f(x(t), u(t)) ∀t ∈ [0, 1], κ(x(0), x(1)) ≤ 0, K(x(0), x(1)) = 0.

}
(3.1)

21
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Here x : [0, 1] → Rn is a continuously differentiable function, u : [0, 1] → Rm is a
continuous function, and ẋ = dx/dt. Hence the problem is considered in the space

W := C1([0, 1],Rn) × C([0, 1],Rm).

A local minimum in this space is called a weak local minimum. We call x the state variable
and u the control. All data F : Rn+m → R, f : Rn+m → Rn, κ : R2n → Rk, K : R2n → Rs

are assumed to be continuously differentiable.
We say that w = (x, u) ∈ W is an admissible point if it satisfies all the constraints of

the problem. For brevity we set ξ = (x(0), x(1)).
Let us formulate first-order necessary optimality conditions for this problem. We

introduce the Hamiltonian (Pontryagin) function and the endpoint Lagrange function:

H(x, u, p, α0) = ⟨p, f⟩(x, u) + α0F (x, u), L = ακ(ξ) + βK(ξ),

where p, α, β are row vectors of the same dimensions as the column vectors f , κ, K,

respectively, α0 is a number. By definition, ⟨p, f⟩ =
n∑

i=1

pifi, where pi and fi are the

components of the vectors p and f , respectively.
Denote by Rn⊤ the space of row vectors of dimension n.
By Fx and Fu we denote the partial derivatives ∂F/∂x and ∂F/∂u, respectively, consid-

ered as row vectors, i.e. Fx ∈ Rn⊤, Fu ∈ Rm⊤. Similarly, fx := ∂f/∂x and fu := ∂f/∂u,
which are matrices of order n×n and n×m, respectively. Note that Hx ∈ Rn⊤, Hu ∈ Rm⊤

are row vectors, and Hp = f ∈ Rn is a column vector.
We say that at an admissible point w0 = (x0, u0) ∈ W the local minimum principle

(LMP) is satisfied if there exists a continuously differentiable function p : [0, 1] → Rn⊤,
a number α0, and row vectors α ∈ Rk⊤, β ∈ Rs⊤ such that the following system of
optimality conditions holds:

(a) the nonnegativity conditions: α0 ≥ 0, α ≥ 0,

(b) the nontriviality condition: α0 + |α| + |β| > 0,

(c) the complementary slackness condition: ακ(ξ0) = 0, where ξ0 = (x0(0), x0(1)),

(d) the adjoint equation: −ṗ(t) = Hx(w0(t), p(t), α0) ∀ t ∈ [0, 1],

(e) the transversality conditions: (−p(0), p(1)) = Lξ(ξ
0, α, β),

(f) the stationarity of the Hamiltonian with respect to the control:
Hu(w0(t), p(t), α0) = 0 ∀t ∈ [0, 1].

From the equation ẋ0 = f(w0) and conditions (d) and (f) it follows

(g) the condition for the Hamiltonian to be constant: there exists a constant cH such
that H(w0(t), p(t), α0) = cH ∀ t ∈ [0, 1].

Indeed, d
dt
H(w0(t), p(t), α0) = Hx(w0(t), p(t), α0)ẋ

0(t) +Hu(w0(t), p(t), α0)u̇
0(t)

+ ṗ(t)Hp(w
0(t), p(t), α0) = −ṗ(t)ẋ0(t) + ṗ(t)ẋ0(t) = 0. □
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The following theorem is well known, see, for example, [2], [19], [59], [58], [73].

Theorem 1. If w0 is a weak local minimum in problem (3.1), then it satisfies the LMP.

The case, when the cost Lagrange multiplier α0 is not equal to zero (for any quadru-
ple (α0, α, β, p(·)) satisfying the LMP conditions), is called normal. Let us formulate a
condition that guarantees the normal case for the point w0. Introduce a set of active
indices

I = {i ∈ {1, . . . , k} : κi(ξ
0) = 0}.

We say that the Mangasyan-Fromowitz constraint qualification (MFCQ) is satisfied for
the point w0 = (x0, u0) ∈ W if there exists a pair (x, u) ∈ W such that

κ′i(ξ
0)ξ < 0 ∀ i ∈ I, K ′(ξ0)ξ = 0, ξ = (x(0), x(1)), ẋ = f ′(w0)w,

where, for example, f ′(w0)w = fx(w0)x + fu(w0)u. In this case, in the LMP conditions,
we can set α0 = 1.

3.1.2 Formulation of the Second-Order Sufficient Optimality Con-
ditions for an Autonomous Problem on the Interval [0, 1]

Consider again the autonomous problem (3.1). Now we suppose that all data F , f , κ, K
are twice continuously differentiable.

Let us formulate sufficient second-order conditions for a weak local minimum at an
admissible point w0 = (x0, u0) ∈ W , satisfying necessary first-order conditions with the
adjoint variable p and Lagrange multipliers α0, α, β. Define the critical cone at the point
w0:

C :=
{
δw = (δx, δu) ∈ W : δẋ(t) = f ′(w0(t))δw(t), K ′(ξ0)δξ = 0,

κ′i(ξ
0)δξ ≤ 0, i ∈ I,

∫ 1

0
F ′(w0(t))δw(t)dt ≤ 0

}
,

where δξ = (δx(0), δx(1)). The equation δẋ = f ′(w0)δw is called the equation in varia-
tions.

In the normal case, where α0 = 1, the inequality
∫ 1

0
F ′(w0(t))δw(t)dt ≤ 0 can be

excluded from the definition of the critical cone, but then we must add the equalities
αiκ

′
i(ξ

0)δξ = 0, i ∈ I. Thus, in the normal case, we have

C := {δw = (δx, δu) ∈ W : δẋ(t) = f ′(w0(t))δw(t), K ′(ξ0)δξ = 0,

κ′i(ξ
0)δξ ≤ 0, i ∈ I, αiκ

′
i(ξ

0)δξ = 0, i ∈ I}.

This is easy to prove using the LMP conditions. Later, in Section 3.2, where we consider
the normal case, we will use this critical cone representation.

Define the strengthened Legendre condition: there exists cL > 0 such that for all
t ∈ [0, 1] we have ⟨Huu(w0(t), p(t), α0)u, u⟩ ≥ cL|u|2 ∀u ∈ Rm. Here Huu = ∂2H/∂u2

stands for the second partial derivative of H with respect to the control.
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Next, define a quadratic form:

2Θ(δw) = ⟨Lξξ(ξ
0, α, β)δξ, δξ⟩ +

∫ 1

0

⟨Hww(w0(t), p(t), α0)δw(t), δw(t)⟩dt.

Note that if κ(ξ) and K(ξ) are affine functions, then L = ακ + βK is also an affine
function of ξ, and therefore, Lξξ = 0. In this case, the endpoint term ⟨Lξξ(ξ

0, α, β)δξ, δξ⟩
vanishes, and Θ reduces to the integral only.

The following theorem holds, see, for example, [67].

Theorem 2. Assume that for the point w0

(a) the strengthened Legendre condition is satisfied,

(b) there exists a constant cΘ > 0 such that Θ(δw) ≥ cΘ(|δx(0)|2 + ∥δu∥22) ∀ δw ∈ C.

Then there are c > 0 and ε > 0 such that J(w)−J(w0) ≥ c
(
∥x−x0∥2∞+

∫ 1

0
|u(t)−u0(t)|2dt

)
for all admissible w = (x, u) such that ∥w − w0∥∞ < ε, and hence w0 is a weak local
minimum in the problem.

Remark 1. Since Θ(−δw) = Θ(δw) for all δw ∈ W, condition (b) in this theorem is
equivalent to the condition Θ(δw) ≥ cΘ(|δx(0)|2 + ∥δu∥22) ∀ δw ∈ Σ, where Σ = C ∪ (−C).
In particular, let C = {δw ∈ Γ, l(δw) ≤ 0}, where Γ is a subspace, and l is a linear
functional. Then, obviously, Σ = Γ.

3.1.3 Matrix Riccati Equation

Now we consider a sufficient condition for positive definiteness of the quadratic form Θ
on the subspace Γ. Assume that Γ has the form:

Γ =
{
δw = (δx, δu) ∈ W : δẋ = fx(w0)δx+ fu(w0)δu, Eδξ = 0

}
,

where E is a constant matrix, δξ = (δx(0), δx(1)). Let us show that the quadratic form
Θ could be transformed into a perfect square if the corresponding Riccati equation has
a solution Q(t) defined on [0, 1]. Assume that the strengthened Legendre condition is
satisfied. Define the Riccati matrix equation along (x0(t), u0(t), p(t)) by

Q̇+Qfx + fT
x Q+Hxx − (Hxu +Qfu)H−1

uu (Hux + fT
u Q) = 0, t ∈ [0, 1], (3.2)

where Q = Q(t) is a symmetric matrix of order n whose elements belong to C1, fx =
fx(w0), Hxx = Hxx(w0, p, α0), etc., f⊤

x means the transposed matrix fx.

Theorem 3. Assume that the strengthened Legendre condition is satisfied and there exists
a symmetric solution Q (with the entries belonging to C1) of the matrix Riccati equation



3.1. PRELIMINARIES 25

on [0, 1]. Then the quadratic form Θ has the following transformation into a perfect square
on the subspace Γ:

2Θ(δw) =

∫ 1

0

⟨H−1
uu δv, δv⟩dt+ ⟨Mδξ, δξ⟩ ∀ δw ∈ Γ, (3.3)

where δv := (Hux + fT
u Q)δx+Huuδu, H−1

uu is the inverse matrix of matrix Huu, and

M :=

(
Lx0x0 +Q(0) Lx0x1

Lx1x0 Lx1x1 −Q(1)

)
.

For the reader’s convenience, we give a proof of this theorem. We follow [67] (see also
[57]).

Proof. Let (δx, δu) ∈ Γ. Then

2⟨Qδẋ, δx⟩ = 2⟨Q(fxδx+ fuδu), δx⟩
= ⟨(Qfx + f⊤

x Q)δx, δx⟩ + ⟨Qfuδu, δx⟩ + ⟨f⊤
u Qδx, δu⟩.

Consequently,

d

dt
⟨Qδx, δx⟩ = ⟨Q̇δx, δx⟩ + 2⟨Qδẋ, δx⟩

= ⟨Q̇δx, δx⟩ + ⟨(Qfx + f⊤
x Q)δx, δx⟩ + ⟨Qfuδu, δx⟩ + ⟨f⊤

u Qδx, δu⟩
= ⟨(Q̇+Qfx + f⊤

x Q)δx, δx⟩ + ⟨Qfuδu, δx⟩ + ⟨f⊤
u Qδx, δu⟩.

Integrating over [0, 1], we get

⟨Q(1)δx(1), δx(1)⟩ − ⟨Q(0)δx(0), δx(0)⟩
=
∫ 1

0

(
⟨(Q̇+Qfx + f⊤

x Q)δx, δx⟩ + ⟨Qfuδu, δx⟩ + ⟨f⊤
u Qδx, δu⟩

)
dt.

Consequently, ∫ 1

0

(
⟨(Q̇+Qfx + f⊤

x Q)δx, δx⟩ + ⟨Qfuδu, δx⟩ + ⟨f⊤
u Qδx, δu⟩

)
dt

+⟨Q(0)δx(0), δx(0)⟩ − ⟨Q(1)δx(1), δx(1)⟩ = 0.

Adding this zero form to the form 2Θ(δw), we obtain

2Θ(δw) =
∫ 1

0

(
⟨(Q̇+Qfx + f⊤

x Q+Hxx)δx, δx⟩

+⟨(Qfu +Hxu)δu, δx⟩ + ⟨(f⊤
u Q+Huxδx, δu⟩ + ⟨Huuδu, δu⟩

)
dt

+⟨Q(0)δx(0), δx(0)⟩ − ⟨Q(1)δx(1), δx(1)⟩ + ⟨Lξξδξ, δξ⟩.

Now let Q satisfy the Riccati equation (3.2). Then

2Θ(δw) =
∫ 1

0

(
⟨(Hxu +Qfu)H−1

uu (Hux + f⊤
u Q)δx, δx⟩

+⟨(Qfu +Hxu)δu, δx⟩ + ⟨(f⊤
u Q+Huxδx, δu⟩ + ⟨Huuδu, δu⟩

)
dt

+⟨Q(0)δx(0), δx(0)⟩ − ⟨Q(1)δx(1), δx(1)⟩ + ⟨Lξξδξ, δξ⟩.
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Since ⟨Huuδu, δu⟩ = ⟨(Huu)−1Huuδu,Huuδu⟩ and ⟨Q(0)δx(0), δx(0)⟩−⟨Q(1)δx(1), δx(1)⟩+
⟨Lξξδξ, δξ⟩ = ⟨Mδξ, δξ⟩, we obtain

2Θ(δw) =
∫ 1

0

(
⟨(Hxu +Qfu)H−1

uu (Hux + f⊤
u Q)δx, δx⟩

+⟨(Qfu +Hxu)δu, δx⟩ + ⟨(f⊤
u Q+Huxδx, δu⟩ + ⟨(Huu)−1Huuδu,Huuδu⟩

)
dt

+⟨Mδξ, δξ⟩.

Further,

⟨(Hxu +Qfu)H−1
uu (Hux + f⊤

u Q)δx, δx⟩ + ⟨(Qfu +Hxu)δu, δx⟩
+⟨(f⊤

u Q+Huxδx, δu⟩ + ⟨(Huu)−1Huuδu,Huuδu⟩
= ⟨(Huu)−1((Hux + f⊤

u Q)δx+Huuδu), ((Hux + f⊤
u Q)δx+Huuδu)⟩

= ⟨(Huu)−1δv, δv⟩,

where δv = (Hux + f⊤
u Q)δx + Huuδu. Consequently, 2Θ(δw) =

∫ 1

0
⟨(Huu)−1δv, δv⟩ dt +

⟨Mδξ, δξ⟩.

Assume that M is non-negative definite. Recall that Huu is positive definite, and then
(Huu)−1 is positive definite too. Hence Θ(δw) ≥ 0, ∀ δw = (δx, δu) ∈ Γ.

Suppose that Θ(δw) = 0 for some δw = (δx, δu) ∈ Γ. Then, given (3.3) both non-

negative terms
∫ 1

0
⟨(Huu)−1δv, δv⟩ and ⟨Mδξ, δξ⟩ are equal zero. Condition∫ 1

0

⟨(Huu)−1δv, δv⟩dt = 0

implies δv = 0, i.e. (Hux + f⊤
u Q)δx+ Huuδu = 0. Hence δu = −(Huu)−1(Hux + f⊤

u Q)δx.
It follows that δx is a solution to the homogeneous differential equation δẋ = fx(ŵ)δx−
fu(ŵ)(Huu)−1(Hux+f⊤

u Q)δx. Let us now assume that the conditions Eδξ = 0, ⟨Mδξ, δξ⟩ =
0 imply that δx(0) = 0 or δx(1) = 0. Then δx = 0 and hence δu = 0. Consequently,
Θ(δw) > 0 for all δw ∈ Γ \ {0}. Since Θ is a Legendre form, its positiveness on the
subspace Γ implies positive definiteness on Γ. Thus we obtain the following result.

Theorem 4. Assume that the strengthened Legendre condition is satisfied and there exists
a symmetric solution Q (with the entries belonging to C1) of the Riccati matrix equation
on [0, 1] such that

(a) the matrix M is non-negative definite;

(b) for all ξ = (x0, x1) ∈ R2n the conditions Eξ = 0, ⟨Mξ, ξ⟩ = 0 imply that x0 =
0 or x1 = 0.

Then the quadratic form Θ is positive definite on the subspace Γ.
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Other designations

Let Γ has the form:

Γ =
{
δw = (δx, δu) : δẋ(t) = A(t)δx(t) +B(t)δu(t), Eδξ = 0

}
,

and

2Θ(δw) = ⟨Nδξ, δξ⟩+
∫ 1

0

(⟨R(t)δx(t), δx(t)⟩ + 2⟨S(t)δu(t), δx(t)⟩ + ⟨U(t)δu(t), δu(t)⟩) dt,

(3.4)
where E and N are constant matrices, A(t), B(t), R(t), S(t), U(t) are matrices with
continuous entries. Assume that the matrices R(t) and U(t) are symmetric and, moreover,
the matrix U(t) is positive definite for all t ∈ [0, 1], and the constant symmetric matrix
N of the order 2n has the form

N =

(
N00 N01

N10 N11

)
,

where N00, N01, N10, N11 are constant n × n matrices, N00 and N11 are symmetric, and
N10 = N⊤

01. Previously, we had A = fx, B = fu, R = Hxx, S = Hxu, U = Huu. We can
prove similar results for the new quadratic form and subspace in the same way as before.
Now the Riccati equation and the matrix M are:

Q̇+QA+ A⊤Q+R− (S +QB)U−1(S⊤ +B⊤Q) = 0, (3.5)

M =

(
N00 +Q(0) N01

N10 N11 −Q(1)

)
. (3.6)

3.2 Statement of Control Problem for Single Beam

Consider the following optimal control problem. Let z(x) be a state variable, f(x) be
a control, where x ∈ [0, l]. Here z = (z1, . . . , zn)⊤ ∈ Rn, f ∈ R1, l > 0. We assume
that z(x) is a continuously differentiable function and f(x) is a continuous function. The
control system has the form

dz(x)

dx
= φ(z(x)) + e1f(x), x ∈ [0, l], K(z(0), z(l)) = 0 (3.7)

where φ : Rn → Rn is a twice continuously differentiable function, e1 = (1, 0, . . . , 0)T ∈
Rn, and K : R2n → Rs is an affine function of its arguments ζ0 := z(0) and ζl := z(l). Set
ζ = (ζ0, ζl). The cost that needs to be minimized is:

J =

∫ l

0

F (x, z(x), f(x))dx, (3.8)
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where F (x, z, f) is a twice continuously differentiable function. In this problem, l is not
fixed but satisfies the constraint

l ∈ [a, b], where 0 < a < b. (3.9)

An arbitrary admissible process in this problem is defined by the triple (l, z(·), f(·)),
where z : [0, l] → Rn, f : [0, l] → R. We will consider a fixed admissible process

(l0, z0(·), f 0(·)), (3.10)

where z0 and f 0 are defined on [0, l0].
Let us represent this problem as a problem on the interval [0, 1]. To do this, we use

the following change of the independent variable x. Let t ∈ [0, 1] be a new independent
variable. We set

x̃(t) = lt, t ∈ [0, 1].

Then x̃ : [0, 1] → [0, l]. We treat x̃(t) as a new state variable. We also treat l = l̃(t) as
another state variable, constant on [0, 1]. Hence

dl̃(t)

dt
= 0,

dx̃(t)

dt
= l̃(t), t ∈ [0, 1], x̃(0) = 0.

To any admissible process (l, z, f) in the original problem, we associate the process
(l̃, x̃, z̃, f̃) in the new problem by the formulas

l̃(t) = l, x̃(t) = lt, z̃(t) = z(x̃(t)) = z(lt), f̃(t) = f(x̃(t)) = f(lt) ∀ t ∈ [0, 1].

This is one-to-one correspondence. In what follows, we will continue to use the tilde for
variables in the interval [0, 1].

Thus, we obtain an autonomous problem with a new independent variable t ∈ [0, 1]:

dl̃(t)

dt
= 0,

dx̃(t)

dt
= l̃(t), t ∈ [0, 1], (3.11)

dz̃(t)

dt
= l̃(t)

(
φ(z̃(t)) + e1f̃(t)

)
, t ∈ [0, 1], (3.12)

x̃(0) = 0, K(z̃(0), z̃(1)) = 0, (3.13)

−l̃(0) + a ≤ 0. l̃(0) − b ≤ 0, (3.14)

J =

∫ 1

0

l̃(t)F (x̃(t), z̃(t), f̃(t))dt→ min . (3.15)

We study the local minimum at the point

(l̃0(·), x̃0, z̃0(·), f̃ 0(·)), (3.16)

such that

l̃0(t) = l0, x̃0(t) = l0t, z̃0(t) = z0(l0t), f̃ 0(t) = f 0(l0t), t ∈ [0, 1].

This point corresponds to the process (3.10) in the original problem (3.7)-(3.9). Clearly,
the minimum at (3.10) in problem (3.7)-(3.9) implies the minimum at (3.16) in problem
(3.11)-(3.15) and vice versa.
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Local Minimum Principle for Problem with One Beam

Denote by p̃z(t) the adjoint variable which corresponds to the equation for z̃ in the
new problem. We consider p̃z = (p̃z1, . . . , p̃

z
n) as a row vector. We also introduce one-

dimensional adjoint variables p̃x(t) and p̃l(t). The Hamiltonian and the endpoint Lagrange
function are:

H̃(l̃, x̃, z̃, f̃ , p̃l, p̃x, p̃z, α0) = p̃xl̃ + p̃z l̃
(
φ(z̃) + e1f̃

)
+ α0l̃F (x̃, z̃, f̃),

L̃ = αa(−l̃(0) + a) + αb(l̃(0) − b) + βxx̃(0) + βK(z̃(0), z̃(1)).

Note that L̃ is an affine function of the endpoint values l̃(0), x̃(0), z̃(0), l̃(1), x̃(1), z̃(1)
of the states l̃, x̃, and z̃, since K is an affine function by assumption.

Let us write down the first-order necessary optimality conditions at the point (3.16)
in problem (3.11)-(3.15). The partial derivatives of H̃ with respect to l̃, x̃, z̃, f̃ have the
form

H̃l̃ = p̃x + p̃z(φ(z̃) + e1f̃) + α0F (x̃, z̃, f̃),

H̃x̃ = α0l̃Fx̃(x̃, z̃, f̃),

H̃z̃ = p̃z l̃φ′(z̃)T + α0l̃Fz̃(x̃, z̃, f̃),

H̃f̃ = p̃z l̃e1 + α0l̃Ff̃ (x̃, z̃, f̃).

(a) The nonnegativity conditions: α0 ≥ 0, αa ≥ 0, αb ≥ 0.

(b) The nontriviality condition: α0 + αa + αb + |βx| + |β| > 0.

(c) The complementary slackness conditions: αa(l̃
0(0) − a) = 0, αb(l̃

0(0) − b) = 0.

(d) The adjoint equations:

− dp̃l(t)

dt
= p̃x(t) + p̃z(t)

(
φ(z̃0(t)) + e1f̃

0(t)
)

+ α0F (x̃0(t), z̃0(t), f̃ 0(t)), (3.17)

− dp̃x(t)

dt
= α0l̃

0Fx̃(x̃0(t), z̃0(t), f̃ 0(t)), (3.18)

− dp̃z(t)

dt
= p̃z(t)l̃0φ′(z̃0(t)) + α0l̃

0Fz̃(x̃
0(t), z̃0(t), f̃ 0(t)), t ∈ [0, 1]. (3.19)

(e) The transversality conditions:

−p̃l(0) = −αa + αb, p̃l(1) = 0,
−p̃x(0) = βx, p̃x(1) = 0,
−p̃z(0) = βKζ̃0

(z̃0(0), z̃0(1)), p̃z(1) = βKζ̃1
(z̃0(0), z̃0(1)),

where ζ̃0 = z̃(0), ζ̃1 = z̃(1).
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(f) The condition H̃f̃ = 0: p̃z(t)l̃0e1 + α0l̃
0Ff̃ (x̃0(t), z̃0(t), f̃ 0(t)) = 0. Since l̃0 > 0 and

p̃z(t)e1 = p̃z1(t), we get

p̃z1(t) + α0l̃
0Ff̃ (x̃0(t), z̃0(t), f̃ 0(t)) = 0, t ∈ [0, 1].

(g) Finally, the condition H̃ = const has the form: there exists a constant ĉH such that

p̃x(t)l̃0 + p̃z(t)l̃0
(
φ(z̃0(t)) + e1f̃

0(t)
)

+ α0l̃
0F (x̃0(t), z̃0(t), f̃ 0(t)) = c̃H ∀ t ∈ [0, 1].

Denote the left hand side of this equality by H̃(t). Dividing this equality by l̃0, we obtain

p̃x(t) + p̃z(t)
(
φ(z̃0(t)) + e1f̃

0(t)
)

+ α0F (x̃0(t), z̃0(t), f̃ 0(t)) =
c̃H

l̃0
∀ t ∈ [0, 1].

Integrating equation (3.17) over the interval [0, 1] and using the above condition, we get
p̃l(0) − p̃l(1) = c̃H

l̃0
. This and the transversality conditions −p̃l(0) = −αa + αb, p̃

l(1) = 0
give

c̃H

l̃0
= αa − αb.

This relation means the following.

(1) If a < l̃0 < b then by the complementary slackness conditions (c) we have αa =
αb = 0 and therefore c̃H = 0.

(2) If l̃0 = a, then by (c) we have αb = 0 and, therefore, c̃H = αal̃
0 ≥ 0.

(3) If l̃0 = b, then by (c) we have αa = 0 and, therefore, c̃H = −αbl̃
0 ≤ 0.

(4) Moreover, if c̃H > 0, then αa > 0, and, therefore, by (c) l̃0 = a; if c̃H < 0, then
αb > 0, and, therefore, by (c) l̃0 = b.

Note that the transversality condition p̃x(1) = 0 and adjoint equation (3.18) imply

p̃x(t) = α0l̃
0

∫ 1

t

Fx̃ (̃̃z0(τ), f̃ 0(τ))dτ, t ∈ [0, 1]. (3.20)

Thus, we obtain the following result. If (3.16) is a local minimum in problem (3.11)–
(3.15), then there exist a number α0 ≥ 0, a row vector β ∈ Rs⊤, and a continuously such
that the following system of optimality conditions holds:

dz̃

dt
= l̃0

(
φ(z̃0(t)) + e1f̃

0(t)
)
, t ∈ [0, 1], K(z̃0(0), z̃0(1)) = 0,

−dp̃z

dt
= p̃z(t)l̃0φ′(z̃0(t)) + α0l̃

0Fz̃(x̃
0(t), z̃0(t), f̃ 0(t)), t ∈ [0, 1],

−p̃z(0) = βKζ̃0
(z̃0(0), z̃0(1)), p̃z(1) = βKζ̃1

(z̃0(0), z̃0(1)),

p̃z1(t) + α0l̃
0Ff̃ (x̃0(t), z̃0(t), f̃ 0(t)) = 0, t ∈ [0, 1].
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These conditions imply the condition of the constancy of the Hamiltonian: there exists
a constant c̃H such that

p̃x(t)l̃0 + p̃z(t)l̃0
(
φ(z̃0(t)) + e1f̃

0(t)
)

+ α0l̃
0F (x̃0(t), z̃0(t), f̃ 0(t)) = c̃H ∀ t ∈ [0, 1],

where p̃x(t) is defined by (3.20).
Moreover, the following is true. If a < l̃0 < b, then c̃H = 0. If l̃0 = a, then c̃H ≥ 0; if

c̃H > 0, then l̃0 = a. If l̃0 = b, then c̃H ≤ 0; if c̃H < 0, then l̃0 = b. We now equivalently
represent this system on the interval [0, l0]. Introduce a function pz : [0, l0] → Rn⊤ such
that p̃z(t) = pz(x̃0(t)) = pz(l0t), that is pz(x) = p̃z

(
x
l0

)
, x ∈ [0, l0]. Then dp̃z

dt
= dpz

dx
l0.

Hence the adjoint equation for p̃z takes the form

−dpz(x)

dx
= pz(x)φ′(z0(x)) + α0Fz(x

0(t), z0(t), f 0(t)), x ∈ [0, l0].

So, the obtained result has the following formulation on the interval [0, l0]. Below
we replace pz with p, and we also replace (l0, z0(·), f 0(·)) with (l, z(·), f(·)) omitting the
superscript zero.

Theorem 5. If (l, z(·), f(·)) is a local minimum in problem (3.7)-(3.9), then there exist
a number α0 ≥ 0, a row vector β ∈ Rs⊤, and a continuously differentiable function
p : [0, l] → Rn⊤ such that the following system of optimality conditions holds:

dz(x)

dx
= φ(z(x)) + e1f(x), x ∈ [0, l], l ∈ [a, b], K(z(0), z(l)) = 0,

−dp(x)

dx
= p(x)φ′(z(x)) + α0Fz(x, z(x), f(x)), x ∈ [0, l],

−p(0) = βKζ0(z(0), z(1)),

p(l) = βKζ1(z(0), z(l)),

p1(x) + α0Ff (x, z(x), f(x)) = 0, x ∈ [0, l].

These conditions imply the condition of the constancy of the Hamiltonian: there exists a
constant cH such that

px(x) + p(x)
(
φ(z(x)) + e1f(x)

)
+ α0F (x, z(x), f(x)) = cH ∀x ∈ [0, l],

where px(x) = α0

∫ l

x
Fx(y, z(y), f(y))dy, x ∈ [0, l]. Moreover, the following is true. If

a < l < b, then cH = 0. If l = a, then cH ≥ 0; if cH > 0, then l = a. If l = b, then
cH ≤ 0; if cH < 0, then l = b.

Since px(l) = 0 and cH = H(l), we get

cH = p(l)
(
φ(z(l)) + e1f(l)

)
+ α0F (l, z(l), f(l)).

This formula does not use the adjoint variable px.
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In what follows, we consider the case of

F (x, z, f) =
1

2
|z − z∗(x)|2 +

1

2
(f − f ∗(x))2, (3.21)

where |z| =
√

⟨z, z⟩ and z∗(x) and f ∗(x) are twice continuously differentiable functions
defined on [0, b].

Second-Order Sufficient Conditions for Problem with One Beam

For problem (3.11) -(3.15) on [0, 1] with the function F defined by formula (3.21), we
formulate sufficient second-order conditions for a weak local minimum at the point w̃(·) =
(l̃(·), x̃(·), z̃(·), f̃(·)).

Now suppose that the normal case holds for this point. Therefore, there are a row
vector β ∈ Rs⊤ and a continuously differentiable function p̃ : [0, 1] → Rn⊤ such that
the necessary optimality conditions in Section 3.2 are satisfied with α0 = 1. In problem
(3.11)-(3.15) on [0, 1], by definition ξ̃ = (l̃(0), x̃(0), z̃(0); l̃(1), x̃(1), z̃(1)). Since L̃ is an
affine function of ξ̃, we have L̃ξ̃ξ̃ = 0. Since α0 = 1 we have

H̃(l̃, x̃, z̃, f̃ , p̃l, p̃x, p̃z) = p̃xl̃ + p̃z l̃
(
φ(z̃) + e1f̃

)
+ l̃F (x̃, z̃, f̃).

Recall that H̃f̃ = p̃z l̃e1 + α0l̃(f̃ − f ∗(x̃)). Consequently, H̃f̃ f̃ = l̃. Since l̃ = l ≥ a > 0, the
strengthened Legendre condition is satisfied.

Let us write down the definition of the critical cone C̃. Equations in variations for the
system

dl̃

dt
= 0,

dx̃

dt
= l̃,

dz̃

dt
= l̃(φ(z̃(t)) + e1f̃(t))

at the point w̃ have the form

δ ˙̃l = 0, δ ˙̃x(t) = δl̃, δ ˙̃z(t) = l̃
(
φ′(z̃(t))δz̃(t) + e1δf̃(t)

)
+
(
φ(z̃(t)) + e1f̃(t)

)
δl̃.

The endpoint conditions x̃(0) = 0 and K(z̃(0), z̃(1)) = 0 imply the following conditions
in the critical cone

δx̃(0) = 0, K ′(ζ̃)δζ̃ = 0,

where ζ̃ = (z̃(0), z̃(1)), δζ̃ = (δz̃(0), δz̃(1)).
Further, recall that

c̃H

l̃
= αa − αb.

The initial conditions −l̃(0) + a ≤ 0 and l̃(0) − b ≤ 0 imply:

• if a < l̃ < b, i.e., these constraints are not active, then c̃H = 0, and we have no
conditions on δl̃(0),
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• if a = l̃ and, therefore, l̃ < b, then the following conditions are satisfied
δl̃(0) ≥ 0, c̃Hδl̃(0) = 0,

• if l̃ = b and, therefore, l̃ > a, then the following conditions are satisfied
δl̃(0) ≤ 0, c̃Hδl̃(0) = 0.

Consequently,

C̃ =
{
δw̃ = (δl̃, δx̃, δz̃, δf̃) : δ ˙̃l = 0, δ ˙̃x(t) = δl̃, δx̃(0) = 0, K ′(ζ̃)δζ̃ = 0, cHδl̃(0) = 0,

δ ˙̃z(t) = l̃
(
φ′(ẑ(t))δz̃(t) + e1δf̃(t)

)
+
(
φ(z̃(t)) + e1f̃(t)

)
δl̃,

l̃ = a =⇒ δl̃(0) ≥ 0; l̃ = b =⇒ δl̃(0) ≤ 0
}
.

As stated in Remark 1, if Θ is positive definite on C̃, then it is positive definite on (−C̃).
Only one of the two conditions l̃ = a or l̃ = b could be realized. Therefore, the conditions
l̃ = a =⇒ δl̃(0) ≥ 0; l̃ = b =⇒ δl̃(0) ≤ 0 in the definition of C̃ can be ommitted.
More precisely, we can replace C̃ with a subspace

Σ̃ =
{
δw̃ = (δl̃, δx̃, δz̃, δf̃) : δ ˙̃l = 0, δ ˙̃x(t) = δl̃, δx̃(0) = 0, K ′(ζ̃)δζ̃ = 0, c̃Hδl̃(0) = 0,

δ ˙̃z(t) = l̃
(
φ′(ẑ(t))δz̃(t) + e1δf̃(t)

)
+
(
φ(z̃(t)) + e1f̃(t)

)
δl̃
}
.

Note that if c̃H ̸= 0, then in the definition of Σ̃ we have δl̃(0) = 0,which gives δl̃ = 0, and
this means that δx̃ = 0. In this case,

Σ̃ =
{
δw̃ = (δl̃, δx̃, δz̃, δf̃) : δl̃ = 0, δx̃ = 0, δ ˙̃z(t) = l̃φ′(ẑ(t))δz̃(t) + l̃e1δf̃(t), K ′(ζ̃)δζ̃ = 0

}
.

Let us write down the quadratic form Θ̃. Since α0 = 1,

H̃l̃ = p̃x + p̃z(φ(z̃) + e1f̃) + F (x̃, z̃, f̃),

H̃x̃ = l̃Fx̃ = −l̃
(
z̃ − z∗(x̃)

)⊤
(z∗)′(x̃) − l̃(f̃ − f ∗(x̃))(f ∗)′(x̃),

H̃z̃ = p̃z l̃φ′(z̃) + l̃
(
z̃ − z∗(x̃)

)⊤
,

H̃f̃ = p̃z l̃e+ l̃Ff̃ (x̃, z̃, f̃) = p̃z l̃e1 + l̃(f̃ − f ∗(x̃)).

Once again we emphasize that we consider z, z̃, z∗ as column vectors, and pz, p̃z, H̃z̃

as row vectors. Therefore,
(
z̃ − z∗(x̃)

)⊤
(z∗)′(x̃) =

∑
i

(
z̃i − z∗i (x̃)

)
(z∗i )′(x̃).

The second-order partial derivatives have the form
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H̃l̃l̃ = 0,

H̃l̃x̃ = H̃x̃l̃ = −
(
z̃ − z∗(x̃)

)⊤
(z∗)′(x̃) − (f̃ − f ∗(x̃))(f ∗)′(x̃),

H̃l̃z̃ = H̃⊤
z̃l̃

= p̃zφ′(z̃) +
(
z̃ − z∗(x̃)

)⊤
,

H̃l̃f̃ = H̃f̃ l̃ = p̃z1 + f̃ − f ∗(x̃),

H̃x̃x̃ = l̃[(z∗)′(x̃)]⊤(z∗)′(x̃) − l̃(z̃ − z∗(x̃))⊤(z∗)′′(x̃)

+ l̃[(f ∗)′(x̃)]2 − l̃(f̃ − f ∗(x̃))(f ∗)′′(x̃),

H̃x̃z̃ = H̃⊤
z̃x̃ = −l̃[(z∗)′(x̃)]⊤,

H̃x̃f̃ = H̃f̃ x̃ = −l̃(f ∗)′(x̃),

H̃z̃z̃ = p̃z l̃φ′(z̃)⊤ + l̃In,

H̃z̃f̃ = H̃⊤
f̃ z̃

= 0,

H̃f̃ f̃ = l̃.

(3.22)

Here In is the identity matrix of size n and(
z̃ − z∗(x̃)

)⊤
(z∗)′′(x̃) =

∑
i

(
z̃i − z∗i (x̃)

)
(z∗i )′′(x̃).

Denoting w̃ = (l̃, x̃, z̃, f̃), we get

⟨H̃ww(l̃, x̃, z̃, f̃ , p̃l, p̃x, p̃z)δw, δw⟩ = H̃l̃l̃(δl̃)
2 + H̃x̃x̃(δx̃)2 + ⟨H̃z̃z̃δz̃, δz̃⟩ + H̃f̃ f̃ (δf̃)2

+2H̃l̃x̃δx̃ · δl̃ + 2H̃l̃z̃δz̃ · δl̃ + 2H̃l̃f̃δf̃ · δl̃ + 2H̃x̃z̃δz̃ · δx̃+ 2H̃x̃f̃δf̃ · δx̃+ 2H̃f̃ z̃δz̃ · δf̃ .

Using the above formulas, we obtain〈
H̃w̃w̃(l̃(t), x̃(t), z̃(t), f̃(t), p̃l(t), p̃x(t), p̃z(t))δw̃(t), δw̃(t)

〉
= l̃
(

[(z∗)′(x̃(t))]⊤(z∗)′(x̃(t)) − (z̃(t) − z∗(x̃(t)))⊤(z∗)′′(x̃(t))

+ [(f ∗)′(x̃(t))]2 − (f̃(t) − f ∗(x̃(t)))(f ∗)′′(x̃(t))
)

(δx̃(t))2

+ l̃
〈(
p̃z(t)φ′′(z̃(t)) + In

)
δz̃(t), δz̃(t)

〉
+ l̃
(
δf̃(t)

)2
− 2
((
z̃(t) − z∗(x̃(t))

)
(z∗)′(x̃(t)) +

(
f̃(t) − f ∗(x̃(t))

)
(f ∗)′(x̃(t))

)
δx̃(t) · δl̃

+ 2
(
p̃z(t)φ′(z̃(t)) +

(
z̃(t) − z∗(x̃(t))

)⊤)
δz̃(t) · δl̃

+ 2
(
p̃z1(t) + f̃(t) − f ∗(x̃(t))

)
δf̃(t) · δl̃

− 2l̃ · [(z∗)′(x̃(t))]⊤δz̃(t) · δx̃(t) − 2l̃ · (f ∗)′(x̃(t))δf̃(t) · δx̃(t).

Recall that here l̃ = l = const > 0. Since L̃ξ̃ξ̃ = 0, the quadratic form Θ̃ is:

Θ̃(δw̃) =

∫ 1

0

⟨H̃w̃w̃(l̃, x̃, z̃, f̃ , p̃l, p̃x, p̃z)δw̃, δw̃⟩dt.
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Thus, we obtain the following result: if there exists a constant c̃Θ > 0 such that

Θ̃(δw̃) ≥ c̃Θ((δl̃)2 + |δz̃(0)|2 + ∥δf̃∥22) ∀ δw̃ ∈ Σ̃,

then the quadruple (l̃(·), x̃(·), z̃(·), f̃(·)) is a weak local minimum in problem (3.11)-(3.15)
on [0, 1].

Now let us rewrite the obtained sufficient second-order condition in terms of the in-
dependent variable x ∈ [0, l]. Let δw̃ = (δl̃, δx̃, δz̃, δf̃) ∈ Σ̃. Introduce δz(x) such that

δz(x̃(t)) = δz(lt) = δz̃(t), that is δz(x) = δz̃
(

x
l

)
. Then δ ˙̃z(t) = (δz)′(x̃(t))l, where

(δz)′(x) = dz(x)
dx

. Define δl such that δl̃ = lδl, that is δl =
δl̃

l
. Similarly, we define

δf(x) = δf̃
(
x
l

)
, δx(x) = δx̃

(
x
l

)
. Then the equation δ ˙̃z(t) = l̃

(
φ′(ẑ(t))δz̃(t) + e1δf̃(t)

)
+(

φ(z̃(t)) + e1f̃(t)
)
δl̃ takes the form

(δz)′(x) = φ′(z(x))δz(x) + e1δf(x) +
(
φ(z(x)) + e1f(x)

)
δl

and the subspace Σ̃ in the new variables reads as follows

Σ =
{
δw = (δl, δx, δz, δf) : (δl)′ = 0, (δx)′(x) = δl, δx(0) = 0, K ′(ζ)δζ = 0, cHδl(0) = 0,

(δz)′(x) = φ′(z(x))δz(x) + e1δf(x) +
(
φ(z(x)) + e1f(x)

)
δl
}
,

where ζ = (z(0), z(l)), δζ = (δz(0), δz(l)). Recall that δx and δl are one-dimensional,
δl = const and δx = xδl. Therefore,

Σ =
{
δw = (δl, δx, δz, δf) : (δl)′ = 0, δx(x) = x · δl, K ′(ζ)δζ = 0, cHδl(0) = 0,

(δz)′(x) = φ′(z(x))δz(x) + e1δf(x) +
(
φ(z(x)) + e1f(x)

)
δl
}
.

Let us rewrite the quadratic form Θ̃ in the new variables. Recall that l̃ = l. If x = x̃(t) =
lt, then dx = ldt and z̃(t) = z(x), f̃(t) = f(x), δl̃ = lδl, δz(x) = δz̃(t), δx(x) = δx̃(t),
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δf(x) = δf̃(t). Therefore, we have

l̃
(

[(z∗)′(x̃(t))]T (z∗)′(x̃(t)) − (z̃(t) − z∗(x̃(t)))⊤(z∗)′′(x̃(t))

+ [(f ∗)′(x̃(t))]2 − (f̃(t) − f ∗(x̃(t)))(f ∗)′′(x̃(t))
)

(δx̃(t))2dt

=
(

[(z∗)′(x)]⊤(z∗)′(x) − (z(x) − z∗(x))⊤(z∗)′′(x)

+ [(f ∗)′(x)]2 − (f(x) − f ∗(x))(f ∗)′′(x)
)

(δx(x))2dx,〈(
p̃z(t)l̃φ′′(z̃(t)) + l̃In

)
δz̃(t), δz̃(t)

〉
dt =

〈(
pz(x)φ′′(z(x)) + In

)
δz(x), δz(x)

〉
dx,

l(δf̃(t))2dt = (δf(x))2dx,

− 2
((
z̃(t) − z∗(x̃(t))

)⊤
(z∗)′(x̃(t)) +

(
f̃(t) − f ∗(x̃(t))(f ∗)′(x̃(t))

)
δx̃(t) · δl̃ · dt

= −2
((
z(x) − z∗(x)

)⊤
(z∗)′(x) +

(
f(x) − f ∗(x)

)
(f ∗)′(x)

)
δx(x) · δl · dx,

2
((
p̃z(t)φ′(z̃(t)) +

(
z̃(t) − z∗(x̃(t))

)⊤)
δz̃(t) · δl̃ · dt

= 2
((
pz(x)φ′(z(x)) +

(
z(x) − z∗(x)

)⊤)
δz(x) · δl · dx,

− 2l̃[(z∗)′(x̃(t))]⊤δz̃(t) · δx̃(t) · dt− 2l̃(f ∗)′(x̃(t)) · δf̃(t) · δx̃(t) · dt

= −2[(z∗)′(x)]⊤δz(x) · δx(x) · dx− 2(f ∗)′(x)δf(x) · δx(x) · dx.

Consequently,

Θ̃(δw̃) = Θ(δw),

where

Θ(δw) =

∫ l

0

{(
[(z∗)′(x)]⊤(z∗)′(x) −

(
z(x) − z∗(x)

)⊤
(z∗)′′(x)

+ [(f ∗)′(x)]2 − (f(x) − f ∗(x))(f ∗)′′(x)
)
(δx(x))2

+
〈(
pzφ′′(z) + In

)
δz(x), δz(x)

〉
+ (δf(x))2

− 2
((
z(x) − z∗(x)

)⊤
(z∗)′(x) + (f(x) − f ∗(x))(f ∗)′(x)

)
δx(x) · δl

+ 2
(
pz(x)φ′(z(x)) +

(
z(x) − z∗(x)

)⊤)
δz(x) · δl

+ 2
(
pz1(x) + f(x) − f ∗(x)

)
δf(x) · δl

− 2[(z∗)′(x)]⊤δz(x) · δx(x) − 2(f ∗)′(x)δf(x) · δx(x)
}

dx.

Below we replace pz with p, omitting the superscript z. Since δl ∈ R is a constant,



3.2. STATEMENT OF CONTROL PROBLEM FOR SINGLE BEAM 37

δx = x · δl, and δf is one-dimensional, we obtain

Θ(δw) = (δl)2
∫ l

0

(
[(z∗)′(x)]⊤(z∗)′(x) − (z(x) − z∗(x))⊤(z∗)′′(x)

+ [(f ∗)′(x)]2 − (f(x) − f ∗(x)(f ∗)′′(x)
)
x2dx

+

∫ l

0

〈(
p(x)φ′′(z(x)) + In

)
δz(x), δz(x)

〉
dx+

∫ l

0

(δf(x))2dx

− 2(δl)2
∫ l

0

((
z(x) − z∗(x)

)⊤
(z∗)′(x) + (f(x) − f ∗(x))(f ∗)′(x)

)
xdx

+ 2δl

∫ l

0

(
p(x)φ′(z(x)) +

(
z(x) − z∗(x)

)⊤)
δz(x)dx

+ 2δl

∫ l

0

(
p1(x) + f(x) − f ∗(x)

)
δf(x)dx

− 2δl

∫ l

0

(
(z∗)′(x)

)⊤
δz(x)xdx

− 2δl

∫ l

0

(f ∗)′(x)δf(x)xdx.

(3.23)

This quadratic form is independent of δx. We can exclude δx from the definition of Σ as
well. Therefore, the quadratic form Θ is considered on a subspace, which we still denote
by Σ (we also keep the notation δw for the shorter collection (δl, δz, δf)):

Σ :=
{
δw = (δl, δz, δf) : (δl)′ = 0, cHδl = 0, K ′(ζ)δζ = 0,

(δz)′(x) = φ′(z(x))δz(x) + e1δf(x) +
(
φ(z(x)) + e1f(x)

)
δl
}
.

Thus, we obtain the following result:

Theorem 6. Let an admissible triple (l, z(·), f(·)) satisfy the first order necessary opti-
mality conditions of Theorem 5 in problem (3.7)-(3.9) with the corresponding multipliers
α0 = 1, β, p(·). Suppose there exists a constant cΘ > 0 such that

Θ(δw) ≥ cΘ

(
(δl)2 + |δz(0)|2 + ∥δf∥22

)
∀ δw ∈ Σ.

Then the triple (l, z(·), f(·)) is a weak local minimum in problem (3.7)-(3.9).

Matrix Riccati equation for One Beam: Case cH ̸= 0

In this case, as we know, the condition cH > 0 implies l = a, and the condition cH < 0
implies l = b. Then in the definition of Σ, we have δl = 0, so that we can put

Σ :=
{
δw = (δz, δf) : (δz)′(x) = φ′(z(x))δz(x) + e1δf(x), K ′(ζ)δζ = 0

}
.
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Since δl = 0, the quadratic form reduces to

Θ(δw) =

∫ l

0

⟨(p(x)φ′′(z(x)) + In) δz(x), δz(x)⟩ dx+

∫ l

0

(δf(x))2dx.

We study the question of the positive definiteness of Θ on Σ in terms of the solution of
the matrix Riccati equation. Obviously, the strengthened Legendre condition is satisfied.

Comparing the differential equation in the definition of Σ with the equation (δz)′ =
Aδz +Bδf (see end of section 3.1.3), we obtain

A = φ′((z(x)), B = e1 = (1, 0, . . . , 0)⊤.

Comparing Θ with (3.4), we get

R = p(x)φ′′(z(x)) + In, S = 0, U = 1.

Consequently,

(S +QB)U−1(S⊤ +B⊤Q) = Qe1e
⊤
1 Q =

 Q11

. . .
Q1n

( Q11 . . . Q1n

)

=

 Q11Q11 . . . Q11Q1n

. . . . . . . . .
Q1nQ11 . . . Q1nQ1n

 = ||Q1iQ1j||ni,j=1.

Thus, the Riccati equation (3.5) reduces to the following

d

dx
Q+QA+ A⊤Q+R−Qe1e

⊤
1 Q = 0, x ∈ [0, l]. (3.24)

where
A = φ′((z(x)), R = p(x)φ′′(z(x)) + In,

e1 = (1, 0. . . . , 0)⊤, Qe1e
T
1Q = ||Q1iQ1j||ni,j=1.

The matrix M has the form

M =

(
Q(0) 0

0 −Q(l)

)
.

To this Riccati equation, one can add the initial condition

Q(0) = In,

where In is the identity matrix of order n.
Similarly to Theorem 4 the following theorem holds.
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Theorem 7. Assume that the strengthened Legendre condition is satisfied, cH ̸= 0, and
there exists a symmetric solution Q (with the entries belonging to C1) of the Riccati matrix
equation (3.24) on [0, l] such that

(a) the matrix M is non-negative definite;

(b) for all ζ = (ζ0, ζ1) ∈ R2n the conditions K ′(ζ)ζ = 0, ⟨Mζ, ζ⟩ = 0 imply that ζ0 =
0 or ζ1 = 0.

Then the quadratic form Θ is positive definite on the subspace Σ.

Matrix Riccati equation for one beam: case cH = 0

In this more complicated case, we have

Σ :=
{
δw = (δl, δz, δf) : (δl)′ = 0, K ′(ζ)δζ = 0,

(δz)′(x) = φ′(z(x))δz(x) + e1δf(x) +
(
φ(z(x)) + e1f(x)

)
δl
}
.

Consider again the sufficient condition for the positive definiteness of the quadratic
form Θ on the subspace Σ. Now Σ is defined by a linear system of differential equations{

(δl)′ = 0,

(δz)′ = (φ((z(x)) + e1f(x))δl + φ′((z(x))δz(x) + e1δf(x).

In the sequel, we denote

X =

(
l
z

)
=


l
z1
. . .
zn

 ∈ Rn+1, δX =

(
δl
δz

)
=


δl
δz1
. . .
δzn

 ∈ Rn+1,

w =

(
X
f

)
=

 l
z
f

 ∈ Rn+2, δw =

(
δX
δf

)
=

 δl
δz
δf

 ∈ Rn+2.

Let us represent the above system in matrix form (δX)′ = AδX + Bδf , where A is a
(n+ 1) × (n+ 1) matrix, B is a (n+ 1) × 1 matrix such that

A =

(
0 0⊤

n

φ(z(x)) + e1f(x) φ′((z(x))

)
, B =

(
0
e1

)
, 0⊤

n = (0, . . . , 0) ∈ Rn⊤.

It is convenient to present

A :=

(
0 0⊤

n

Azl Azz

)
, where Azl = φ(z(x)) + e1f(x), Azz = φ′((z(x)).
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Compare quadratic form (3.23) with the standard form (see (3.4)):

Θ(δw) =

∫ l

0

(
⟨RδX, δX⟩ + 2(δX)⊤Sδf + U(δf)2

)
dt,

where R is the symmetric (n+ 1) × (n+ 1) matrix, S ∈ Rn+1 is the column vector, U is
the number. Let us find the matrix R. Denote

R =

(
Rll Rlz

Rzl Rzz

)
,

where Rll, Rlz, Rzl = R⊤
lz , Rzz = R⊤

zz are matrices of orders 1 × 1, 1 × n, n × 1, n × n,
respectively. Then,

⟨RδX, δX⟩ = Rll(δl)
2 + 2Rlzδzδl + ⟨Rzzδz, δz⟩.

Using (3.23), we obtain

⟨RδX, δX⟩ =
[(

[(z∗)′(x)]⊤(z∗)′(x) − (z(x) − z∗(x))⊤(z∗)′′(x)

+[(f ∗)′(x)]2 − (f(x) − f ∗(x))(f ∗)′′(x)
)
x2

−2
((
z(x) − z∗(x)

)⊤
(z∗)′(x) + (f(x) − f ∗(x))(f ∗)′(x)

)
x
]
· (δl)2

+ ⟨(p(x)φ′′(z(x)) + In) δz(x), δz(x)⟩

+2
[(
p(x)φ′(z(x)) +

(
z(x) − z∗(x)

)⊤ − x
(
(z∗)′(x)

)⊤]
δz(x) · δl.

Consequently,

Rll =
(

[(z∗)′(x)]⊤(z∗)′(x) − (z(x) − z∗(x))⊤(z∗)′′(x)

+[(f ∗)′(x)]2 − (f(x) − f ∗(x))(f ∗)′′(x)
)
x2

−2
((
z(x) − z∗(x)

)⊤
(z∗)′(x)

+(f(x) − f ∗(x))(f ∗)′(x)
)
x, (3.25)

Rzz = p(x)φ′′(z(x)) + In, (3.26)

Rlz = R⊤
zl =

(
p(x)φ′(z(x)) +

(
z(x) − z∗(x)

)⊤ − x
(
(z∗)′(x)

)⊤
. (3.27)

Further, U = 1, and finally, S has the form

S =

(
Sl

0n

)
∈ Rn+1,

where Sl = p1(x) + f(x) − f ∗(x) − x(f ∗)′(x). Recall that the Riccati equation has the
form

d

dx
Q+QA+ ATQ+R− (S +QB)U−1(ST +BTQ) = 0, x ∈ [0, l],
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where

Q(x) =

(
Qll Qlz

Qzl Qzz

)
(x)

where

Qll(x) ∈ R, Qzl(x) =

 Qz1l

. . .
Qznl

 (x) ∈ Rn,

Qlz(x) = Q⊤
zl(x) =

(
Qlz1 . . . Qlzn

)
(x) ∈ Rn⊤,

and

Qzz(x) =

 Qz1z1 . . . Qz1zn

. . . . . . . . .
Qznz1 . . . Qznzn

 (x)

is n× n symmetric matrix. Since U = 1, we have

(S +QB)U−1(S⊤ +B⊤Q) = (S +QB)(S +QB)⊤.

Further,

QB =

(
Qll Qlz

Qzl Qzz

)(
0
e1

)
=

(
Qlze1
Qzze1

)
.

Hence

S +QB =

(
Sl

0

)
+

(
Qlze1
Qzze1

)
=

(
Qlze1 + Sl

Qzze1

)
.

Consequently,

(S +QB)(S +QB)⊤ =

(
Qlze1 + Sl

Qzze1

)(
Qlze1 + Sl, e

⊤
1 Qzz

)
=

(
(Qlze1 + Sl)

2(Qlze1 + Sl)e
⊤
1 Qzz

Qzze1(Qlze1 + Sl) (Qzze1)(e
⊤
1 Qzz)

)
.

Moreover,

QA =

(
Qll Qlz

Qzl Qzz

)(
0 0⊤

n

Azl Azz

)
=

(
QlzAzl QlzAzz

QzzAzl QzzAzz

)
, A⊤Q =

(
QlzAzl A⊤

zlQzz

A⊤
zzQzl A⊤

zzQzz

)
.

Here QlzAzl, QlzAzz, QzzAzl, QzzAzz are matrices of order 1 × 1, 1 × n, n × 1, n × n,
respectively. Consequently,

QA+ A⊤Q =

(
2QlzAzl QlzAzz + A⊤

zlQzz

QzzAzl + A⊤
zzQzl QzzAzz + A⊤

zzQzz

)
.

Thus, according to (3.5), we obtain the matrix Riccati equation in the form

d

dx

(
Qll Qlz

Qzl Qzz

)
+

(
2QlzAzl QlzAzz + A⊤

zlQzz

QzzAzl + A⊤
zzQzl QzzAzz + A⊤

zzQzz

)
+

(
Rll Rlz

Rzl Rzz

)
−
(

(Qlze1 + Sl)
2 (Qlze1 + Sl)e

⊤1Qzz

(Qlze1 + Sl)Qzze1 (Qzze)(e
⊤
1 Qzz)

)
= 0, x ∈ [0, l],

(3.28)
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where the blocks of the matrix R are determined by formulas (3.25)-(3.27). Further, the
matrix M has the form

M =

(
Q(0) 0

0 −Q(l)

)
.

We set

δξ =

(
δX(0)
δX(l)

)
.

Then
⟨Mδξ, δξ⟩ = ⟨Q(0)δX(0), δX(0)⟩ − ⟨Q(l)δX(l), δX(l)⟩,

where

δX(0) =

(
δl

δz(0)

)
, δX(l) =

(
δl
δz(l)

)
, (δl)′ = 0, i.e., δl = const.

The condition Eδξ = 0 in the definition of Σ means Kz0δz(0) + Kzlδz(l) = 0, (δl)′ = 0.
Consequently,

δX0 := δX(0) =

(
δl

δz(0)

)
, δXl := δX(l) =

(
δl
δz(l)

)
.

The following theorem holds.

Theorem 8. Assume that the strengthened Legendre condition is satisfied, cH = 0, and
there exists a symmetric solution Q (with the entries belonging to C1) of the Riccati matrix
equation (3.28) on [0, l] such that

(a) the matrix M is nonnegative definite;
(b) for all pairs of vectors in Rn+1

δX0 =

(
δl
δz0

)
, δXl =

(
δl
δzl

)
the conditions Kz0δz0 + Kzlδzl = 0, δl ∈ R, ⟨Q(0)δX0, δX0⟩ − ⟨Q(l)δXl, δXl⟩ = 0 imply
that δX0 = 0 or δXl = 0. Then the quadratic form Θ is positive definite on the subspace Σ.

3.3 Numerical Examples

In the following examples, we focus on a single edge to show the application of our
methods. In the first example, we construct a semilinear differential equation, specifying
the desired state and control parameters. Subsequently, we derive the optimal state and
control configurations through the optimality system.

For the second example, we consider the static IGEB model, with parameters detailed
in [44]. First, we semi-discretize in space the IGEB model by means of the finite ele-
ment method and using P2 (quadratic) elements. For the nonlinear ODE, we use the
Newton–Raphson method.
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3.3.1 Example 1

Consider a steady state scenario involving a single edge, governed by a semilinear differ-
ential equation. The control system has the form

z′(x) = φ(z(x)) + f(x), x ∈ [0, l], z(l) = 0,

where z is one dimensional and l is not fixed. The beam’s behavior is described by the
function

φ(z) = z − z2.

Set
l∗ = 1, z∗(x) = −2 + x+ x2, f ∗(x) = 7 − 3x− 4x2 + 2x3 + x4.

It is easy to check that the triple (l∗, z∗, f ∗(x)) defines an admissible process of a given
control system.

The cost functional is expressed as:

J =
1

2

∫ l

0

(
(z(x) − z∗(x))2 + (f(x) − f ∗(x))2

)
dx+

1

2
(l − l∗)2 → min .

The parameter l is constrained l ∈ [
1

2
,
3

2
].

Obviously, (l∗, z∗, f ∗(x)) is the solution to this problem. But assume that this solution
is unknown and let us write down the necessary optimality conditions of Theorem 5.

Since
∫ l

0
(x − l∗)dx = 1

2
(l − l∗)2 − 1

2
(l∗)2, we can consider the equivalent problem of

minimizing the functional

J =

∫ l

0

F (x, z(x), f(x))dx

with F (x, z, f) = 1
2

(
(z − z∗(x))2 + (f − f ∗(x))2

)
+ x− l∗.

Let the triple (l, z(·), f(·)) be a solution to this problem. Then, according to Theorem 5
there are numbers α0 ≥ 0, β, and a continuously differentiable function p : [0, l] → R such
that

z′(x) = φ(z(x)) + f(x), z(l) = 0

−p′(x) = p(x)φ′(z(x)) + α0Fz(x, z(x), f(x)), x ∈ [0, l]

p(0) = 0, p(l) = β,

p(x) + α0Ff (x, z(x), f(x)) = 0, x ∈ [0, l].

If α0 = 0, then p(x) = 0 and β = 0. Therefore, α0 > 0, and we put α0 = 1. Hence,
taking into account that φ(z) = z − z2, φ′(z) = 1 − 2z, Fz(x, z, f) = (z − z∗(x)), and
Ff (x, z, f) = f − f ∗(x), we get a system

z′(x) = z(x) − z2(x) + f(x), z(l) = 0,

−p′(x) = p(x)(1 − 2z(x)) + z − z∗(x), p(0) = 0

p(x) + f(x) − f ∗(x) = 0.

 (3.29)
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Theorem 5 gives one more necessary optimality condition for determining (l, z(·), f(·)).
Recall that we are considering l close to l∗ = 1, which means a < l < b with a = 0.5,
b = 1.5. As we know, in this case cH = 0. Since α0 = 1, this condition looks like

cH = px(x) + p(x)
(
φ(z(x)) + f(x)

)
+ F (x, z(x), f(x)) = 0 ∀x ∈ [0, l],

where px(x) = α0

∫ l

x
Fx(y, z(y), f(y))dy, x ∈ [0, l]. Considering that px(l) = 0, z(l) = 0,

and −p(l) = f(l) − f ∗(l), we get

0 = p(l)
(
φ(z(l)) + f(l)

)
+ F (l, z(l), f(l))

= p(l)
(
φ(0) + f(l)

)
+ F (l, 0, f(l))

= p(l)f(l) +
1

2
(z∗(l))2 +

1

2
((f(l) − f ∗(l))2 + l − 1

= p(l)f(l) +
1

2
(z∗(l))2 +

1

2
(p(l))2 + l − 1,

that is

p(l)f(l) +
1

2
(z∗(l))2 +

1

2
(p(l))2 + l − 1 = 0. (3.30)

Conditions (3.29) and (3.30) constitute a complete system of necessary optimality con-
ditions for determining (l, z(·), f(·)). Obviously, the triple p(x) = 0, f(x) = f ∗(x),
z(x) = z∗(x) is a solution to this system.

We will now show numerical results for this problem. We conducted the computa-
tion using the finite element method and the Newton method to handle the nonlinear
component. Here are the results. Fig. 3.1 illustrates the variation of the cost functional
with respect to the length parameter. It is observed that the cost functional attains its
minimum value at l = 1 = l∗, indicating the optimality of this length. This signifies that
the length l = 1 is the optimal choice based on the minimization of the cost functional.

Figure 3.1: Cost with respect to l

In Fig. 3.2, we show the optimal control and state under the optimal length.
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Figure 3.2: Optimal control and optimal state

Then, we computed the L2 norm error between the numerical solution and the ana-
lytical solution to assess the accuracy of the results:

ferr = ||f(x) − f ∗(x)|| = 1.6236e− 12, zerr = ||z(x) − z∗(x)|| = 4.5426e− 11.

3.3.2 Example 2

Consider the steady state for a single beam governed by the semilinear differential equation
(Eq. 2.7). We present results from numerical simulations. The cost functional is expressed
the same as before:

J =
1

2

∫ l

0

(
(z(x) − z∗(x))2 + (f(x) − f ∗(x))2

)
dx+

1

2
(l − l∗)2 → min . (3.31)

The flexibility matrix is given by

C = diag (c1, c2, c3, c4, c5, c6)
−1 = diag

(
104, 104, 104, 500, 500, 500

)−1
.

In Eq. (3.7), setting f ∗(x) = −1, then the steady state values are z∗1 = −x + 1, z∗2 =
0, . . . , z∗6 = 0. For the IGEB model, the function

φ(r) = −E(x)r + L(r)Cr, (3.32)

and its derivative is given by

φ′(r) = −E(x) + (L(r)Cr)′ := −E(x) + Ḡ(r). (3.33)

Here,

E(x) =


03×3 03×3

0 0 0

0 0 −1 03×3

0 1 0

 ,L(z) =



0 −z3 z2
03×3 z3 0 −z1

−z2 z1 0
0 −z3 z2 0 −z6 z5
z3 0 −z1 z6 0 −z4
−z2 z1 0 −z5 z4 0

 .
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The optimality system of equations can be written as
z′(x) = −E(x)z(x) + L(z)Cz(x) + e1f(x), x ∈ [0, l]

−p′(x) = −p(x)E(x) + p(x)Ḡ(z) + z(x) − z∗(x), x ∈ [0, l]

zi(l) = 0, pi(0) = 0, i = 1, 2, . . . , 6

p1(x) + f(x) − f ∗ = 0.

(3.34)

The weak form of this system is given by:

−
∫ l

0

〈
dψ

dx
, z

〉
dx− z(0)ψ(0) +

∫ l

0

⟨Ez, ψ⟩ dx−
∫ l

0

⟨CL(z)z, ψ⟩ dx

+

∫ l

0

e1 ⟨p, ψ⟩ dx =

∫ l

0

e1 ⟨f ∗, ψ⟩ dx, ∀ψ ∈ V1∫ l

0

〈
dη

dx
, p

〉
dx− p(1)η(1) +

∫ l

0

⟨Ep, η⟩ dx−
∫ l

0

〈
Ḡ(z)p, η

〉
dx

−
∫ l

0

⟨z, η⟩ dx = −
∫ l

0

⟨z∗, η⟩ dx, ∀η ∈ V2,

(3.35)
where

V1 := {ψ ∈ H1
(
0, l;R6

)
, ψ(1) = 0},

and
V2 := {η ∈ H1

(
0, l;R6

)
, η(0) = 0}.

In numerical discretization, the interval [0, l] is discretized into Nx points {xk}Nx
k=1, where

x1 = 0 and xNx = l. Each subinterval ωe := [x2e−1, x2e+1] for e ∈ {1, 2, . . . , Ne} constitutes
an element. These elements are defined by the points x2e−1, x2e, and x2e+1 and have a
uniform length he = x2e+1 − x2e−1. It is important to note that Nx = 2Ne + 1.

We utilize P2 (quadratic) elements to define function spaces V1,h and V2,h as described
below:

V1,h : =
{
ψ ∈ C0

(
[0, l];RN6

)
: ψ|ωe ∈ (P2)

N6 for all e ∈ {1, . . . , Ne} , ψ(1) = 0
}
,

V2,h : =
{
η ∈ C0

(
[0, l];RN6

)
: η|ωe ∈ (P2)

N6 for all e ∈ {1, . . . , Ne} , η(0) = 0
}
.

The approximations for zi(x) and pi(x) are represented by the following expressions:

zi(x) =
Nx∑
j=1

Zi,jψj(x), pi(x) =
Nx∑
j=1

Pi,jηj(x),

where Zi,j denotes the value of zi at the P2 basis function ψj, which value is 1 at node
xj and 0 at other nodes, and similarly for Pi,j. In the discretized system, we define the
following matrices and vectors:

A1 =

∫ l

0

ψψ⊤, A2 =

∫ l

0

ψ(ψ′)⊤, A3[z] =

∫ l

0

zψψ⊤,
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Ā1 =

∫ l

0

ηη⊤, Ā2 =

∫ l

0

η(η′)⊤, Ā3[z] =

∫ l

0

zηη⊤,

where ψ = (ψ1, ψ2, · · · , ψNx)⊤ and η = (η1, η2, · · · , ηNx)⊤. The matrix form of system
(3.35) can be written as

−Ks,1Z −MCL(z)Z + ē1M̄P = ē1F̂ ,

Ks,2P −MG(z)P − M̄Z = −Ẑ,
(3.36)

i.e., (
−Ks,1 ē1M̄
−M̄ Ks,2

)(
Z
P

)
−
(
MCL(z)

MG(z)

)(
Z
P

)
=

(
ē1F̂

−Ẑ

)
, (3.37)

where ē1 = diag(INx ,ONx ,ONx ,ONx ,ONx ,ONx). ONx is the matrix of zeros. Furthermore,
the vectors Z and P are defined as:

Z = (Z1,1, · · · , Z1,Nx , · · · , Z6,1, · · · , Z6,Nx)⊤ ,

P = (P1,1, · · · , P1,Nx , · · · , P6,1, · · · , P6,Nx)⊤ .

Similarity,

Ẑ =
(
Ẑ1,1, · · · , Ẑ1,Nx , · · · , Ẑ6,1, · · · , Ẑ6,Nx

)⊤
,

F̂ =
(
F̂1, · · · , F̂Nx ,ONx ,ONx ,ONx ,ONx ,ONx

)⊤
,

where Ẑi,j represents the value of z∗i at the basis function ψj and F̂j represents the value
of f ∗ at the basis function ηj.

The other matrices are defined by:

Ks,1 =


A2

A2

A2

A2

A1 A2

−A1 A2

 , Ks,2 =


Ā2

Ā2

Ā2

Ā2

−Ā1 Ā2

Ā1 Ā2

 ,

MG(z) =


0 c6Ā3(z6) −c5Ā3(z5) 0 −c5Ā3(z3) c6Ā3(z2)

−c6Ā3(z6) 0 c4Ā3(z4) c4Ā3(z3) 0 −c6Ā3(z1)
c5Ā3(z5) −c4Ā3(z4) 0 −c4Ā3(z2) c5Ā3(z1) 0

0 (c3 − c2)Ā3(z3) (c3 − c2)Ā3(z2) 0 (c6 − c5)Ā3(z6) (c6 − c5)Ā3(z5)
(c1 − c3)Ā3(z3) 0 (c1 − c3)Ā3(z1) (c4 − c6)Ā3(z6) 0 (c4 − c6)Ā3(z4)
(c2 − c1)Ā3(z2) (c2 − c1)Ā3(z1) 0 (c5 − c4)Ā3(z5) (c5 − c4)Ā3(z4) 0

,
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MCL(z) =


0 0 0 0 −c5A3(z3) c6A3(z2)
0 0 0 c4A3(z3) 0 −c6A3(z1)
0 0 0 −c4A3(z2) c5A3(z1) 0
0 −c2A3(z3) c3A3(z2) 0 −c5A3(z6) c6A3(z5)

c1A3(z3) 0 −c3A3(z1) c4A3(z6) 0 c6A3(z4)
−c1A3(z2) c2A3(z1) 0 −c4A3(z5) c5A3(z4) 0

,

M̄ = diag(A1, A1, A1, A1, A1, A1).

Denote

A =

(
−Ks,1 ē1M̄
−M̄ Ks,2

)
, NL(z) =

(
MCL(z)

MG(z)

)
, W =

(
Z
P

)
, F =

(
ē1F̂

−Ẑ

)
.

So Eq. (3.37) becomes:
AW −NL(z)W = F, (3.38)

where NL(z) represents the nonlinear component. The iterative process is governed by
the equation:

AW [n+1] −NL(z[n])W [n+1] = F, (3.39)

where the superscript [n] denotes the n-th iteration. With an auxiliary function Sn:

Sn(ζ) = Aζ −NL(z[n])ζ − F, (3.40)

equation (3.38) becomes Sn(W [n+1]) = 0. To find an approximate solution to Sn(ζ) = 0,
we employ the Newton-Raphson method, i.e., find ζ such that Sn(ζ) = 0, by means of
the scheme:

ζn+1 = ζn − (JacSn (ζn))−1 Sn (ζn) , (3.41)

where JacSn = A−NL(z[n]).
For our problem, the initial data is set to zero. The following Algorithm 1 outlines

the steps taken to approximate the solution to Eq. (3.35).

Algorithm 1: Solve the obtained ODE for W

Set C, f ∗, z∗ ;
Given initial guesses z0 ;
while convergence do

ζn+1 = ζn − (JacSn (ζn))−1 Sn (ζn) ;
end
W = ζn+1

The results of this iterative scheme are visually presented in Fig. 3.3. These figures
demonstrate that the optimal state and control closely approach z∗ and f ∗ respectively
when l = l∗.

Furthermore, Fig. 3.4 illustrates that the cost is convex with respect to the length
of the beam with the unique minimizer. The optimal design corresponds to the length
l = l∗ = 1.
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Figure 3.3: Optimal state z(top) and optimal force f(bottom) (l = l∗)

Figure 3.4: Cost with respect to l
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Chapter 4

Static Optimization for Timoshenko
Beams

We start with the static model for Timoshenko beams. The optimal control problem is
solved by using the optimality system. The cost for optimal design of networks is defined
as the optimal cost for control problems.

4.1 Introduction

In this chapter, we investigate an optimal control problem with Timoshenko beams as
an underlying physical model [66]. Optimal control is - roughly speaking - concerned
with minimizing a certain cost functional that includes a partial differential equation as a
constraint or as a design-to-state mapping where the state might be part of the arguments
of the cost functional [43]. Optimum design problems Timoshenko beams are solved in
[38]. Topological derivatives of the energy functional for static problems of Timoshenko
beams are derived in [66].

We present new results on topological derivatives for general shape functionals for TB.
The results are derived by using the domain decomposition techniques combined with the
asymptotic analysis of the Steklov-Pincaré operator. The small parameter of the analysis
is the size of the small cycle introduced in the network at some center nodes. In this way,
the topology optimization of the network can be performed by nucleation of the small
cycles.

Define Ω = ∪i∈IΩi. We are interested in control problems defined on G. The controls
are denoted by v := v(x) with x ∈ Ω, and by uT := uT (x, t) with x ∈ Ω and t ∈ (0, T ).
There are two control problems, the first is the static control problem, and the second is
the evolution control problem. The static state equation gives the state z := z(v;x) = z(x)
that is determined by the state equation for

z ∈ H : a(z, ϕ) = (L(v), ϕ) + (f, ϕ) ∀ϕ ∈ H , (4.1)

where x 7→ z(v;x) lives in the Hilbert space H. In the applications usually H is a Sobolev

51
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space. We assume that the bilinear form a(·, ·) is symmetric and coercive with a bounded
linear operator L from the space of controls to H and f ∈ H.

We need as well the cost functional, the simplest possibility is the quadratic cost with
the appropriate choice of norms in Hilbert function spaces. That is, we want to use a
simple tracking-type cost functional for the state and velocity of a beam. For the static
problem, it is

J(v) =
1

2
∥z − zd∥2L2(Ω) +

1

2
∥v − vd∥2L2(Γ) . (4.2)

For the evolution problem, it is

JT (u) =
1

2

∫ T

0

∥y − yd∥2L2(Ω) + γ ∥∂t(y − yd)∥2L2(Ω)dt+
1

2

∫ T

0

∥u− ud∥2L2(Γ)dt (4.3)

where γ ∈ (0, ∞). For the sake of simplicity, we consider the control problems without
constraints.

The optimality conditions are necessary and sufficient and can be obtained by using
the Lagrangian formalism. To this end, we need the adjoint states, which simplify the
formulas for the gradients of the cost with respect to controls. We ask two questions
now: the first is the shape and topology optimization for the graph with respect to the
control problem, this results in the bi-level optimization problem for the graph. The
second question is the turnpike property for the two-level optimization problem for the
graph.

4.2 Optimality System for the Static Problem

We denote by (ẑ, v̂, p̂) the unique optimal solution of the static control problem. Let us
note that the uniqueness of the optimal control û follows by the convexity of the variational
problem under consideration with quadratic cost functional and the linear state equation.
The optimal solution is given by the optimality system which depends on the shape, or
design Ω of the network as an infinite dimensional factor or parameter to be selected at
the upper level of optimization over the class of admissible shapes. The class of admissible
shapes is denoted by Sad, and the continuous variation of the shape is denoted by Ωτ ∈ Sad

with the real parameter τ ∈ (−δ, δ) for some δ > 0 for shape variations. We use as well
the singular perturbations of the shape denoted by Ωϵ ∈ Sad for the topology variations
with ϵ→ 0.

Remark 2. In the case of a network, there are at least two possibilities of shape variations.
The first is the change of the lengths of edges, it corresponds to the boundary variations in
the classical shape optimization. The second, which corresponds to the topology variations
in the shape optimization means the presence of a small cycle within the network with the
small size of the cycle ϵ→ 0.
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The optimality system for the static control problem is equivalent to the vanishing of
the gradient for the cost, hence

min
v

{J(v)} = J(v̂)

iff the following optimality system is verified

ẑ ∈ H : a(ẑ, φ) = (L(v̂), φ) + (f, φ) ∀φ ∈ H , (4.4)

p̂ ∈ H : a(p̂, ϕ) = (zd − ẑ, ϕ) ∀ϕ ∈ H , (4.5)

(vd − v̂, v)U = (L′(v̂) · v, p̂) ∀v ∈ U . (4.6)

In the linear case we have L′(v̂) · v = L(v). The optimality system is derived using the
Lagrangian formalism,

L(v, z, ϕ) =
1

2
∥z − zd∥2L2(Ω) +

1

2
∥v − vd∥2L2(Γ) + a(z, ϕ) − (L(v), ϕ) − (f, ϕ)

Then the adjoint state p ∈ H is introduced

∂zL(v, z, p)(ϕ) = (z − zd, ϕ)Ω + a(p, ϕ) = 0, ∀ϕ ∈ H

and the gradient of the cost is obtained

dI(v; η) = ∂vL(v, z, p)(η) = (v − vd, η)Γ − (p, η)Γ

which leads to the optimality condition

v − vd = p a.e. on Γ.

In the case of distributed control, we have Γ = Ω.
Proposition There exists the unique solution (v̂, ẑ, p̂) to the optimality system (4.4)-

(4.6). The optimal value of the cost J(v̂) := J(v̂(Ω)) is defined as a shape functional
over the set Sad. Therefore, we consider the optimum design of the network

inf
Ω∈Sad

J(v̂(Ω)) . (4.7)

The analysis of such a variational problem requires:

1. The existence of solutions;

2. The necessary optimality conditions;

3. Finally, numerical methods for solution.

In particular, we perform the shape calculus and determine the shape gradient of the
optimal control cost

Ω 7−→ J(v̂(Ω))

as well as the topological derivative obtained at ϵ := 0+ for the mapping

ϵ 7−→ J(v̂(Ωϵ)).

Remark 3. It is useful for applications to introduce a random right-hand side f := f(ω;x)
to the state equation (4.1).
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4.3 Network Model

In this section, we extend the beam model previously defined on a single edge to a network
structure. The model for 3D Timoshenko beams on the network takes the following form:

Eq.(2.10), (0, Li) × (0, T ), i = 1 : ne (4.8a)

ud (vD) = 0, vD ∈ VD, d ∈ ED, t ∈ (0, T ) (4.8b)

ui (vJ) = uj (vJ) , ∀i, j ∈ EJ , vJ ∈ VM , t ∈ (0, T ) (4.8c)∑
i∈EJ

ϵiJFi (vJ) = 0, vJ ∈ VM ∪ VN , t ∈ (0, T ) (4.8d)∑
i∈EJ

ϵiJMi (vJ) = 0, vJ ∈ VM ∪ VN , t ∈ (0, T ) (4.8e)

ui(x, 0) = u0i , x ∈ (0, li) , i = 1 : ne (4.8f)

∂tui(x, 0), = u1i x ∈ (0, li) , i = 1 : ne (4.8g)

The first equation describes the evolution of the system, the third, fourth, and fifth
ones the continuity and balance of Kirchhoff conditions at inner nodes of the network,
the remaining equations constitute the initial and boundary conditions. This system is
well-posed in the space setting

∂tu, u
1 ∈

ne∏
i=1

L2 (0, Li) ;

u, u0 ∈

{
u ∈

ne∏
i=1

L2 (0, Li) | u satisfies (4.8b), (4.8c)

}
.

(4.9)

In conclusion, the model outlined here provides a comprehensive framework for under-
standing the behavior of 3D Timoshenko beams on networks. By incorporating dynamical
equations, boundary conditions, and continuity constraints, we create a robust foundation
for further analysis and optimization of network structures.

4.4 Domain Decomposition Technique for Topologi-

cal Derivatives

The domain decomposition technique was used for derivation of topological derivatives
for contact problems in linear elasticity [87].

The domain decomposition technique is applied in the mathematical modeling of dis-
tributed parameter systems that are defined on graphs. In this approach, a subdomain is
employed to isolate the topology change from the primary section of the original domain
(refer to Fig. 4.1). A Dirichlet to Neumann operator operates on the shared boundary



4.4. DOMAIN DECOMPOSITION TECHNIQUE 55

Ω0

Ωε

Γ

N

D

Figure 4.1: Domain Decomposition, concept[87].

of the respective domains [36]. Additionally, the domain decomposition method has been
incorporated for optimizing the topology of networks, as illustrated in [46].

The graph G is decomposed into two subgraphs G0 and Gε (See Fig. 4.2 ), where the
topology variations of the network are governed by the perturbations of Gε for ε→ 0, in
another word, a small cycle is introduced at some interior node P0 of the network (Fig.
4.3). We assume that the vertex Qi is a boundary vertex and the vertex Pi is the interior
vertex for the subgraph Gε which contains a small cycle.

D

N
E0,2

E0,1

Eε,5

E0,3

Eε,6

Eε,4

P2

P1 P3

P5

P6

P4

Q2

Q1 Q3

Gε

G0

Eε,1 Eε,3

Eε,2

Figure 4.2: Tripod directed network with a cycle for the Timoshenko beam.

Domain decomposition technique allows us to replace the singular domain perturbation
of Ω by a regular perturbation of the bilinear form for the elliptic problem considered on
Ω0. The perturbation of bilinear form is given by the Dirichlet-to-Neumann operator
which is also called the Steklov-Poincaré operator. In the case considered the nonlocal
operator is represented by a matrix which can be determined explicitly. In this way, the
evaluation of topological derivatives for the shape functional becomes simple and does not



56 CHAPTER 4. STATIC OPTIMIZATION FOR TIMOSHENKO BEAMS

E2

E1 E3

P0

P1

P2

P3

G

Figure 4.3: The three-star graph.

require the compound asymptotics method. The domain decomposition technique and
the Steklov-Poincaré nonlocal boundary operators are used in the topological sensitivity
analysis of nonlinear variational problems. Roughly speaking, Steklov-Poincaré operator
for Gε means the Dirichlet-to-Neumann operator for G\Gε, is a definition by Steklov-
Poincaré operator for Gε. It gives the energy of exterior domain.

4.5 Steklov-Poincaré Operator for a Subgraph Gε with

a cycle

We are going to use the domain decomposition method for a graph G = G0∪Gε. For exam-
ple, we have G0 = {E0, V0} and Gε = {Eε, Vε} in Fig. 4.2. Here, E0 = {P1Q1, P2Q2, P3Q3}
and Eε = {Q1P5, Q2P6, Q3P4, P4P5, P5P6, P6P4}. The edges in E0 are defined by lengths
L0,i := |E0,i| = Li − εmax (i = 1, 2, 3), where Li(i = 1, 2, 3) is the length of Ei in Fig.
4.3, while the edges in Eε are characterized by lengths |Eε,i| = εmax − ε (i = 1, 2, 3), and
|Eε,i| = ε (i = 4, 5, 6). It’s crucial to clarify that εmax represents the maximum value of
ε, serving as a constant offset in E0. Meanwhile, ε denotes the perturbation magnitude
in Eε, distinguishing the two states. In this way the dependence of the solutions to the
state equation with respect to the small parameter ε → 0 is explicitly given in the weak
form of the state equation.

First, we give the weak form for the full model in one beam. We introduce the test
functions ψi, which are given by ψi = (ϕx,i, ϕy,i, ϕz,i, ηx,i, ηy,i, ηz,i)

⊤, where i is the beam
index. The bilinear form for a single beam can be obtained by integrating the strong
system (2.12) by parts. All functions in the weak form are considered to be in the space
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H1(0, Li). Thus, the resulting equation for a single beam is given by:

a(ui, ψi) =

∫ Li

0

kxr′x,iϕ
′
x,i +

∫ Li

0

cxφ′
x,iη

′
x,i +

∫ Li

0

ks
(
r′y,i − φz,i

) (
ϕ′
y,i − ηz,i

)
+

∫ Li

0

ks
(
r′z,i + φy,i

) (
ϕ′
z,i + ηy,i

)
+

∫ Li

0

czφ′
z,iη

′
z,i +

∫ Li

0

cyφ′
y,iη

′
y,i.

For the distributed loading on the right-hand side, it follows the linear form

(qi, ψi) =

∫ Li

0

fx
i ϕx,i +

∫ Li

0

mx
i ηx,i +

∫ Li

0

f y
i ϕy,i +

∫ Li

0

my
i ηy,i +

∫ Li

0

f z
i ϕz,i +

∫ Li

0

mz
i ηz,i.

Hence, the weak form of a beam is given by the equation: find ui ∈ H1(0, Li), such that

a(ui, ψi) = (qi, ψi), ∀ψi ∈ H1(0, Li). (4.10)

Thus, on the graph G = {E, V } the total bilinear form is defined,

a(u, ψ) := a(Ω;u, ψ) =
i=6∑
i=1

ai(Ei;ui, ψi).

We are able to determine explicitly the solution uε of the Dirichlet problem on Ωε with
the small cycle for b ∈ R3, where uε,i(Qi) = ub = bi for i = 1, 2, 3. The Steklov-Poincaré
operator Λε on Gε is defined by the equality

aε(uε, uε) := a(Ωε;uε, uε) = −b⊤Λε · b.

where aε = (Ωε; ·, ·) is the symmetry bilinear form on subgraph Gε.

Proposition 1. The matrix Λε is only negative semidefinite because the energy vanishes
for constant solutions of the Dirichlet problem.

Let us return to Green’s formula for the bilinear form associated with the system
(4.10). We have

ai(ui, ψi) =

∫ Li

0

Aiui · ψi + (Niui · ψi)|x=Li

x=0 , (4.11)

where ui 7→ Niui is the Neumann operator Ni on Ei.

Proposition 2. The Neumann operator Ni is given by the following vector

Proof. We have the expressions

∫ Li

0

kxi r
′
x,iϕ

′
x,i = −

∫ Li

0

kxi r
′′
x,i(x)ϕx,i +

(
kxi r

′
x,iϕx,i

)∣∣x=Li

x=0
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0

ksi
(
r′y,i − φz,i

)
ϕ′
y,i = −

∫ Li

0

ksi
(
r′′y,i − φ′

z,i

)
ϕy,i +

(
ksi
(
r′y,i − φz,i

)
ϕy,i

)∣∣x=Li

x=0∫ Li

0

ksi
(
r′z,i + φy,i

)
ϕ′
z,i = −

∫ Li

0

ksi
(
r′′z,i + φ′

y,i

)
ϕz,i +

(
ksi
(
r′z,i + φy,i

)
ϕz,i

)∣∣x=Li

x=0∫ Li

0

cxi φ
′
x,iη

′
x,i = −

∫ Li

0

cxi φ
′′
x,i(x)ηx,i(x) +

(
cxi φ

′
x,iηx,i

)∣∣x=Li

x=0∫ Li

0

cziφ
′
z,iη

′
z,i = −

∫ Li

0

cziφ
′′
z,i(x)ηz,i +

(
cziφ

′
z,iηz,i

)∣∣x=Li

x=0∫ Li

0

cyiφ
′
y,iη

′
y,i = −

∫ Li

0

cyiφ
′′
y,i(x)ηy,i +

(
cyiφ

′
y,iηy,i

)∣∣x=Li

x=0

Thus we find six components of Niui given by

(Niui · ψi)|x=Li

x=0 =
(
kxi r

′
x,iϕx,i

)∣∣x=Li

x=0
+
(
ksi
(
r′y,i − φz,i

)
ϕy,i

)x=Li

x=0
+
(
ksi
(
r′z,i + φy,i

)
ϕz,i

)∣∣x=Li

x=0

+
(
cxi φ

′
x,iηx,i

)∣∣x=Li

x=0
+
(
cyiφ

′
y,iηy,i

)∣∣x=Li

x=0
+
(
cziφ

′
z,iηz,i

)∣∣x=Li

x=0

This leads to the result on the Steklov-Poincaré operator, we should use the exact
solution from Theorem 2.2 in the Ogiermann Dissertation, as well as replace the traces of
test functions at x = 0 by the Dirichlet conditions.

Proposition 3. If we know the exact solution ub for the Dirichlet problem on the graph
Gε with the polynomials on the edges col(rx, ry, rz, φx, φy, φz), it follows that the associated
energy for such a solution takes the form a(ub, ub) = −b⊤Λε · b, thus the energy functional
for the graph G reads

ψ 7→ a(Ω;ψ, ψ) = a(Ω0;ψ, ψ) − ψ(L− εmax)
⊤Λε · ψ(L− εmax), (4.12)

where 0 < ε ⩽ εmax. The restriction of the state equation to Ω0 is considered under the
assumption that the control is supported in Ω0 and the state is observed in Ω0. Thus, the
state equation becomes: Find u ∈ H(Ω0) such that

a(Ω0;u, ψ) − u(L− εmax)
⊤Λ(ε) · ψ(L− εmax) = (q, ψ)Ω0 , ∀ψ ∈ H(Ω0). (4.13)

In this way, the dependence of the state equation on the small cycle in G is replaced
by the dependence of Λε on the cycle.

For the new state equation, the optimality system is defined in the same way as before,
on the domain Ω0. The topological derivative of the optimal cost is defined as the limit
of derivatives for ε→ 0+.
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4.6 Explicit Solution to the Static Timoshenko Beams

Model

4.6.1 Solution to the 1D Timoshenko Beams Model

Then we derive the solution to the static model. Assume fi(x) = mi(x) = 0. We will
show the explicit solution for both reduced and full models. First, it’s the solution for
the reduced model.

Proposition 4. Assume that f z
i (x) = 0 and my

i (x) = 0. Let us consider the system

f z
i (x) + ksi

(
r′′z,i(x) + φ′

y,i(x)
)

:= f z
i (x) + ksi (u′′1(x) + u′2(x)) = 0,

my
i (x) + cyiφ

′′
y,i(x) − ksi

(
r′z,i(x) + φy,i(x)

)
:= my

i (x) + cyi u
′′
2(x) − ksi (u′1(x) + u2(x)) = 0,

of two linear differential equations for u(x) = (u1(x), u2(x))⊤ with the Dirichlet boundary
conditions u(0) = (u1(0), u2(0))⊤ and u(Li) = (u1(Li), u2(Li))

⊤. The solution is given by

u1(x) =
λ1
ksi
x− 1

6cyi
λ1x

3 − 1

2cyi
λ2x

2 − 1

cyi
λ3x+ λ4 ,

u2(x) =
1

2cyi
λ1x

2 +
1

cyi
λ2x+

1

cyi
λ3 ,

(4.14)

where λi, i = 1, 2, 3, 4, are determined in terms of the nonhomogeneous Dirichlet condi-
tions

λ1 =
12cyi

Li(12cyi k
−1
s,i + L2

i )
(u1(Li) − u1(0)) +

6cyi
12cyi k

−1
s,i + L2

i

(u2(Li) + u2(0)) ,

λ2 =
12c2i,y

Lik(12cyi k
−1
s,i + L2

i )
(u2(Li) − u2(0))

+
2cyi

12cyi k
−1
s,i + L2

i

(3u1(0) − 3u1(Li) − 2Liu2(0) − Liu2(Li)) ,

λ3 = cyi u2(0) ,

λ4 = u1(0) .

(4.15)

Proof. Set u(x) = (rz, φy)
⊤. The Dirichlet problem for u(0) = (u1(0), u2(0))⊤ = (rz(0), φy(0))⊤,

u(Li) = (u1(Li), u2(Li))
⊤ = (rz(Li), φy(Li))

⊤ are given. The equation becomes

ksi
(
r′′z,i(x) + φ′

y,i(x)
)

= 0,

cyiφ
′′
y,i(x) − ksi

(
r′z,i(x) + φy,i(x)

)
= 0.

Hence ksi
(
r′z,i(x) + φy,i(x)

)
= λ1 thus cyiφ

′′
y,i(x) = λ1, therefore cyiφ

′
y,i(x) = λ1x + λ2 and
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cyiφy,i(x) =
1

2
λ1x

2 + λ2x+ λ3. It leads to

φy,i(x) =
1

2cyi
λ1x

2 +
1

cyi
λ2x+

1

cyi
λ3 ,

r′z,i(x) =
λ1
ksi

− φy,i(x) =
λ1
ksi

− 1

2cyi
λ1x

2 − 1

cyi
λ2x−

1

cyi
λ3 ,

rz,i(x) =
λ1
ksi
x− 1

6cyi
λ1x

3 − 1

2cyi
λ2x

2 − 1

cyi
λ3x+ λ4 .

Henceforth, the constants λi are determined from the Dirichlet boundary conditions

rz,i(0) = λ4 = u1(0) ,

φy,i(0) =
1

cyi
λ3 = u2(0) ,

rz,i(Li) =
λ1
ksi
Li −

1

6cyi
λ1L

3
i −

1

2cyi
λ2L

2
i −

1

cyi
λ3Li + λ4 = u1(Li) ,

φy,i(Li) =
1

2cyi
λ1L

2
i +

1

cyi
λ2Li +

1

cyi
λ3 = u2(Li) .

Thus we determine the unique solution Eq. (4.15) of the model in function of Dirichlet
conditions.

Remark 4. The passage to the limit Li → 0 in the solution given by Proposition 4 can
be performed if the singular terms vanish, i.e., u1(Li)−u1(0) = 0 and u2(Li)−u2(0) = 0,
otherwise boundary layers appear.

Now, we give the matrix notation for exact solutions of Dirichlet boundary value
problems. We define the matrix functions Qi, Ri : [0, Li] → R2×2 by

Qi(x) :=

(
ai,011 (x) ai,012 (x)

ai,021 (x) ai,022 (x)

)
with the coefficient functions

ai,011 (x) := µy
i (Li − x)

(
L2
i + Lix− 2x2 + 12k−1

s,i c
y
i

)
,

ai,022 (x) := µy
i (Li − x)

(
L2
i − 3Lix+ 12k−1

s,i c
y
i

)
,

ai,012 (x) := −µy
i x (Li − x)

(
L2
i − Lix+ 6k−1

s,i c
y
i

)
,

ai,021 (x) := 6µy
i x (Li − x) ,

where

µy
i :=

(
L3
i + 12k−1

s,i c
y
iLi

)−1
=

ksi
Li(ksiL

2
i + 12cyi )

,
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and the singular term at Li = 0. Furthermore

Ri(x) :=

(
ai,L11 (x) ai,L12 (x)

ai,L21 (x) ai,L22 (x)

)
(4.16)

with coefficient functions

ai,L11 (x) := µy
i x
(
3Lix− 2x2 + 12k−1

s,i c
y
i

)
,

ai,L22 (x) := µy
i x
(
−2L2

i + 3Lix+ 12k−1
s,i c

y
i

)
,

ai,L12 (x) := µy
i x (Li − x)

(
Lix+ 6k−1

s,i c
y
i

)
,

ai,L21 (x) := −6µy
i x (Li − x) .

Then, the exact solution of the Dirichlet problem for a single beam takes the form

ui(x) = Qi(x)ui(0) +Ri(x)ui(Li). (4.17)

4.6.2 Solution to the 3D Timoshenko Beams Model

For the 3D full model, we refer to the explicit solution presented in [66]. These findings
will be unified into a single six-dimensional vector, which will inherently depend on the
boundary conditions at the global coordinate level. Here, we define the matrix functions
Qi, Ri : [0, Li] → R6×6 by

Qi(x) :=

(
Ei O3

O3 Ei

)


ai,011 (x) 0 0 0 0 0

0 ai,022 (x) 0 0 0 ai,026 (x)

0 0 ai,033 (x) 0 ai,035 (x) 0

0 0 0 ai,044 (x) 0 0

0 0 ai,053 (x) 0 ai,055 (x) 0

0 ai,062 (x) 0 0 0 ai,066 (x)


(

E⊤
i O3

O3 E⊤
i

)

(4.18)
with the coefficient functions

ai,011 (x) := L−1
i (Li − x) ,

ai,022 (x) := µz
i (Li − x)

(
L2
i + Lix− 2x2 + 12k−1

s,i c
z
i

)
,

ai,033 (x) := µy
i (Li − x)

(
L2
i + Lix− 2x2 + 12k−1

s,i c
y
i

)
,

ai,044 (x) := L−1
i (Li − x) ,

ai,055 (x) := µy
i (Li − x)

(
L2
i − 3Lix+ 12k−1

s,i c
y
i

)
,

ai,066 (x) := µz
i (Li − x)

(
L2
i − 3Lix+ 12k−1

s,i c
z
i

)
,

ai,026 (x) := µz
ix (Li − x)

(
L2
i − Lix+ 6k−1

s,i c
z
i

)
,

ai,035 (x) := −µy
i x (Li − x)

(
L2
i − Lix+ 6k−1

s,i c
y
i

)
,
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ai,053 (x) := 6µy
i x (Li − x) ,

ai,062 (x) := −6µz
ix (Li − x) ,

where

µz
i :=

(
L3
i + 12k−1

s,i c
z
iLi

)−1
=

ksi
Li(ksiL

2
i + 12czi )

,

as well as

Ri(x) :=

(
Ei O3

O3 Ei

)


ai,L11 (x) 0 0 0 0 0

0 ai,L22 (x) 0 0 0 ai,L26 (x)

0 0 ai,L33 (x) 0 ai,L35 (x) 0

0 0 0 ai,L44 (x) 0 0

0 0 ai,L53 (x) 0 ai,L55 (x) 0

0 ai,L62 (x) 0 0 0 ai,L66 (x)


(

E⊤
i O3

O3 E⊤
i

)

with the coefficient functions

ai,L11 (x) := L−1
i x,

ai,L22 (x) := µz
ix
(
3Lix− 2x2 + 12k−1

s,i c
z
i

)
,

ai,L33 (x) := µy
i x
(
3Lix− 2x2 + 12k−1

s,i c
y
i

)
,

ai,L44 (x) := L−1
i x,

ai,L55 (x) := µy
i x
(
−2L2

i + 3Lix+ 12k−1
s,i c

y
i

)
,

ai,L66 (x) := µz
ix
(
−2L2

i + 3Lix+ 12k−1
s,i c

z
i

)
,

ai,L26 (x) := µz
ix (Li − x)

(
Lix+ 6k−1

s,i c
z
i

)
,

ai,L35 (x) := −µy
i x (Li − x)

(
Lix+ 6k−1

s,i c
y
i

)
,

ai,L53 (x) := −6µy
i x (Li − x) ,

ai,L62 (x) := 6µz
ix (Li − x) .

Similarly to the reduced model, the exact solution for the homogeneous full model could
also be written as

ui(x) = Qi(x)ui(0) +Ri(x)ui (Li) . (4.19)
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4.7 Dirichlet-to-Neumann Operator Subgraphs for Net-

works

We start with the single beam. For the reduced model, we introduce the notation for
matrix functions depending on the length Li of the beam

DI
i :=

(
−12cyiµ

y
i 6cyiµ

y
iLi

6cyiµ
y
iLi −

(
L−1
i + 3µy

iL
2
i

)
cyi

)
,

DII
i :=

(
12cyiµ

y
i 6cyiµ

y
iLi

−6cyiµ
y
iLi

(
L−1
i − 3µy

iL
2
i

)
cyi

)
,

DIII
i :=

(
−12cyiµ

y
i 6cyiµ

y
iLi

−6cyiµ
y
iLi

(
3µy

iL
2
i − L−1

i

)
cyi

)
,

DIV
i :=

(
12cyiµ

y
i 6cyiµ

y
iLi

6cyiµ
y
iLi

(
L−1
i + 3µy

iL
2
i

)
cyi

)
.

(4.20)

Then, for the full model, we define the matrices

DF
i := Ei

 L−1
i kxi 0 0
0 12cziµ

z
i 0

0 0 12cyiµ
y
i

E⊤
i ,

D+
i := Ei

 L−1
i cxi 0 0
0 cyi (L

−1
i + 3µy

iL
2
i ) 0

0 0 czi (L
−1
i + 3µz

iL
2
i )

E⊤
i ,

D−
i := Ei

 L−1
i cxi 0 0
0 cyi (L

−1
i + 3µy

iL
2
i ) 0

0 0 czi (L
−1
i − 3µz

iL
2
i )

E⊤
i ,

Si := Ei

 0 0 0
0 0 6cyiµ

y
iLi

0 −6cziµ
z
iLi 0

E⊤
i ,

(4.21)

and

DI
i := −

(
DF

i −S⊤
i

−Si D+
i

)
, DII

i :=

(
DF

i S⊤
i

−Si D−
i

)
,

DIII
i := −

(
DF

i −S⊤
i

Si D−
i

)
, DIV

i :=

(
DF

i S⊤
i

Si D+
i

)
.

(4.22)

We use the same notation for both models. With this notation, we could obtain the
following representation of the Dirichlet-to-Neumann (DtN) mapping for the single beam,
i.e., the Dirichlet boundary conditions ui(0), ui (Li) to the vectors Fi(0), Mi(0), Fi (Li)
and Mi (Li).

Theorem 9. The Dirichlet-to-Neumann operator of a single beam with zero distributed
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loads fi,mi : [0, Li] → Rd(d = 1, 3) is given by(
Fi(0)
Mi(0)

)
= DI

iui(0) +DII
i ui(Li),(

Fi(Li)
Mi(Li)

)
= DIII

i ui(0) +DIV
i ui(Li),

(4.23)

where DI
i , D

II
i , D

III
i , D

IV
i are (4.20) and (4.22) for 1D and 3D, respectively. And fi(x) =

f z
i (x),mi(x) = mz

i (x), Fi(x) = F z
i (x),Mi(x) = My

i (x) for reduced model.

Then the elastic energy for the beam is evaluated

E(ui(0), ui (Li)) = − ui(0)⊤
(

Fi(0)
Mi(0)

)
− ui (Li)

⊤
(

Fi (Li)
Mi (Li)

)
= − ui(0)⊤DI

iui(0) − ui(0)⊤DII
i ui (Li)

− ui (Li)
⊤DIII

i ui(0) − ui (Li)
⊤DIV

i ui (Li) .

(4.24)

There is the negative semidefinite matrix Λ such that

E(ui(0), ui (Li)) =

(
ui(0)
ui (Li)

)⊤

Λ

(
ui(0)
ui (Li)

)
. (4.25)

The Steklov-Poincaré operator for the Timoshenko beam maps the Dirichlet boundary
conditions ui(0), ui (Li) to the vectors Fi(0), Mi(0), Fi (Li) and Mi (Li), which are the
Neumann boundary conditions for the remaining part of the network connected to the
specific beam.

4.8 Steklov-Poincaré Operator for the Cross with Small

Cycle

We obtain the exact solution for the 1D and 3D Timoshenko beam model on the cross
with the cycle. In this way, the Steklov-Poincaré operator is identified for the purposes
of domain decomposition technique for modeling and design of the network.

This leads to the matrix representation of the Steklov-Poincaré operator for the cross
G = {E, V } with the small cycle Gε = {Eε, Vε} at the center, of the size ε → 0. Such
a system is called a network and its model includes a graph G = {V,E} along with the
state equations on edges E. Such a model is used e.g., in analysis of real life large scale
gas networks with quasilinear hyperbolic equations on the edges. At the interior nodes
of the graph there are prescribed transmission conditions, the continuity of solutions as
well as the continuity of fluxes. There is no external force at Gε. So the transmission
conditions at the joint verticals on Gε becomes
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(
F1(εmax − ε)
M1(εmax − ε)

)
+

(
F4(ε)
M4(ε)

)
−
(
F5(0)
M5(0)

)
= 0, u1(εmax − ε) = u4(ε) = u5(0),

(4.26a)(
F2(εmax − ε)
M2(εmax − ε)

)
+

(
F5(ε)
M5(ε)

)
−
(
F6(0)
M6(0)

)
= 0, u2(εmax − ε) = u5(ε) = u6(0),

(4.26b)(
F3(εmax − ε)
M3(εmax − ε)

)
+

(
F6(ε)
M6(ε)

)
−
(
F4(0)
M4(0)

)
= 0, u3(εmax − ε) = u6(ε) = u4(0).

(4.26c)

Here, Fi,Mi, ui (i = 1, 2, 3) is the defined on the edge Eε,i. Using the formula Eq. (4.23),
where the length of edge is εmax − ε, the first balanced equation in (4.26a) can be written
as

DIII
1 u1(0) +DIV

1 u1(εmax − ε) +DIII
4 u4(0) +DIV

4 u4(ε) −DI
5u5(0) −DII

5 u5(ε) = 0.

By the continuity, we have

DIII
1 u1(0) +DIV

1 u1(εmax − ε) +DIII
4 u3(εmax − ε)

+DIV
4 u1(εmax − ε) −DI

5u1(εmax − ε) −DII
5 u2(εmax − ε) = 0,

namely,

(DIV
1 +DIV

4 −DI
5)u1(εmax − ε)−DII

5 u2(εmax − ε) +DIII
4 u3(εmax − ε) = −DIII

1 u1(0). (4.27)

Similarly, from Eq. (4.26b) and Eq. (4.26c), we get the following equations,

DIII
5 u1(εmax − ε) + (DIV

2 +DIV
5 −DI

6)u2(εmax − ε)−DII
6 u3(εmax − ε) = −DIII

2 u2(0), (4.28)

−DII
4 u1(εmax−ε)+DIII

6 u2(εmax−ε)+(DIV
3 +DIV

6 −DI
4)u3(εmax−ε) = −DIII

3 u3(0). (4.29)

Combine Eq. (4.27), Eq. (4.28) and Eq. (4.29), we have DIV
1 +DIV

4 −DI
5 −DII

5 DIII
4

DIII
5 DIV

2 +DIV
5 −DI

6 −DII
6

−DII
4 DIII

6 DIV
3 +DIV

6 −DI
4

 u1(εmax − ε)
u2(εmax − ε)
u3(εmax − ε)


= −

 DIII
1 0 0
0 DIII

2 0
0 0 DIII

3

 u1(0)
u2(0)
u3(0)

 .

(4.30)
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That is, we could use ui(0) to present ui(εmax − ε). The Eq.(4.23) will be
Fε,1(0)
Mε,1(0)
Fε,2(0)
Mε,2(0)
Fε,3(0)
Mε,4(0)

 = Λε

 uε,1(0)
uε,2(0)
uε,3(0)

 ,

where

Λε =

 DI
1 0 0

0 DI
2 0

0 0 DI
3

−

 DII
1 0 0

0 DII
2 0

0 0 DII
3


 DIV

1 +DIV
4 −DI

5 −DII
5 DIII

4

DIII
5 DIV

2 +DIV
5 −DI

6 −DII
6

−DII
4 DIII

6 DIV
3 +DIV

6 −DI
4

−1 DIII
1 0 0
0 DIII

2 0
0 0 DIII

3


:= D1 −D2A

−1D3

(4.31)
is an operator with respect to ε.

In both 1D and 3D model, the structure of the matrix Λε remains uniform. We dis-
tinctly utilize the matrix Dj

i (i = 1, 2, · · · , 6, j = I, II, III, IV) to denote the corresponding
cases accordingly. Obviously, in 1D, the operator Λε is a 6 × 6 matrix while in 3D, it
assumes dimensions of 18 × 18.

Our goal now is to identify such a matrix ε→ Λε, as well as its derivative at ε0 for the
cross with a small cycle of size ε→ 0. This leads us to the topological derivative of shape
functionals with respect to nucleation of the cycle. The matrix Λε is a representation of
the so-called Steklov-Poincaré operator for the network at consideration.

4.9 Topological Derivative of Optimal Control Cost

for Static Problem

In this section, a new result of the topological derivative for Timoshenko beams is pre-
sented.

We use the standard technique for shape [88] and topology optimization [63]. Namely,
the material derivatives are employed in the shape sensitivity analysis in the framework
of speed method [88].

Let us construct the prescribed state (z, v) on the graph with a small cycle that ε = ε0
first. Control vi is applied to beams E0,i. Then we can obtain the corresponding state
zi from the network modeling. In this way, we evaluate the Topological Derivative of the
Optimal Cost for the singular perturbation of the graph by a small cycle. The control
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problem’s cost functional can be represented as follows:

J(Ω) =
1

2

3∑
i=1

∫ Li−εmax

0

(ui − zi)
2 + (qi − vi)

2 . (4.32)

The weak form on G0 is

a0(u, φ) − u(L− εmax)
⊤Λεφ(L− εmax) = (q, φ) ∀φ ∈ V,

where the space V is defined as

V =
{
φ = (φ1, φ2, φ3) | φi ∈ H1 (0, Li) , φi (Pi) = 0, i = 1, 2, 3

}
. (4.33)

The Lagrangian is defined as

L(u, q, p) =
1

2

3∑
i=1

∫ Li−εmax

0

(ui − zi)
2 + (q − v)2

+ a0(u, p) − p(L− εmax)
⊤Λεu(L− εmax) − (q, p),

(4.34)

where p is the adjoint variable, p(L−εmax) = (p1(L1−εmax), p2(L2−εmax), p3(L3−εmax))
⊤

and u(L−εmax) = (u1(L1−εmax), u2(L2−εmax), u3(L3−εmax))
⊤. The optimality system is

derived by applying the calculus of variations to the Lagrangian and solving the resulting
Euler-Lagrange equations. Specifically, the adjoint state equation is obtained by solving
∂L
∂u

= 0, which yields

3∑
i=1

∫ Li−εmax

0

(ui − zi) ηi + a0(η, p) − η(L− εmax)
⊤Λεp(L− εmax) = 0, (4.35)

i.e.,
(u− z, η)Ω0

+ a0(η, p) − η(L− εmax)
⊤Λεp(L− εmax) = 0, (4.36)

where η(L− εmax) defined is similar to p(L− εmax).

Similarly, solving
∂L
∂q

= 0 leads to the optimal control,

q = p+ v.

The optimality system is given by the following coupled equations:{
(u, φ)Ω0 + a0(p, η) − p(L− εmax)

⊤Λεφ(L− εmax) = (z, φ)Ω0

a0(u, φ) − (p, φ)Ω0 − u(L− εmax)
⊤Λεφ(L− εmax) = (v, φ)Ω0

(4.37)

Then we get the topological derivative of cost functional,

dJ

dε
= (ui − zi, u̇i)Ω0

+ (qi − vi, q̇i)Ω0
. (4.38)
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The derivative of the system (4.37) is{
(u̇, φ)Ω0 + a0(ṗ, η) − ṗ(L− εmax)

⊤Λεφ(L− εmax) − p(L− εmax)
⊤Λ̇εφ(L− εmax) = 0,

a0(u̇, φ) − (ṗ, φ)Ω0 − u̇(L− εmax)
⊤Λεφ(L− εmax) − u(L− εmax)

⊤Λ̇εφ(L− εmax) = 0.
(4.39)

The second order topological derivatives [75], [76], [17] can be also identified.
Since it’s not easy to get the inverse of a 18 × 18 symbolic matrix, we could use

the matrix decomposition trick. For matrix A in (4.31), we use LU decomposition, i.e.,
A = L̄Ū , where the L̄ matrix is a lower triangular matrix, with all diagonal elements
equal to 1 and all elements above the diagonal equal to 0. The Ū matrix is an upper
triangular matrix, with all elements below the diagonal equal to 0. Since A−1 = Ū−1L̄−1,
we have

Λε = D1 −D2Ū
−1L̄−1D3,

therefore,

Λ̇ε =
dΛε

dε
=
dD1

dε
− dD2

dε
Ū−1L̄−1D3 −D2(

dŪ−1

dε
L̄−1 + Ū−1dL̄

−1

dε
)D3 −D2Ū

−1L̄−1dD3

dε
.

4.10 Numerical Results

We consider a full model and a reduced model in the network structure, obtaining optimal
state and shape functionals with respect to the parameter ε.

The following material and geometric parameters apply to the beams considered. The
elastic modulus is taken to be Ei = 2.1 × 1011Nm−2. The Poisson ratio νi is defined as

νi =
Ei

2Gi

−1, and we set νi = 0.3, which results in a shear modulus of Gi = 8.1×1010Nm−2.

These values correspond to the material properties of steel, as stated in [18]. The cross-
sectional area is Ai = 0.01m2. The torsion constant and second moments of area is
I
t

i = 1.41 × 10−5m4 and I
y

i = I
z

i = 8.33 × 10−6m4, respectively, which are appropriate for
a quadratic cross-section of the specified area. The shear coefficient that corresponds to

the chosen Poisson ratio and cross-sectional area is given by κ =
10 (1 + νi)

12 + 11νi
= 0.850.

See Fig. 4.4 for the exact structure of the network. The vertex set consists of a
small cycle with homogeneous Neumann boundary conditions, and three vertices (P1, P2,
and P3) with homogeneous Dirichlet conditions. For this particular network, we have
ϕi = (0, 0, θi)

⊤, where the angle θi is defined as the angle from the x-coordinate to the
edge Eε,i in the counter-clockwise direction. By (2.8), we have

Ei = Ei(ϕi) =

cos θi − sin θi 0
sin θi cos θi 0

0 0 1

 . (4.40)

Specifically, θ1 =
1

6
π, θ2 =

1

2
π, θ3 =

5

6
π, θ4 = π, θ5 =

1

3
π, θ6 = −1

3
π. Set Li = 2 (i =

1, 2, 3), ε0 = 0.5 and εmax = 1. For v, there is a given distributed load in E0,2, i.e.,
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x
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z

E0,2
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E0,1
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E0,3

P3

P6

P5 P4

f2(x)

Q2

Q1 Q3

Figure 4.4: Timoshenko beams with cycle.

v2 = −108× (0, 2, 0, 0, 0, 0)⊤. Then, we could get the exact expression of z by (4.19). Fig.
4.5 shows the z of the full model in local coordinates.

Now we will introduce the Hermite Finite Element Method. It is a high-order finite
element method that can accurately solve the Timoshenko beam system. It employs
Hermite polynomials as basis functions, which are polynomial functions with the property
of having matching function values and derivatives at specified points.

On the unit interval [0, 1], there exist four Hermite Shape Functions with cubic order,
denoted by h00, h01, h10, and h11 in Eq. (4.41). These functions are referred to as hat
functions on the reference unit, and they are graphically displayed in Fig. 4.6.

h00 = 2x3 − 3x2 + 1, h01 = −2x3 + 3x2, h10 = x3 − 2x2 + x, h11 = x3 − x2. (4.41)

Let 0 = x0 < x1 < · · · < xNi
= L0,i be a local mesh on one edge interval [0, L0,i] which

consisting of Ni subintervals of length hi. After mapping from the reference unit to the
local interval, the hat function can be given by H1,i and H2,i as follows:

H1,i =


−2

(
x− xi−1

hi

)3

+ 3

(
x− xi−1

hi

)2

if x ∈ [xi−1, xi] ;

2

(
x− xi
hi

)3

− 3

(
x− xi
hi

)2

+ 1 if x ∈ [xi, xi+1] ;

0 otherwise.

H2,i =



(
x− xi−1

hi

)3

−
(
x− xi−1

hi

)2

if x ∈ [xi−1, xi] ;(
x− xi
hi

)3

− 2

(
x− xi
hi

)2

+
x− xi
hi

if x ∈ [xi, xi+1] ;

0 otherwise.

Each hat function is continuous, piecewise cubic. For H1,i, it takes a unit value at its own
node xi, while being zero at all other nodes. For H2,i, its derivative takes a unit value at
its own node xi, while being zero at all other nodes (See Fig. 4.7).
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Figure 4.5: Displacements and angles of rotation of the full model in local coordinate.

Figure 4.6: The four Hermite basis functions on the unit interval [0, 1].
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xi−1 xi+1

1

xi
0 x

y

H1,i

H2,i

Figure 4.7: Illustration of shape functions (red: H1,i, blue: H2,i)

The ansatz function uh(x) is constructed as a linear combination of two sets of basis
functions, H1,j(x) and H2,j(x), that are defined over the set of nodes xj.

u(x) ≈ uh(x) =

Ni∑
j=0

UjH1,j(x) +

Ni∑
j=0

ŨjH2,j(x).

At the j-th node xj, there are two degrees of freedom Uj and Ũj, where Uj is the value of
uh(x) at xj and Ũj is the corresponding derivative value. The discrete counterpart of the
optimization control in Eq. (4.37) takes the form: find uh ∈ Vh and ph ∈ Vh such that{

(uh, φ)Ω0 + a0(ph, η) − ph(L− 1)⊤Λεφ(L− 1) = (z, φ)Ω0 , ∀φ ∈ Vh
a0(uh, φ) − (ph, φ)Ω0 − uh(L− 1)⊤Λεφ(L− 1) = (v, φ)Ω0 , ∀φ ∈ Vh

(4.42)

where uh and ph are the approximations of the solution and Lagrange multiplier, respec-
tively. The function space Vh is defined as a set of cubic functions that satisfy certain
conditions at the nodes and inner vertices.

Vh = {φ = (φ1, · · · , φ6) | φi is cubic on each[xj, xj+1], i = 1, · · · , 6, φi (Pi) = 0, i = 1, 2, 3,

continuity and Kirchhoff conditions at the inner vertices P4, P5, P6}.

All subscripts h represent discrete forms. Denote by H1 = (H1,1, H1,2, · · · , H1,Ni
)⊤, H2 =

(H2,1, H2,2, · · · , H2,Ni
)⊤ be column vectors. The stiffness matrix Ki and mass matrix Mi

could be written as

Ki =

( ∫ L0,i

0
H ′

1(H
′
1)

⊤ ∫ L0,i

0
H ′

2(H
′
1)

⊤∫ L0,i

0
H ′

1(H
′
2)

⊤ ∫ L0,i

0
H ′

2(H
′
2)

⊤

)
, Mi =

( ∫ L0,i

0
H1(H1)

⊤ ∫ L0,i

0
H2(H1)

⊤∫ L0,i

0
H1(H2)

⊤ ∫ L0,i

0
H2(H2)

⊤

)
,

We introduce another two matrix Kr
i and K l

i :

Kr
i =

( ∫ L0,i

0
H1(H

′
1)

⊤ ∫ L0,i

0
H2(H

′
1)

⊤∫ L0,i

0
H1(H

′
2)

⊤ ∫ L0,i

0
H ′

2(H
′
2)

⊤

)
, K l

i =

( ∫ L0,i

0
H ′

1(H1)
⊤ ∫ L0,i

0
H ′

2(H1)
⊤∫ L0,i

0
H ′

1(H2)
⊤ ∫ L0,i

0
H ′

2(H2)
⊤

)
.
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Then we assemble the matrix

Ai =


kxKi 0 0 0 0 0

0 ksKi 0 0 0 −ksKr
i

0 0 ksKi 0 ksKr
i 0

0 0 0 cxKi 0 0
0 0 ksK l

i 0 ksMi + cyKi 0
0 −ksK l

i 0 0 0 ksMi + czKi

 ,

and
Bi = diag(Mi,Mi,Mi,Mi,Mi,Mi)

is a block diagonal matrix. The matrix form of the Eq. (4.42) can be written as

A1 −B1

B1 A1

. . . . . .

. . . . . .

A6 −B6

B6 A6





u1
p1
...
...
u6
p6


=



(v̄1, H)
(Z1, H)

...

...
(v̄6, H)
(Z6, H)


, (4.43)

where u1 :=

(
(u1, H1)
(u′1, H1)

)
, (v̄1, H) :=

(
(v1, H1)
(v′1, H1)

)
and similar to others. In addition, we

impose the coupling continuity and Kirchhoff condition.
Fig. 4.8 shows the state u in E0,1, E0,2 and E0,3 in local coordinate for different ε

comparing the desired state z.
Fig. 4.9 depicts the functional shape with respect to ε for the full and reduced models,

respectively. It’s easy to see that topological derivative is negative as ε→ 0+. So the cost
functional is in fact reduced by the creation of a hole. The minimum value of J is when
ε = ε0.

We refer e.g., to [82], [81] for numerical methods in more complex geometry.
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Figure 4.8: The state u for different ε = 0.1, 0.3, 0.7, 0.9 and z of full Timoshenko beam

Figure 4.9: The shape functional for ε ∈ (0, 1) of the full (left) and reduced (right)
Timoshenko beam
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Chapter 5

Turnpike Property for Dynamic
Optimization and Applications

The Turnpike Property for abstract wave equation is shown in [31]. The state equation is
a scalar hyperbolic equation. The cost for control problems contains two components for
the position y and the velocity yt of the wave equation. The constant in the inequality
(5.68) is uniform on compact sets of designs of the network. Therefore, the turnpike
property holds for an admissible family of the networks. In such a way, the existence of
optimum designs assured our control and shape optimization problems of the network by
writing the static state equation.

In the proof, it is supposed that yt(T ) = 0, for the sake of simplicity. The turn-
pike property holds for the abstract control problem for the wave equation under the
assumption that yt(T ) = 0.

5.1 Optimality System for Evolution Problem

We introduce the Lagrangian for the state y ∈ L2(0, T ;H1(Ω), yt ∈ L2(0, T ;L2(Ω)),
yt(0) = y1 and the adjoint state p ∈ L2(0, T ;H1(Ω), pt ∈ L2(0, T ;L2(Ω)). Hence y, p ∈
C(0, T ;L2(Ω) and the integration by parts∫ T

0

(
∂2y

∂2t
(t), p(t)

)
L2(Ω)

dt

= −
∫ T

0

(
∂y

∂t
(t),

∂p

∂t
(t)

)
L2(Ω)

dt+

(
∂y

∂t
(T ), p(T )

)
L2(Ω)

−
(
∂y

∂t
(0), p(0)

)
L2(Ω)

= −
∫ T

0

(
∂y

∂t
(t),

∂p

∂t
(t)

)
L2(Ω)

dt+

(
∂y

∂t
(T ), p(T )

)
L2(Ω)

−
(
y1, p(0)

)
L2(Ω)

Now, we assume p(T ) = 0 which leads to the integration by parts formula∫ T

0

(
∂2y

∂2t
(t), p(t)

)
L2(Ω)

dt = −
∫ T

0

(
∂y

∂t
(t),

∂p

∂t
(t)

)
L2(Ω)

dt−
(
y1, p(0)

)
L2(Ω)

75
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Remark 5. If we add the state constraint yt(T ) = 0 then the integration by parts for-
mula is the same but the terminal condition for p(T ) becomes undetermined, i.e., we lose
homogeneous condition for the terminal adjoint state.

We derive the optimality system for the optimal control problem with the evolution
state equation. To this end, we introduce the Lagrangian with y ∈ L2(0, T ;H1(Ω), yt ∈
L2(0, T ; Ω), y(0) = y0, and φ ∈ L2(0, T ;H1(Ω), φt ∈ L2(0, T ; Ω), φ(T ) = 0

L(u, y, φ) =
1

2

∫ T

0

∥y − yd∥2L2(Ω)dt+
1

2

∫ T

0

∥u− ud∥2L2(Γ)dt

+
γ

2

∫ T

0

∥∂t(y − yd)∥2L2(Ω)dt

−
∫ T

0

(
∂y

∂t
(t),

∂φ

∂t
(t)

)
L2(Ω)

dt−
(
y1, φ(0)

)
L2(Ω)

+

∫ T

0

a(y(t), φ)dt

−
∫ T

0

(L(u)(t), φ)L2(Γ)dt−
∫ T

0

(F (t), φ)L2(Ω)dt.

The adjoint state p = p(u;x, t) is obtained by differentiation of Lagrangian with respect
to the state, thus with Q(T ) = (0, T ) × Ω

(ptt, φ)Q(T ) +

∫ T

0

a(p, φ) dt = (yd − y, φ)Q(T ) + γ (∂t(y
d − y), φt)Q(T ) ∀φ ∈ H(Q(T ))

p(T ) = 0, pt(T ) = γ yt(T ) .

The gradient of the cost with respect to the control is obtained by differentiation of the
Lagrangian with respect to the control〈

dJ

du
(u), η

〉
=

∫ T

0

(u− ud, η)L2(Γ)dt−
∫ T

0

(L(η)(t), p(t))L2(Γ)dt

=

∫ T

0

(u− ud, η)Γdt−
∫ T

0

(L(η)(t), p(t))Γdt.

The following lemma contains the necessary optimality conditions for the dynamic prob-
lem where JT (u) as defined in (4.3) is minimized.

Lemma 1. The optimality system for the optimal control of the evolution control problem
is verified for a.e. t ∈ (0, T ):

(ŷtt, φ)Q(T ) +

∫ T

0

a(ŷ(t), φ) dt =

∫ T

0

(L(û)(t), φ)Γ dt+ (F (t), φ)Q(T ) (5.1)

∀φ ∈ H(Q(T ))

ŷ(0) = y0, ŷt(0) = y1 (5.2)
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(p̂tt, φ)H(Q(T )) +

∫ T

0

a(p̂, φ) dt = (yd − ŷ + γ ŷtt, φ)Q(T ) (5.3)

∀φ ∈ H(Q(T ))

p̂(T ) = 0, p̂t(T ) = γ ŷt(T ) (5.4)

(û− ud, η)Γ − (L(η)(t), p̂(t))Γ = 0 ∀η ∈ L2(0, T ; Γ) (5.5)

The optimality system (5.1)-(5.5) admits a unique solution (û, ŷ, p̂).

5.2 The difference of the Static and the Dynamic Op-

timality Systems for Distributed Control

In this section, we study a system that is satisfied by the ordered pair that has the
difference between the optimal dynamic state for the time horizon T and the optimal
static state as the first component and the difference between the optimal dynamic adjoint
state for the time horizon T and the optimal static adjoint state as the second component.
The question of long time versus steady state optimal control has already been studied
in [74] where the focus is on the turnpike property of the state and the control without
the adjoint state. The turnpike phenomenon for optimal boundary control problems with
first order hyperbolic systems is considered in [26].

We assume that Γ = Ω and the operators L(v) and L(u) are identity operators in
L2(Ω) and F (t) = f , ud(t) = vd, y

d = zd for t ∈ [0, T ] almost everywhere. The optimality
system for the static problem reads

ẑσ ∈ H : a(ẑσ, φ) = (v̂σ, φ)L2(Ω) + (f, φ)L2(Ω) ∀φ ∈ H, (5.6)

p̂σ ∈ H : a(p̂σ, ϕ) = (zd − ẑσ, ϕ)L2(Ω) ∀ϕ ∈ H, (5.7)

v̂σ − vd = p̂σ a.e. in Ω. (5.8)

The optimality system for the evolution problem implies for t ∈ [0, T ] almost everywhere
(with F (t) = f)

(ŷTtt(t), φ)L2(Ω) + a(ŷT (t), φ) = (ûT (t), φ)L2(Ω) + (F (t), φ)L2(Ω) ∀φ ∈ H (5.9)

ŷT (0) = y0, ŷTt (0) = y1 (5.10)

(p̂Ttt(t), φ)L2(Ω) + a(p̂T (t), φ) = (yd − ŷT (t) + γ ŷtt, φ)L2(Ω) ∀φ ∈ H (5.11)

p̂T (T ) = 0, p̂Tt (T ) = γ ŷt(T ) (5.12)

ûT (t) − ud = p̂T (t) a.e. in Ω × (0, T ). (5.13)

Define the differences

ωT = ŷT − ẑσ, µT = p̂T − p̂σ, νT = ûT − v̂σ.

Then for all φ ∈ H we have the initial condition

ωT (0) = y0 − ẑσ, ωT
t (0) = y1, (5.14)
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the terminal conditions
µT (T ) = −p̂σ, µT

t (T ) = γ ωt(T ), (5.15)

the dynamics

(ωT
tt(t), φ)L2(Ω) + a(ωT (t), φ) = (νT (t), φ)L2(Ω) = (µT (t), φ)L2(Ω) (5.16)

and with the assumption that yd = zd and ud = vd

(µT
tt(t), φ)L2(Ω) + a(µT (t), φ) = −(ωT (t), φ)L2(Ω) + γ (ωT

tt(t), φ)L2(Ω). (5.17)

Note that for the difference system, the existence of a solution is implied by the construc-
tion as the difference between two systems, for which solutions exist.

Note that for the energy

E(t) =
(ωT

t (t), ωT
t (t))L2(Ω) + a(ωT (t), ωT (t))

2
+

(µT
t (t), µT

t (t))L2(Ω) + a(µT (t), µT (t))

2

due to (5.16) and (5.17) for γ = 0 we have

E ′′(t) ≥ (ωT (t), ωT (t))L2(Ω) + (µT (t), µT (t))L2(Ω) ≥ 0.

Thus E is convex on [0, T ].
Now we perform a spectral analysis to show the exponential turnpike property.
Assume that there exists a complete orthonormal sequence (ψk)∞k=1 of eigenfunctions

with a(ψk, φ) = λk(ψk, φ)L2(Ω) for all k ∈ {0, 1, 2, 3, ..} where

λk ≥ γ > 0 (5.18)

is a real number.

Remark 6. In the case of optimal design, the bilinear form depends on Ω. In the case
of a graph, this means the dependence of the lengths of the edges. In this case, the
eigenvalues and eigenfunctions depend on these parameters that we denote by ℓ. Therefore
a meaningful analysis has to take into account the sensitivity with respect to ℓ.

Our assumption on the feasible designs is that the smallest eigenvalues are greater
than or equal to the given strictly positive lower-bound γ > 0 uniformly on the set of
admissible designs. In this way, we ensure that the turnpike property is valid for the
bilevel optimization problem that we consider in this paper.

It is well known that the smallest eigenvalue that can be characterized as the Rayleigh
quotient depends smoothly on the parameters, see [32]. In our analysis, the particular
structure of the spectrum is not relevant.

Then we can use the representations

ωT =
∞∑
k=0

ak(t)ψk(x), µT =
∞∑
k=0

bk(t)ψk(x) (5.19)
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to show that ωT and µT have the turnpike property.
It is clear that the functions ak and bk depend on T as a parameter, so a more precise

notation would be ak,T (t) and bk,T (t). However, in order to make the text more concise
we continue with the shorter notation ak and bk.

From (5.16) and (5.17) we obtain a
(2)
k = −λk ak + bk and b

(2)
k = −λk bk − ak + γ a

(2)
k .

Here, (n) means the n-th order derivative. Thus we have the sequence of differential
equations

a
(4)
k + (2λk − γ) a

(2)
k + (λ2k + 1) ak = 0,

b
(4)
k + (2λk − γ) b

(2)
k + (λ2k + 1) bk = 0. (5.20)

Define the characteristic polynomial

pk(z) = z4 + (2λk − γ) z2 + (λ2k + 1).

Since pk is a polynomial in z2, for the roots z
[l]
k of pk we obtain

(z
[l]
k )2 =

γ

2
− λk ±

i

2

√
4 + 4λk γ − γ2

for l ∈ {1, 2, 3, 4} which implies
∣∣∣(z[l]k )2

∣∣∣ =
√

1 + λ2k. Thus there are two pairs of complex

conjugate roots and we have the representation

pk(z) = (z − z
[1]
k )(z − z

[1]
k )(z + z

[1]
k )(z + z

[1]
k ).

We have |z(l)k |4 = λ2k + 1, Re((z[l])2k) = γ
2
− λk and | Im((z[l])2k)| =

√
4+4λk γ−γ2

2
. Moreover,

we have

|Re(z
[l]
k )| =

√
γ

4
+

1

2(λk +
√

1 + λ2k)

and

|Re(z
[l]
k )| ≥

√
γ

2
. (5.21)

The initial condition (5.14) yields the values for ak(0) and a′k(0). The terminal condition
(5.15) yields the value for bk(T ) and b′k(T ) = γ a′k(T ). Note that (5.15) implies that the
value of bk(T ) is independent of T .

For the sake of conciseness, in the sequel we use the notation zk = z
[1]
k .

5.2.1 Representation of the Solution

Since

a′k,T =
1

1 + γ λk

[
−b′′′k,T + (γ − λk)b′k,T

]
, (5.22)
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the solution of the optimality system means that for the coefficients bk,T of µT as defined
in (5.19) we solve a boundary value problem with the ODE of order four (5.20) i.e.

b
(4)
k,T + (2λk − γ) b

(2)
k,T + (λ2k + 1) bk,T = 0

bk,T (T ) = βk
b′k,T (T ) = γ

1+γ λk

[
−b′′′k,T (T ) + (γ − λk) b′k,T (T )

]
−b′′k,T (0) + (γ − λk) bk,T (0) = (1 + γ λk) ak,T (0)
−b′′′k,T (0) + (γ − λk) b′k,T (0) = (1 + γ λk) a′k,T (0).

(5.23)
where the value of βk is determined by the terminal condition µT (T ) = −p̂σ in (5.15). We
represent the solution in the form

bk,T (t) = Fk,T (t) βk + (1 + γ λk)[Gk,T (t) ak,T (0) +Hk,T (t) a′k,T (0)]. (5.24)

The following Lemma contains explicit representations of Fk,T , Gk,T and Hk,T . In the
representation, the numbers d(k, T ) appear as multipliers, therefore it is important that
for T sufficiently large we have d(k, T ) ̸= 0. Since in the study of the turnpike phenomenon
we are interested in large time horizons, the assumption that the time horizon T is large
is not restrictive for us. We introduce the notation

Ξk := γ − λk − z2k =
γ

2
∓ i

2

√
4 + 4λkγ − γ2. (5.25)

Lemma 2. Define

qk =
γ2 − 2 γ λk − 1

γ
.

For k ∈ {0, 1, 2, ...} and T sufficiently large define the numbers

d(k, T )

= −2Re
(

Ξ2
k

z2k−qk

)
+ 2|Ξk|2Re

(
1

z2k−qk
| cosh2(zkT )| − zk

zk

1
zk2−qk

| sinh2(zkT )|
)
.

(5.26)

Then we have

d(k, T )Fk,T (t)

= 2 Re
([

− Ξk
2

zk
2−qk

+ |Ξk|2
zk2−qk

cosh(zk T ) cosh(zkT )
]

cosh(zk(t− T ))
)

+ 2 Re
(

|Ξk|2
z2k−qk

cosh(zkT ) sinh(zkT ) sinh(zk(t− T ))
)

− 2 Re
(

|Ξk|2
z2k−qk

zk
zk

sinh(zkT ) [sinh(zk T ) cosh(zk(t− T )) + cosh(zkT ) sinh(zk(t− T ))]
)
.

Furthermore, it holds

d(k, T )Gk,T (t)

= 2 Re
(

Ξk

zk
2−qk

cosh(zkT ) [cosh(zk(t− T )) − cosh(zk(t− T ))]
)

+ 2 Re
(

1
zk2−qk

[
zk
zk

Ξk sinh(zkT ) − Ξk sinh(zkT )
]

sinh(zk(t− T ))
) (5.27)
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and

d(k, T )Hk,T (t)

= −2 Re
(

Ξk

zk(zk2−qk)
sinh(zkT ) [cosh(zk(t− T )) − cosh(zk(t− T ))]

)
+2 Re

(
Ξk

zk(zk2−qk)
cosh(zkT ) sinh(zk(t− T )) − Ξk

zk(zk
2−qk)

cosh(zkT ) sinh(zk(t− T ))
)
.

Proof: Due to the properties of the hyperbolic functions that can be found for example
in [10, 11] we have

d(k, T ) = −2 Re

(
Ξ2
k

z2k − qk

)
(5.28)

+|Ξk|2
(

Re ((zk
2 − qk)(|zk|2 − z2k))

|z2k| |zk2 − qk|

)
cosh(2 Re(zk)T )

+|Ξk|2
(

Re ((zk
2 − qk)(|zk|2 + z2k))

|z2k| |zk2 − qk|

)
cosh(2 Im(zk)T ).

This implies limT→∞ |d(k, T )| = ∞, hence for all sufficiently large T we have d(k, T ) ̸=
0. In the remaining part of the proof, we assume that d(k, T ) ̸= 0. Moreover, we see that
d(k, T ) grows exponentially fast with T with the growth rate

2Re(zk) ≥ √
γ (5.29)

due to (5.21).
To be more precise, note that |Ξk|2 = 1 + γ λk grows with the order λk.
At this point, elementary computations show that Fk,T (t), Gk,T (t) and Hk,T (t) satisfy

the differential equation and the boundary conditions where (βk, ak,T (0), a′k,T (0)) have the
values (1, 0, 0), (0, 1, 0), (0, 0, 1) respectively. Now we present details of the verification of
these basic functions.

Since b′′′k,T (T ) = qk b
′
k,T (T ), we can make the ansatz

bk,T (t) = AT
k cosh(zk(t− T )) +BT

k cosh(zk(t− T )) (5.30)

+CT
k

[
1

zk (z2k − qk)
sinh(zk(t− T )) − 1

zk (zk
2 − qk)

sinh(zk(t− T ))

]
.

Now we return again to the sloppy notation ak, bk. Then

AT
k +BT

k = bk(T ).

We have

ak =
−b(2)k + (γ − λk) bk

1 + γ λk
. (5.31)

Hence we obtain
(1 + γ λk) ak(t) =



82 CHAPTER 5. TURNPIKE PROPERTY FOR DYNAMIC OPTIMIZATION

AT
k

(
(γ − λk) − z2k

)
cosh(zk(t− T )) +BT

k

(
(γ − λk) − zk

2
)

cosh(zk(t− T ))

+CT
k

[
γ − λk − z2k
zk (zk2 − qk)

sinh(zk(t− T )) − γ − λk − zk
2

zk (zk
2 − qk)

sinh(zk(t− T ))

]
.

Therefore, we have

(1 + γ λk) ak(0) =

AT
k

(
(γ − λk) − z2k

)
cosh(zk T ) +BT

k

(
(γ − λk) − zk

2
)

cosh(zk T )

+CT
k

[
− γ − λk − z2k
zk (zk2 − qk)

sinh(zk T ) +
γ − λk − zk

2

zk (zk
2 − qk)

sinh(zk T )

]
.

Due to (5.22) we have

(1 + γ λk) a′k(t) = −b′′′k (t) + (γ − λk)b′k(t)

= AT
k (−z3k + (γ − λk)zk) sinh(zk(t− T )) +BT

k (−z3k + (γ − λk)zk) sin(zk(t− T ))

+CT
k

[
(−z3k + (γ − λk)zk)

zk (z2k − qk)
cosh(zk(t− T )) − (−z3k + (γ − λk)zk)

zk (zk
2 − qk)

cosh(zk(t− T ))

]
.

Hence we have

(1 + γ λk) a′k(0) = −b′′′k (0) + (γ − λk)b′k(0)

= AT
k (z3k − (γ − λk)zk) sinh(zkT ) +BT

k (z3k − (γ − λk)zk) sin(zkT )

+CT
k

[
(−z3k + (γ − λk)zk)

zk (z2k − qk)
cosh(zk T ) − (−z3k + (γ − λk)zk)

zk (zk
2 − qk)

cosh(zkT )

]
.

In order to obtain a unique solution for the vector of coefficients (AT
k , B

T
k , C

T
k ) we

investigate the determinant of the corresponding 3 × 3 matrix M(T ). For this purpose,
we introduce the notation

m21(T ) =
(
γ − λk − z2k

)
cosh(zkT ),

m22(T ) =
(
γ − λk − zk

2
)

cosh(zkT ),

m23(T ) = − γ − λk − z2k
zk (zk2 − qk)

sinh(zk T ) +
γ − λk − zk

2

zk (zk
2 − qk)

sinh(zk T )

m31(T ) = −zk
(
γ − λk − z2k

)
sinh(zkT ) = −m′

21(T ),

m32(T ) = −zk
(
γ − λk − zk

2
)

sinh(zkT ) = −m′
22(T ),

m33(T ) =
((γ − λk) − z2k)

(z2k − qk)
cosh(zk T ) − ((γ − λk) − z2k)

(zk
2 − qk)

cosh(zkT ) = −m′
23(T ).

Note that we have the equations

m23(T ) =
1

z2k (zk2 − qk)
m31(T ) − 1

zk
2 (zk

2 − qk)
m32(T ).
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m33(T ) =
1

(zk2 − qk)
m21(T ) − 1

(zk
2 − qk)

m22(T ),

We have the matrix

M(T ) =

 1 1 0
m21(T ) m22(T ) m23(T )
m31(T ) m32(T ) m33(T )

 =

 1 1 0
m21(T ) m22(T ) m23(T )
−m′

21(T ) −m′
22(T ) −m′

23(T )


and the right-hand side

r(T ) =

 bk(T )
(1 + γ λk) ak(0)
(1 + γ λk) a′k(0)


that is in fact independent of T , as stated earlier.

5.2.2 Computation of the characteristic determinant and an in-
verse matrix

For the determinant of M(T ) we obtain

detM(T ) =m22(T )m33(T ) −m32(T )m23(T ) −m21(T )m33(T ) +m31(T )m23(T )

=
1

(zk2 − qk)
m22(T )m21(T ) − 1

(zk
2 − qk)

m22(T )m22(T )

− 1

z2k (zk2 − qk)
m32(T )m31(T ) +

1

zk
2 (zk

2 − qk)
m32(T )m32(T )

− 1

(zk2 − qk)
m21(T )m21(T ) +

1

(zk
2 − qk)

m21(T )m22(T )

+
1

z2k (zk2 − qk)
m31(T )m31(T ) − 1

zk
2 (zk

2 − qk)
m31(T )m32(T ).

(5.32)

We havem21(T )2− 1
z2k
m31(T )2 = (γ − λk − z2k)

2
andm22(T )2− 1

zk
2m32(T )2 = (γ − λk − zk

2)
2
.

This yields

detM(T ) = − (γ − λk − z2k)
2

z2k − qk
− (γ − λk − zk

2)
2

zk
2 − qk

+

(
1

zk2 − qk
+

1

zk
2 − qk

)
m22(T )m21(T )

−
(

1

zk2 (zk2 − qk)
+

1

zk
2 (zk

2 − qk)

)
m32(T )m31(T ).

(5.33)

We introduce the notation
Ξk = γ − λk − z2k.
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Since

cosh(zkT ) cosh(zkT ) =
1

2
[cosh((zk + zk)T ) + cosh((zk − zk)T )] (5.34)

and

sinh(zkT ) sinh(zkT ) =
1

2
[cosh((zk + zk)T ) − cosh((zk − zk)T )] (5.35)

we obtain the equation

detM(T ) = − Ξ2
k

z2k − qk
− Ξk

2

zk
2 − qk

+

(
1

zk2 − qk
+

1

zk
2 − qk

)
|Ξk|2 cosh(zkT ) cosh(zkT )

−
(

1

zk2 (zk2 − qk)
+

1

zk
2 (zk

2 − qk)

)
zkzk |Ξk|2 sinh(zkT ) sinh(zkT ).

This yields the representation

detM(T ) = −2 Re

(
Ξ2
k

z2k − qk

)
(5.36)

+2|Ξk|2 Re

(
1

z2k − qk

)
| cosh2(zkT )| − 2|Ξk|2 Re

(
zk
zk

1

(zk2 − qk)

)
| sinh2(zkT )|.

Due to (5.34) and (5.35) this can also be written in the form

detM(T ) = − Ξ2
k

z2k − qk
− Ξk

2

zk
2 − qk

+
|Ξk|2

2

[
1

zk2 − qk

(
1 − zk

2

|zk|2

)
+

1

zk
2 − qk

(
1 − zk

2

|zk|2

)]
cosh((zk + zk)T )

+
|Ξk|2

2

[
1

zk2 − qk

(
1 +

zk
2

|zk|2

)
+

1

zk
2 − qk

(
1 +

zk
2

|zk|2

)]
cosh((zk − zk)T )

We have
1

zk2 − qk

(
1 − zk

2

|zk|2

)
+

1

zk
2 − qk

(
1 − zk

2

|zk|2

)
=

2 Re ((zk
2 − qk)(|zk|2 − z2k))

|z2k| |zk2 − qk|
.

It follows that

Re
(
(zk

2 − qk)(|zk|2 − z2k)
)

= Re
(
(|zk|2 + qk)z2k − qk |zk|2 − z4k

)
= Re

((
|zk|2 + qk + 2λk − γ

)
z2k + λ2k + 1 − qk |zk|2

)
= Re

((
|zk|2 −

1

γ

)
z2k + λ2k + 1 − qk |zk|2

)
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=

(√
λ2k + 1 − 1

γ

)(γ
2
− λk

)
+ λ2k + 1 + (2λk +

1

γ
− γ)

√
λ2k + 1

=
√
λ2k + 1

(
λk +

1

γ
− γ

2

)
+

1

γ
λk + λ2k +

1

2
> 0

and
1

zk2 − qk

(
1 +

zk
2

|zk|2

)
+

1

zk
2 − qk

(
1 +

zk
2

|zk|2

)
=

2 Re ((zk
2 − qk)(|zk|2 + z2k))

|z2k| |zk2 − qk|
,

Hence we have

detM(T ) = − 2 Re

(
Ξ2
k

z2k − qk

)
+

|Ξk|2

2

2 Re ((zk
2 − qk)(|zk|2 − z2k))

|z2k| |zk2 − qk|
cosh(2 Re(zk)T )

+
|Ξk|2

2

2 Re ((zk
2 − qk)(|zk|2 + z2k))

|z2k| |zk2 − qk|
cosh(2 Im(zk)T ).

(5.37)

This implies limT→∞ | detM(T )| = ∞, hence for all sufficiently large T we have
detM(T ) ̸= 0. Moreover, we see that detM(T ) grows exponentially fast with T with
the growth rate

2Re(zk) ≥ √
γ (5.38)

due to (5.21). Hence for all sufficiently large T the coefficients (AT
k , B

T
k , C

T
k ) are uniquely

determined.
For the computation of the inverse of M(T ) we use the representation

det(M(T ) [M(T )]−1 =

β11(T ) β12(T ) β13(T )
β21(T ) β22(T ) β23(T )
β31(T ) β32(T ) β33(T )



=

m22(T )m33(T ) −m23(T )m32(T ) −m33(T ) m23(T )
m23(T )m31(T ) −m21(T )m33(T ) m33(T ) −m23(T )
m21(T )m32(T ) −m22(T )m31(T ) m31(T ) −m32(T ) m22(T ) −m21(T )

 .

The element β11(T ) in the top-left corner of det(M(T ))M(T )−1 is given by the minor

β11(T ) = m22(T )m33(T ) −m23(T )m32(T )

= Ξk cosh(zkT )

{
Ξk

(z2k − qk)
cosh(zk T ) − Ξk

(zk
2 − qk)

cosh(zkT )

}
+

{
− Ξk

zk (zk2 − qk)
sinh(zk T ) +

Ξk

zk (zk
2 − qk)

sinh(zk T )

}{
zk Ξk sinh(zkT )

}
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=
|Ξk|2

z2k − qk
cosh(zkT ) cosh(zkT )− Ξk

2

zk
2 − qk

[cosh2(zkT )−sinh2(zkT )]−zk
zk

|Ξk|2

z2k − qk
sinh(zkT ) sinh(zkT )

= − Ξk
2

zk
2 − qk

+
|Ξk|2

zk2 − qk

[
cosh(zkT ) cosh(zkT ) − zk

zk
sinh(zkT ) sinh(zkT )

]
. (5.39)

Due to (5.34) and (5.35) this yields

β11(T ) = − Ξk
2

zk
2 − qk

+
1

2

|Ξk|2

zk2 − qk

[(
1 − zk

zk

)
cosh((zk + zk)T ) +

(
1 +

zk
zk

)
cosh((zk − zk)T )

]
.

The second element β12(T ) in the top row of det(M(T ))M(T )−1 is given by

β12(T ) = −m33(T ) = − Ξk

(z2k − qk)
cosh(zk T ) +

Ξk

(zk
2 − qk)

cosh(zkT ).

The third element β13(T ) in the top row of det(M(T ))M(T )−1 is given by

β13(T ) = m23(T ) = − Ξk

zk (zk2 − qk)
sinh(zk T ) +

Ξk

zk (zk
2 − qk)

sinh(zk T ).

Now we consider the entries in the second row. For the first element in the second row
of the matrix det(M(T ))M(T )−1 we obtain

β21(T ) = −[m21(T )m33(T ) −m23(T )m31(T )]

= − Ξ2
k

(z2k − qk)
cosh2(zk T ) +

|Ξk|2

(zk
2 − qk)

cosh(zk T ) cosh(zkT )

+
Ξ2
k

(zk2 − qk)
sinh2(zk T ) − zk |Ξk|2

zk (zk
2 − qk)

sinh(zk T ) sinh(zkT )

= − Ξ2
k

(z2k − qk)
+

|Ξk|2

(zk
2 − qk)

cosh(zk T ) cosh(zkT ) − zk
zk

|Ξk|2

(zk
2 − qk)

sinh(zk T ) sinh(zkT ).

(5.40)
Due to (5.34) and (5.35) this yields

β21(T ) = − Ξ2
k

(z2k − qk)

+
1

2

|Ξk|2

(zk
2 − qk)

[(
1 − zk

zk

)
cosh((zk + zk)T ) +

(
1 +

zk
zk

)
cosh((zk − zk)T )

]
.



5.2. THE DIFFERENCE SYSTEMS 87

The second element in the second row of the matrix det(M(T ))M(T )−1 is

β22(T ) = m33(T ) =
Ξk

(z2k − qk)
cosh(zk T ) − Ξk

(zk
2 − qk)

cosh(zkT ).

For the third element in the second row of the matrix det(M(T ))M(T )−1 we obtain

β23(T ) = −m23(T ) =
Ξk

zk (zk2 − qk)
sinh(zk T ) − Ξk

zk (zk
2 − qk)

sinh(zk T ).

Finally, let us look at the elements in the third row.
For the first element in the third row β31(T ) of the matrix det(M(T ))M(T )−1 we

obtain
β31(T ) = m21(T )m32(T ) −m22(T )m31(T )

= |Ξk|2 [−zk cosh(zk T ) sinh(zkT ) + zk cosh(zkT ) sinh(zk T )] .

For the hyperbolic functions, we have the general identity

cosh(zkT ) sinh(zkT ) =
1

2
[sinh((zk + zk)T ) − sinh((zk − zk)T )] (5.41)

and

sinh(zkT ) cosh(zkT ) =
1

2
[sinh((zk + zk)T ) + sinh((zk − zk)T )] . (5.42)

Using (5.41) and (5.42) we obtain

β31(T ) = |Ξk|2 [−zk cosh(zk T ) sinh(zkT ) + zk cosh(zkT ) sinh(zk T )]

= |Ξk|2
[
−zk

1

2
[sinh((zk + zk)T ) − sinh((zk − zk)T )] + zk

1

2
[sinh((zk + zk)T ) + sinh((zk − zk)T )]

]
= |Ξk|2

[
zk − zk

2
sinh((zk + zk)T ) +

zk + zk
2

sinh((zk − zk)T )

]
.

The second element in the third row β32(T ) of the matrix det(M(T ))M(T )−1 is

β32(T ) = −m32(T ) +m31(T ) = zk Ξk sinh(zkT ) − zk Ξk sinh(zkT ).

Finally the element β33(T ) of the matrix det(M(T ))M(T )−1 is

β33(T ) = m22(T ) −m21(T ) = Ξk cosh(zkT ) − Ξk cosh(zkT ).

We summarize the entries of det(M(T ))M(T )−1 in a table:

β11(T ) = − Ξk
2

zk
2 − qk

+
1

2

|Ξk|2

zk2 − qk

[(
1 − zk

zk

)
cosh((zk + zk)T ) +

(
1 +

zk
zk

)
cosh((zk − zk)T )

]
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β12(T ) = − Ξk

(z2k − qk)
cosh(zk T ) +

Ξk

(zk
2 − qk)

cosh(zkT ).

β13(T ) = − Ξk

zk (zk2 − qk)
sinh(zk T ) +

Ξk

zk (zk
2 − qk)

sinh(zk T ).

β21(T ) = − Ξ2
k

(z2k − qk)

+
1

2

|Ξk|2

(zk
2 − qk)

[(
1 − zk

zk

)
cosh((zk + zk)T ) +

(
1 +

zk
zk

)
cosh((zk − zk)T )

]
.

β22(T ) =
Ξk

(z2k − qk)
cosh(zk T ) − Ξk

(zk
2 − qk)

cosh(zkT ).

β23(T ) =
Ξk

zk (zk2 − qk)
sinh(zk T ) − Ξk

zk (zk
2 − qk)

sinh(zk T ).

β31(T ) = |Ξk|2
[
zk − zk

2
sinh((zk + zk)T ) +

zk + zk
2

sinh((zk − zk)T )

]
.

β32(T ) = zk Ξk sinh(zkT ) − zk Ξk sinh(zkT ).

β33(T ) = Ξk cosh(zkT ) − Ξk cosh(zkT ).

For

bk,T (t) = AT
k cosh(zk(t−T ))+BT

k cosh(zk(t−T ))+CT
k

[
sinh(zk(t− T ))

zk (z2k − qk)
− sinh(zk(t− T ))

zk (zk
2 − qk)

]
we have

V (T ) =

AT
k

BT
k

CT
k

 =
1

detM(T )

β11(T ) β12(T ) β13(T )
β21(T ) β22(T ) β23(T )
β31(T ) β32(T ) β33(T )

 bk(T )
(1 + γ λk)ak(0)
(1 + γ λk) a′k(0)

 . (5.43)

Due to (5.30) we have

bk,T (t) = Fk,T (t) bk(T ) +Gk,T (t) (1 + γ λk) ak(0) +Hk,T (t) (1 + γ λk) a′k(0), (5.44)

where the terms that are multiplied with bk(T ) and come from the first column of M(T )−1

are collected in Fk,T (t), and analogously for Gk,T (t) and Hk,T (t).
Thus we have

Fk,T (t) =
β11(T )

detM(T )
cosh(zk(t− T )) +

β21(T )

detM(T )
cosh(zk(t− T ))

+
β31(T )

detM(T )

[
sinh(zk(t− T ))

zk (z2k − qk)
− sinh(zk(t− T ))

zk (zk
2 − qk)

]
,

(5.45)

Gk,T (t) =
β12(T )

detM(T )
cosh(zk(t− T )) +

β22(T )

detM(T )
cosh(zk(t− T )) (5.46)
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+
β32(T )

detM(T )

[
sinh(zk(t− T ))

zk (z2k − qk)
− sinh(zk(t− T ))

zk (zk
2 − qk)

]
,

Hk,T (t) =
β13(T )

detM(T )
cosh(zk(t− T )) +

β23(T )

detM(T )
cosh(zk(t− T )) (5.47)

+
β33(T )

detM(T )

[
sinh(zk(t− T ))

zk (z2k − qk)
− sinh(zk(t− T ))

zk (zk
2 − qk)

]
.

Hence (with detM(T ) as in (5.36) )

detM(T )Fk,T (t)

=

[
− Ξk

2

zk
2 − qk

+
1

2

|Ξk|2

zk2 − qk

[(
1 − zk

zk

)
cosh((zk + zk)T )

+

(
1 +

zk
zk

)
cosh((zk − zk)T )

]]
cosh(zk(t− T ))

+

[
Ξ2
k

(z2k − qk)
+

1

2

|Ξk|2

(zk
2 − qk)

[(
1 − zk

zk

)
cosh((zk + zk)T )

+

(
1 +

zk
zk

)
cosh((zk − zk)T )

]]
cosh(zk(t− T ))

+ |Ξk|2
[
zk − zk

2
sinh((zk + zk)T ) +

zk + zk
2

sinh((zk − zk)T )

] [
sinh(zk(t− T ))

zk (z2k − qk)
− sinh(zk(t− T ))

zk (zk
2 − qk)

]
= 2 Re

([
− Ξk

2

zk
2 − qk

+
1

2

|Ξk|2

zk2 − qk

[(
1 − zk

zk

)
cosh((zk + zk)T )

+

(
1 +

zk
zk

)
cosh((zk − zk)T )

]]
cosh(zk(t− T ))

)
+ |Ξk|2

[
zk − zk

2
sinh((zk + zk)T ) +

zk + zk
2

sinh((zk − zk)T )

] [
sinh(zk(t− T ))

zk (z2k − qk)
− sinh(zk(t− T ))

zk (zk
2 − qk)

]
.

Whence we have
detM(T )Fk,T (t)

= 2Re

([
− Ξk

2

zk
2 − qk

+
|Ξk|2

zk2 − qk

[
cosh(zk T ) cosh(zkT )−

zk
zk

sinh(zk T ) sinh(zk T )

]]
cosh(zk(t− T ))

)

+|Ξk|2 [zk sinh(zkT ) cosh(zkT )− zk cosh(zkT ) sinh(zkT )]

[
sinh(zk(t− T ))

zk
(
z2k − qk

) − sinh(zk(t− T ))

zk
(
zk

2 − qk
) ]

= 2Re

([
− Ξk

2

zk
2 − qk

+
|Ξk|2

zk2 − qk

[
cosh(zk T ) cosh(zkT )−

zk
zk

sinh(zk T ) sinh(zk T )

]]
cosh(zk(t− T ))

)

+|Ξk|22Re

(
sinh(zkT ) cosh(zkT )

sinh(zk(t− T ))(
z2k − qk

) − zk
zk

cosh(zkT ) sinh(zkT )

[
sinh(zk(t− T ))(

z2k − qk
) ])

.
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Verification of the Basis Function Fk,T (t) We start with the function Fk,T (t) from
(5.24) that is multiplied with βk, i.e. we consider the product d(k, T )Fk,T (t). We will
show that Fk,T (t) satisfies the boundary conditions

Fk,T (T ) = 1,

F ′′′
k,T (T ) =

γ2 − 2 γ λk − 1

γ
F ′
k,T (T ),

−F ′′
k,T (0) + (γ − λk)Fk,T (0) = 0,

−F ′′′
k,T (0) + (γ − λk)F ′

k,T (0) = 0.

We have

d(k, T )Fk,T (t) = 2 Re

(
− Ξk

2

zk
2 − qk

cosh(zk(t− T ))

)

+ 2 Re

(
|Ξk|2

zk2 − qk
cosh(zkT ) cosh(zk T ) cosh(zk(t− T ))

)
+ 2 Re

(
|Ξk|2

z2k − qk
cosh(zkT ) sinh(zkT ) sinh(zk(t− T ))

)
− 2 Re

(
|Ξk|2

z2k − qk

zk
zk

sinh(zkT ) [sinh(zk T ) cosh(zk(t− T )) + cosh(zkT ) sinh(zk(t− T ))]

)
.

Hence for t = T we have

d(k, T )Fk,T (T ) = 2 Re

(
− Ξk

2

zk
2 − qk

)

+ 2 Re

(
|Ξk|2

zk2 − qk
cosh(zkT ) cosh(zk T ) − |Ξk|2

z2k − qk

zk
zk

sinh(zkT ) sinh(zk T )

)
= d(k, T ).

Since d(k, T ) ̸= 0, this implies Fk,T (T ) = 1. For the derivative we obtain

d(k, T )F ′
k,T (t) = 2 Re

(
zk

[
−Ξk

2
+ |Ξk|2 [cosh(zkT ) cosh(zkT )]

]
sinh(zk (t− T ))

)
+ 2 Re

(
zk

|Ξk|2

zk2 − qk
cosh(zkT ) cosh(zk T ) sinh(zk(t− T ))

)
+ 2 Re

(
zk

|Ξk|2

z2k − qk
cosh(zkT ) sinh(zkT ) cosh(zk(t− T ))

)
− 2 Re

(
|Ξk|2

z2k − qk
zk sinh(zkT ) [sinh(zk T ) sinh(zk(t− T )) + cosh(zkT ) cosh(zk(t− T ))]

)
.

Thus we have

d(k, T )F ′
k,T (T ) = 2 Re

(
zk

|Ξk|2

z2k − qk
cosh(zkT ) sinh(zkT )

)
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− 2 Re

(
|Ξk|2

z2k − qk
zk sinh(zkT ) cosh(zkT )

)
.

Therefore we have F ′
k,T (T ) = 0. For t = 0 we have

d(k, T )Fk,T (0) = 2 Re

(
− Ξk

2

zk
2 − qk

cosh(zkT )

)

+ 2 Re

(
|Ξk|2

zk2 − qk
cosh(zkT ) cosh(zk T ) cosh(zkT )

)
− 2 Re

(
|Ξk|2

z2k − qk
cosh(zkT ) sinh(zkT ) sinh(zkT )

)
− 2 Re

(
|Ξk|2

z2k − qk

zk
zk

sinh(zkT ) [sinh(zk T ) cosh(zkT ) − cosh(zkT ) sinh(zkT )]

)
= 2 Re

(
− Ξk

2

zk
2 − qk

cosh(zkT ) +
|Ξk|2

zk2 − qk
cosh(zkT )

)
.

For the second derivative, we have

d(k, T )F ′′
k,T (t)

= 2 Re

(
−z2k

Ξk
2

zk
2 − qk

cosh(zk(t− T ))

)

+ 2 Re

(
z2k

|Ξk|2

zk2 − qk
cosh(zkT ) cosh(zk T ) cosh(zk(t− T ))

)
+ 2 Re

(
z2k

|Ξk|2

z2k − qk
cosh(zkT ) sinh(zkT ) sinh(zk(t− T ))

)
− 2 Re

(
|Ξk|2

z2k − qk
|zk|2 sinh(zkT ) [sinh(zk T ) cosh(zk(t− T )) + cosh(zkT ) sinh(zk(t− T ))]

)
.

For t = 0 this yields

d(k, T )F ′′
k,T (0) = 2 Re

(
−z2k

Ξk
2

zk
2 − qk

cosh(zkT )

)

+ 2 Re

(
z2k

|Ξk|2

zk2 − qk
cosh(zkT ) cosh(zk T ) cosh(zkT )

)
− 2 Re

(
z2k

|Ξk|2

z2k − qk
cosh(zkT ) sinh(zkT ) sinh(zkT ))

)
− 2 Re

(
|Ξk|2

z2k − qk
|zk|2 sinh(zkT ) [sinh(zk T ) cosh(zkT ) − cosh(zkT ) sinh(zkT )]

)
= 2 Re

(
z2k

[
− Ξk

2

zk
2 − qk

cosh(zkT )
|Ξk|2

zk2 − qk
cosh(zkT )

)]
.
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Hence we have

d(k, T )
[
−F ′′

k,T (0) + (γ − λk)Fk,T (0)
]

= 0.

Thus we have −F ′′
k,T (0) + (γ − λk)Fk,T (0) = 0.

To proceed, let us observe that

d(k, T )F ′
k,T (0) = 2 Re

(
zk

Ξk
2

zk
2 − qk

sinh(zkT )

)

− 2 Re

(
zk

|Ξk|2

zk2 − qk
cosh(zkT ) cosh(zk T ) sinh(zkT )

)
+ 2 Re

(
zk

|Ξk|2

z2k − qk
cosh(zkT ) sinh(zkT ) cosh(zkT )

)
− 2 Re

(
|Ξk|2

z2k − qk
zk sinh(zkT ) [− sinh(zk T ) sinh(zkT ) + cosh(zkT ) cosh(zkT )]

)
= 2 Re

(
zk

Ξk
2

zk
2 − qk

sinh(zkT )

)
− 2 Re

(
zk

|Ξk|2

z2k − qk
sinh(zkT )

)
.

For the third derivative, we have

d(k, T )F ′′′
k,T (t)

= 2 Re

(
−z3k

Ξk
2

zk
2 − qk

sinh(zk(t− T ))

)

+ 2 Re

(
z3k

|Ξk|2

zk2 − qk
cosh(zkT ) cosh(zk T ) sinh(zk(t− T ))

)
+ 2 Re

(
z3k

|Ξk|2

z2k − qk
cosh(zkT ) sinh(zkT ) cosh(zk(t− T ))

)
− 2 Re

(
|Ξk|2

z2k − qk
|zk|2zk sinh(zkT ) [sinh(zk T ) sinh(zk(t− T )) + cosh(zkT ) cosh(zk(t− T ))]

)
.

(5.48)
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This yields

d(k, T )F ′′′
k,T (0)

= 2 Re

(
z3k

Ξk
2

zk
2 − qk

sinh(zkT )

)

+ 2 Re

(
−z3k

|Ξk|2

zk2 − qk
cosh(zkT ) cosh(zk T ) sinh(zkT )

)
+ 2 Re

(
z3k

|Ξk|2

z2k − qk
cosh(zkT ) sinh(zkT ) cosh(zkT )

)
− 2 Re

(
|Ξk|2

z2k − qk
|zk|2zk sinh(zkT ) [− sinh(zk T ) sinh(zkT ) + cosh(zkT ) cosh(zkT )]

)
= 2 Re

(
z3k

Ξk
2

zk
2 − qk

sinh(zkT )

)
− 2 Re

(
|Ξk|2

z2k − qk
z2kzk sinh(zkT )

)
.

(5.49)
Hence we have

d(k, T )
[
−F ′′′

k,T (0) + (γ − λk)F ′
k,T (0)

]
= 2 Re

(
−z3k

Ξk
2

zk
2 − qk

sinh(zkT )

)
+ 2 Re

(
|Ξk|2

z2k − qk
z2kzk sinh(zkT )

)

+ (γ − λk)

[
2Re

(
zk

Ξk
2

zk
2 − qk

sinh(zkT )

)
− 2 Re

(
zk

|Ξk|2

z2k − qk
sinh(zkT )

)]

= 2 Re

(
zk Ξk

Ξk
2

zk
2 − qk

sinh(zkT )

)
− 2 Re

(
|Ξk|2

z2k − qk
Ξkzk sinh(zkT )

)
= 0.

We have

d(k, T )F ′′′
k,T (T ) = 2 Re

(
z3k

|Ξk|2

z2k − qk
cosh(zkT ) sinh(zkT )

)
− 2 Re

(
|Ξk|2

z2k − qk
|zk|2zk sinh(zkT ) cosh(zkT )

)
.

Whence we have

d(k, T )
[
F ′′′
k,T (T ) − qk F

′
k,T (T )

]
= 2 Re

(
(z2k − qk)zk

|Ξk|2

z2k − qk
cosh(zkT ) sinh(zkT )

)
− 2 Re

(
(z2k − qk)zk

|Ξk|2

z2k − qk
sinh(zkT ) cosh(zkT )

)
= 0.

(5.50)
Thus we have shown that Fk,T satisfies the required boundary conditions.
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Verification of the Basis Function Gk,T (t). We continue with Gk,T (t) from (5.24)
that is multiplied with (1 + γ λk) ak,T (0) , i.e.

d(k, T )Gk,T (t) = 2 Re

(
Ξk

zk
2 − qk

cosh(zkT ) cosh(zk(t− T ))

)
− 2 Re

(
Ξk

zk
2 − qk

cosh(zkT ) cosh(zk(t− T ))

)
+ 2 Re

(
zk Ξk

zk(zk2 − qk)
sinh(zkT ) sinh(zk(t− T ))

)
− 2 Re

(
Ξk

zk
2 − qk

sinh(zkT ) sinh(zk(t− T ))

)
.

Due to the definition of zk, the function Gk,T (t) satisfies the ODE (5.20).
Moreover, for t = T we have

d(k, T )Gk,T (T ) = 2 Re

(
Ξk

zk
2 − qk

cosh(zkT )

)
− 2 Re

(
Ξk

zk
2 − qk

cosh(zkT )

)
= 0.

In addition, for the derivative, we obtain

d(k, T )G′
k,T (t) = 2 Re

(
zk Ξk

zk
2 − qk

cosh(zkT ) sinh(zk(t− T ))

)
− 2 Re

(
zk Ξk

zk
2 − qk

cosh(zkT ) sinh(zk(t− T ))

)
+ 2 Re

(
zk Ξk

zk2 − qk
sinh(zkT ) cosh(zk(t− T ))

)
− 2 Re

(
zk Ξk

zk
2 − qk

sinh(zkT ) cosh(zk(t− T ))

)
.

Hence for t = T , we have the derivative

d(k, T )G′
k,T (T ) = 2 Re

(
zk Ξk

zk2 − qk
sinh(zkT )

)
− 2 Re

(
zk Ξk

zk
2 − qk

sinh(zkT )

)
.

For the second derivative, we obtain

d(k, T )G′′
k,T (t) = 2 Re

(
zk

2 Ξk

zk
2 − qk

cosh(zkT ) cosh(zk(t− T ))

)
− 2 Re

(
zk

2 Ξk

zk
2 − qk

cosh(zkT ) cosh(zk(t− T ))

)
+ 2 Re

(
zkzk Ξk

zk2 − qk
sinh(zkT ) sinh(zk(t− T ))

)
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− 2 Re

(
zk

2 Ξk

zk
2 − qk

sinh(zkT ) sinh(zk(t− T ))

)
.

For t = 0, equation (5.27) implies

d(k, T )G′′
k,T (0) = 2 Re

(
zk

2 Ξk

zk
2 − qk

cosh(zkT ) cosh(zkT )

)
− 2 Re

(
zk

2 Ξk

zk
2 − qk

cosh2(zkT ))

)
− 2 Re

(
zkzk Ξk

zk2 − qk
sinh(zkT ) sinh(zkT )

)
+ 2 Re

(
zk

2 Ξk

zk
2 − qk

sinh2(zkT )

)
.

For t = 0, equation (5.27) implies

d(k, T )Gk,T (0) = 2 Re

(
Ξk

zk
2 − qk

cosh(zkT ) cosh(zkT )

)
− 2 Re

(
Ξk

zk
2 − qk

cosh2(zkT )

)
− 2 Re

(
zk Ξk

zk(zk2 − qk)
sinh(zkT ) sinh(zkT )

)
+ 2 Re

(
Ξk

zk
2 − qk

sinh2(zkT )

)
.

Hence in view of (5.25) we obtain

d(k, T )
[
−G′′

k,T (0) + (γ − λk)Gk,T (0)
]

= −2 Re

(
zk

2 Ξk

zk
2 − qk

cosh(zkT ) cosh(zkT )

)
+ 2 Re

(
zk

2 Ξk

zk
2 − qk

cosh2(zkT ))

)
+ 2 Re

(
zkzk Ξk

zk2 − qk
sinh(zkT ) sinh(zkT )

)
− 2 Re

(
zk

2 Ξk

zk
2 − qk

sinh2(zkT )

)
+ (Ξk + z2k)d(k, T )Gk,T (0)

= −2 Re

(
Ξ2
k

z2k − qk

)
+ 2|Ξk|2 Re

(
1

z2k − qk
| cosh2(zkT )| − zk

zk

1

zk2 − qk
| sinh2(zkT )|

)
= d(k, T )

due to the definition (5.26). Since d(k, T ) ̸= 0, this yields

−G′′
k,T (0) + (γ − λk)Gk,T (0) = 1.

For t = 0, the derivative satisfies the equation

d(k, T )G′
k,T (0) = −2 Re

(
zk Ξk

zk
2 − qk

cosh(zkT ) sinh(zkT )

)
+ 2 Re

(
zk Ξk

zk
2 − qk

cosh(zkT ) sinh(zkT )

)
+ 2 Re

(
zk Ξk

zk2 − qk
sinh(zkT ) cosh(zkT )

)
− 2 Re

(
zk Ξk

zk
2 − qk

sinh(zkT ) cosh(zkT )

)
= −2 Re

(
zk Ξk

zk
2 − qk

cosh(zkT ) sinh(zkT )

)
+ 2 Re

(
zk Ξk

zk2 − qk
sinh(zkT ) cosh(zkT )

)
.
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For the third derivative, we obtain

d(k, T )G′′′
k,T (t) = 2 Re

(
zk

3 Ξk

zk
2 − qk

cosh(zkT ) sinh(zk(t− T ))

)
− 2 Re

(
zk

3 Ξk

zk
2 − qk

cosh(zkT ) sinh(zk(t− T ))

)
+ 2 Re

(
zk

2zk Ξk

zk2 − qk
sinh(zkT ) cosh(zk(t− T ))

)
− 2 Re

(
zk

3 Ξk

zk
2 − qk

sinh(zkT ) cosh(zk(t− T ))

)
.

Hence for t = 0 we have

d(k, T )G′′′
k,T (0) = −2 Re

(
zk

3 Ξk

zk
2 − qk

cosh(zkT ) sinh(zkT )

)
+ 2 Re

(
zk

3 Ξk

zk
2 − qk

cosh(zkT ) sinh(zkT )

)
+ 2 Re

(
zk

2zk Ξk

zk2 − qk
sinh(zkT ) cosh(zkT )

)
− 2 Re

(
zk

3 Ξk

zk
2 − qk

sinh(zkT ) cosh(zkT )

)
= −2 Re

(
zk

3 Ξk

zk
2 − qk

cosh(zkT ) sinh(zkT )

)
+ 2 Re

(
zk

2zk Ξk

zk2 − qk
sinh(zkT ) cosh(zkT )

)
.

In order to verify the fourth boundary condition in (5.23), in view of (5.25) we obtain
the equation

d(k, T )
[
−G′′′

k,T (0) + (γ − λk)G′
k,T (0)

]
= 2 Re

(
zk

3 Ξk

zk
2 − qk

cosh(zkT ) sinh(zkT )

)
− 2 Re

(
zk

2zk Ξk

zk2 − qk
sinh(zkT ) cosh(zkT )

)
+ (Ξk + z2k)

(
−2 Re

(
zk Ξk

zk
2 − qk

cosh(zkT ) sinh(zkT )

))
+ (Ξk + z2k)2 Re

(
zk Ξk

zk2 − qk
sinh(zkT ) cosh(zkT )

)
= 0.

We have

d(k, T )G′′′
k,T (T ) = 2 Re

(
zk

2zk Ξk

zk2 − qk
sinh(zkT )

)
− 2 Re

(
zk

3 Ξk

zk
2 − qk

sinh(zkT )

)
.
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Hence we have

d(k, T )
[
G′′′

k,T (T ) − qkG
′
k,T (T )

]
= 2Re

(
z2kzk

Ξk

z2k − qk
sinh(zkT )

)
− 2Re

(
zk

3 Ξk

zk
2 − qk

sinh (zkT )

)
− 2Re

(
qkzk

Ξk

z2k − qk
sinh (zkT )

)
+ 2Re

(
qkzk

Ξk

zk
2 − qk

sinh (zkT )

)
= 2Re

(
zkΞk sinh (zkT )

)
− 2Re

(
zkΞk sinh (zkT )

)
= 0.

Thus we have shown that

Gk,T (T ) = 0,

G′′′
k,T (T ) =

γ2 − 2 γ λk − 1

γ
G′

k,T (T ),

−G′′
k,T (0) + (γ − λk)Gk,T (0) = 1,

−G′′′
k,T (0) + (γ − λk)G′

k,T (0) = 0.

Verification of the Basis Function Hk,T (t). Now we consider Hk,T (t) from (5.24)
that is multiplied with (1 + γ λk) a′k,T (0) , i.e.

d(k, T )Hk,T (t) = −2 Re

(
Ξk

zk(zk2 − qk)
sinh(zkT ) cosh(zk(t− T ))

)
+ 2 Re

(
Ξk

zk(zk2 − qk)
sinh(zkT ) cosh(zk(t− T ))

)
+ 2 Re

(
Ξk

zk(zk2 − qk)
cosh(zkT ) sinh(zk(t− T ))

)
− 2 Re

(
Ξk

zk(zk
2 − qk)

cosh(zkT ) sinh(zk(t− T ))

)
.

Due to the definition of zk, the function Hk,T (t) satisfies the ODE (5.20). Moreover,
for t = T we have

d(k, T )Hk,T (T ) = −2 Re

(
Ξk

zk(zk2 − qk)
sinh(zkT )

)
+ 2 Re

(
Ξk

zk(zk2 − qk)
sinh(zkT )

)
= 0.

For the derivative we have

d(k, T )H ′
k,T (t) = −2 Re

(
Ξk

zk2 − qk
sinh(zkT ) sinh(zk(t− T ))

)
+ 2 Re

(
zkΞk

zk(zk2 − qk)
sinh(zkT ) sinh(zk(t− T ))

)
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+ 2 Re

(
Ξk

zk2 − qk
cosh(zkT ) cosh(zk(t− T ))

)
− 2 Re

(
Ξk

zk
2 − qk

cosh(zkT ) cosh(zk(t− T ))

)
.

Hence for t = T we obtain

d(k, T )H ′
k,T (T ) = 2 Re

(
Ξk

zk2 − qk
cosh(zkT )

)
− 2 Re

(
Ξk

zk
2 − qk

cosh(zkT )

)
.

For t = 0, we have

d(k, T )Hk,T (0)

= −2 Re

(
Ξk

zk(zk2 − qk)
sinh(zkT ) cosh(zkT )

)
+ 2 Re

(
Ξk

zk(zk2 − qk)
sinh(zkT ) cosh(zkT )

)
− 2 Re

(
Ξk

zk(zk2 − qk)
cosh(zkT ) sinh(zkT )

)
+ 2 Re

(
Ξk

zk(zk
2 − qk)

cosh(zkT ) sinh(zkT )

)
.

For the second derivative, we have

d(k, T )H ′′
k,T (t) = −2 Re

(
zkΞk

zk2 − qk
sinh(zkT ) cosh(zk(t− T ))

)
+ 2 Re

(
zk

2Ξk

zk(zk2 − qk)
sinh(zkT ) cosh(zk(t− T ))

)
+ 2 Re

(
zkΞk

zk2 − qk
cosh(zkT ) sinh(zk(t− T ))

)
− 2 Re

(
zkΞk

zk
2 − qk

cosh(zkT ) sinh(zk(t− T ))

)
.

For t = 0 this implies

d(k, T )H ′′
k,T (0) = −2 Re

(
zkΞk

zk2 − qk
sinh(zkT ) cosh(zkT )

)
+ 2 Re

(
zk

2Ξk

zk(zk2 − qk)
sinh(zkT ) cosh(zkT )

)
− 2 Re

(
zkΞk

zk2 − qk
cosh(zkT ) sinh(zkT )

)
+ 2 Re

(
zkΞk

zk
2 − qk

cosh(zkT ) sinh(zkT )

)
.

Hence in view of (5.25) we obtain

−d(k, T )H ′′
k,T (0) + (γ − λk) det(M(T ))Hk,T (0) = 0.

Now we verify that the fourth boundary condition in (5.23) is satisfied.
For the third derivative, we have

d(k, T )H ′′′
k,T (t) = −2 Re

(
zk

2Ξk

zk2 − qk
sinh(zkT ) sinh(zk(t− T ))

)
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+ 2 Re

(
zk

3Ξk

zk(zk2 − qk)
sinh(zkT ) sinh(zk(t− T ))

)
+ 2 Re

(
zk

2Ξk

zk2 − qk
cosh(zkT ) cosh(zk(t− T ))

)
− 2 Re

(
zk

2Ξk

zk
2 − qk

cosh(zkT ) cosh(zk(t− T ))

)
.

For t = 0 this yields

d(k, T )H ′′′
k,T (0) = 2 Re

(
zk

2Ξk

zk2 − qk
sinh(zkT ) sinh(zkT )

)
− 2 Re

(
zk

3Ξk

zk(zk2 − qk)
sinh(zkT ) sinh(zkT )

)
+ 2 Re

(
zk

2Ξk

zk2 − qk
cosh(zkT ) cosh(zkT )

)
− 2 Re

(
zk

2Ξk

zk
2 − qk

cosh(zkT ) cosh(zkT )

)
.

Using again the definition (5.25) of Ξk it follows that

−d(k, T )H ′′′
k,T (0) + (γ − λk) d(k, T )H ′

k,T (0) = d(k, T )

by the definition (5.26) of d(k, T ).
Using again the definition (5.25) of Ξk it follows that

−d(k, T )H ′′′
k,T (0) + (γ − λk) d(k, T )H ′

k,T (0) = d(k, T )

by the definition (5.26) of d(k, T ). We have

d(k, T )H ′′′
k,T (T ) = 2 Re

(
zk

2Ξk

zk2 − qk
cosh(zkT )

)
− 2 Re

(
zk

2Ξk

zk
2 − qk

cosh(zkT )

)
.

Hence, we have

d(k, T )
[
H ′′′

k,T (T ) − qkH
′
k,T (T )

]
= 2 Re

(
zk

2Ξk

zk2 − qk
cosh(zkT )

)
− 2 Re

(
zk

2Ξk

zk
2 − qk

cosh(zkT )

)
+ 2Re

(
qkΞk

z2k − qk
cosh (zkT )

)
− 2 Re

(
qkΞk

zk
2 − qk

cosh (zkT )

)
= 0.

Thus we have shown that

Hk,T (T ) = 0,

H ′′′
k,T (T ) =

γ2 − 2 γ λk − 1

γ
H ′

k,T (T ),
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−H ′′
k,T (0) + (γ − λk)Hk,T (0) = 0,

−H ′′′
k,T (0) + (γ − λk)H ′

k,T (0) = 1.

The proof of Lemma 2 is complete.
In the next section, it is shown that each of the functions Fk,T , Gk,T , Hk,T in the

representation (5.24) of the solution bk,T that are provided in Lemma 2 satisfies an expo-
nential turnpike inequality on the interval [0, T ] in the sense that for I ∈ {F, G, H} for
all t ∈ [0, T ] the following inequality holds:

|Ik,T (t)| ≤ C@

[
exp

(
−
√
γ

2
t

)
+ exp

(
−
√
γ

2
(T − t)

)]
.

Here C@ is a constant that is independent of T and k.
The turnpike inequality that we have obtained is used for the applications in shape

optimization as described in the subsequent sections. An important point is that the
inequality is independent of the properties of the sequence of eigenvalues λk as long as
(5.18) holds. Therefore the inequality is valid over a compact set of perturbations of the
state equation (see Theorem 10 and also Remark 7).

5.3 The Turnpike Property by the Spectral Method

for Trees

In this section, we continue our analysis of the structure of the optimal solutions, in
particular for the adjoint states. We have in mind the shape optimization problems for
the trees. Therefore, we restrict our analysis to the networks in the form of trees. The case
of small cycles for the purposes of topology optimization is considered separately. In the
latter case, the spectrum is of a specific structure with the branch supported exclusively
on the cycle.

We show that the difference between the static optimal adjoint state and the dynamic
optimal adjoint state satisfies an exponential turnpike inequality as explained above. Our
method is to show that all three basis functions in the representation of the difference
between the static optimal adjoint state and the dynamic optimal adjoint state that we
have obtained from the respective optimality systems satisfy such an exponential turnpike
inequality. More precisely, we show that the basis function with a non-zero value at the
time t = 0 (namely Gk,T and Hk,T ) decay exponentially fast with t. The basis function
with a non-zero value at the time t = T (namely Fk,T ) decay exponentially fast as a
function of T − t, that is backward in time.

5.3.1 The Turnpike Inequalities for the Basis Functions

Exponential Turnpike Inequality for the Basis Function Fk,T (t) In order to verify
the turnpike property we use the following representation where the hyperbolic tangent
appears:
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d(k, T )Fk,T (t)

= 2 Re

(
− Ξk

2

zk
2 − qk

cosh(zk(T − t))

)

+ 2 Re

(
|Ξk|2

z2k − qk
cosh(zkT ) cosh(zkT ) [1 − tanh(zkT ) tanh(zk(T − t))] cosh(zk(T − t))

)
+ 2 Re

(
|Ξk|2

z2k − qk

zk
zk

cosh(zkT ) tanh(zkT ) cosh(zk T ) [tanh(zk(T − t)) − tanh(zk T )] cosh(zk(T − t))

)
.

For our analysis, we define the auxiliary functions

S1
k,T (t) =

2 Re
(
− Ξk

2

zk
2−qk

cosh(zk(T − t))
)

d(k, T )
,

S2
k,T (t) =

2 Re
(

|Ξk|2
z2k−qk

cosh(zkT ) cosh(zkT ) [1 − tanh(zkT ) tanh(zk(T − t))] cosh(zk(T − t))
)

d(k, T )
,

and

S3
k,T (t)

=
2 Re

(
|Ξk|2
z2k−qk

zk
zk

cosh(zkT ) tanh(zkT ) cosh(zk T ) [tanh(zk(T − t)) − tanh(zk T )] cosh(zk(T − t))
)

d(k, T )
.

Then we have

Fk,T (t) = S1
k,T (t) + S2

k,T (t) + S3
k,T (t). (5.51)

Define I− =
Re((z2k−qk)(|zk|2−z2k))

|z2k| |z
2
k−qk|

, I+ =
Re((z2k−qk)(|zk|2+z2k))

|z2k| |z
2
k−qk|

.

The numbers d(k, T ) can be represented as

d(k, T ) = −2 Re

(
Ξ2
k

z2k − qk

)
+|Ξk|2I− cosh(2 Re(zk)T )+|Ξk|2I+ cosh(2 Im(zk)T ). (5.52)

Hence we obtain the upper bound

|S1
k,T (t)| ≤

∣∣∣2 Re
(

1
zk

2−qk
cosh(zk(T − t))

)∣∣∣
|I−| cosh(2 Re(zk)T ) −

∣∣∣I+ cosh(2 Im(zk)T ) − 2Re
(

Ξ2
k

|Ξk|2(z2k−qk)

)∣∣∣ .
This implies the inequality

|S1
k,T (t)| ≤M1 exp(−|Re(zk)|(T − t)) (5.53)
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with a constant M1 ≥ 1 that is independent of k and T . We have

1 − tanh(zk T ) tanh(zk (T − t)) =
2[exp(2 zk T ) + exp(2 zk (T − t))]

(exp(2 zk T ) + 1) (exp(2 zk (T − t)) + 1)

=
2

(1 + exp(−2 zk T )) (exp(2 zk (T − t)) + 1)
+

2

(1 + exp(−2 zk (T − t))) (exp(2 zk T ) + 1)
.

Hence for T → ∞ this term converges to zero exponentially fast. More precisely, due
to (5.21) for all k ∈ {0, 1, 2, ..} for T sufficiently large we have the inequality

|1 − tanh(zk T ) tanh(zk (T − t))| ≤ 16 exp(−2 |Re(zk)| (T − t)). (5.54)

Thus we have

|S2
k,T (t)| ≤

32|Re
(

1
z2k−qk

| cosh(zkT )|2 cosh(zk (T − t))|
)

exp(−2 |Re(zk)| (T − t))|

|I−| cosh(2 Re(zk)T ) −
∣∣∣I+ cosh(2 Im(zk)T ) − 2Re

(
Ξ2
k

|Ξk|2(z2k−qk)

)∣∣∣ .

This implies the inequality

|S2
k,T (t)| ≤M2 exp(−|Re(zk)|(T − t)) (5.55)

with a constant M2 ≥ 1 that is independent of k and T .
In addition, we have

tanh(zk (T − t)) − tanh(zkT ) =
2[exp(2 zk T ) − exp(2 zk (T − t))]

(exp(2 zk T ) + 1) (exp(2 zk (T − t)) + 1)

so as above for T sufficiently large, we obtain the inequality

| tanh(zk (T − t)) − tanh(zkT )| ≤ 16 exp(−2 |Re(zk)| (T − t)). (5.56)

This yields the bound
|S3

k,T (t)| ≤

32|Re
(

1
z2k−qk

zk
zk

cosh(zkT ) cosh(zkT ) cosh(zk (T − t)) tanh(zkT )
)
| exp(−2 |Re(zk)| (T − t))

|I−| cosh(2 Re(zk)T ) −
∣∣∣I+ cosh(2 Im(zk)T ) − 2 Re

(
Ξ2
k

|Ξk|2(z2k−qk)

)∣∣∣ .

Thus we obtain the inequality

|S3
k,T (t)| ≤M3 exp(−|Re(zk)|(T − t))

with a constant M3 ≥ 1 that is independent of k and T . Together with (5.53) and (5.55)
due to (5.51) and (5.21) this implies that for Fk,T (t) we have

|Fk,T (t)| ≤ (M1 +M2 +M3) exp

(
−
√
γ

2
(T − t)

)
. (5.57)
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Exponential Turnpike Inequality for the Basis Function Gk,T (t) Now we derive
the turnpike inequality for Gk,T (t). Again we use a representation with the hyperbolic
tangent. We have

d(k, T )Gk,T (t)

= −2 Re
(

Ξk

zk2−qk
cosh(zkT ) [1 + tanh(zkT ) tanh(zk(t− T ))] cosh(zk(t− T ))

)
+2 Re

(
Ξk

zk
2−qk

cosh(zkT )
[
1 − zk

2−qk
zk2−qk

zk
zk

tanh(zkT ) tanh(zk(t− T ))
]

cosh(zk(t− T ))
)
,

(5.58)
and

lim
T→∞

[
1 − zk

2 − qk
zk2 − qk

zk
zk

tanh(zk T ) tanh(zk(t− T ))

]
= 1 +

zk
2 − qk

zk2 − qk

zk
zk
.

Similarly, we have

lim
T→∞

[1 + tanh(zkT ) tanh(zk(t− T ))] = 0

and for the absolute value we have the bound (5.54).
For our analysis, we define the auxiliary functions

S̃1
k,T (t) =

−2 Re
(

Ξk

zk2−qk
cosh(zkT ) [1 + tanh(zkT ) tanh(zk(t− T ))] cosh(zk(t− T ))

)
d(k, T )

,

S̃2
k,T (t) =

2 Re
(

Ξk

zk
2−qk

cosh(zkT )
[
1 − zk

2−qk
zk2−qk

zk
zk

tanh(zkT ) tanh(zk(t− T ))
]

cosh(zk(t− T ))
)

d(k, T )
.

Then we have

Gk,T (t) = S̃1
k,T (t) + S̃2

k,T (t). (5.59)

Due to (5.54) we obtain the inequality

|S̃1
k,T (t)| ≤

32
∣∣∣Re

(
Ξk

|Ξ2
k|(z

2
k−qk)

cosh(zkT ) cosh(zk(t− T ))
)∣∣∣ exp(−2 |Re(zk)| (T − t))

|I−| cosh(2 Re(zk)T ) −
∣∣∣I+ cosh(2 Im(zk)T ) − 2Re

(
Ξ2
k

|Ξk|2(z2k−qk)

)∣∣∣ .

This implies the inequality

|S̃1
k,T (t)| ≤ 1

|Ξk|
M̃1 exp(−|Re(zk)|(T − t)) (5.60)

with a constant M̃1 > 0 that is independent of k and T . Moreover, we have

|S̃2
k,T (t)| ≤

32
∣∣∣Re

(
Ξk

|Ξ2
k|(z

2
k−qk)

cosh(zk T ) cosh(zk(t− T ))
)∣∣∣

|I−| cosh(2 Re(zk)T ) −
∣∣∣I+ cosh(2 Im(zk)T ) − 2Re

(
Ξ2
k

|Ξk|2(z2k−qk)

)∣∣∣ .
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This implies the inequality

|S̃2
k,T (t)| ≤ 1

|Ξk|
M̃2 [exp(−|Re(zk)| t) + exp(−|Re(zk)|(T − t))] (5.61)

with a constant M̃2 > 0 that is independent of k and T .
With (5.60) and (5.61) due to (5.59) and (5.21) this implies that for Gk,T (t) we have

|Gk,T (t)| ≤ 1

|Ξk|
(M̃1 + M̃2)

[
exp(−

√
γ

2
t) + exp(−

√
γ

2
(T − t))

]
. (5.62)

Exponential Turnpike Inequality for the Basis Function Hk,T (t) Finally, we show
the exponential turnpike inequality for the third basis function Hk,T . We have

d(k, T )Hk,T (t)

= 2 Re
(

Ξk

zk(zk
2−qk)

sinh(zkT ) cosh(zk(t− T )) + Ξk

zk(zk2−qk)
cosh(zkT ) sinh(zk(t− T ))

)
− 2 Re

(
Ξk

zk(zk2−qk)
sinh(zkT ) cosh(zk(t− T )) + Ξk

zk(zk2−qk)
cosh(zkT ) sinh(zk(t− T ))

)
.

For our analysis, we define the auxiliary functions

Ŝ1
k,T (t) =

2 Re
(

Ξk cosh(zkT )
[

1
zk(zk

2−qk)
tanh(zkT ) + 1

zk(zk2−qk)
tanh(zk(t− T ))

]
cosh(zk(t− T ))

)
d(k, T )

and

Ŝ2
k,T (t) =

2 Re
(

Ξk

zk(zk2−qk)
cosh(zkT ) [tanh(zkT ) + tanh(zk(t− T ))] cosh(zk(t− T ))

)
d(k, T )

.

Then we have
Hk,T (t) = Ŝ1

k,T (t) − Ŝ2
k,T (t). (5.63)

For T sufficiently large (uniformly with respect to k due to (5.21)) we have the bound∣∣∣∣ 1

zk(zk
2 − qk)

tanh(zkT ) +
1

zk(zk2 − qk)
tanh(zk(t− T ))

∣∣∣∣ ≤ 4

|zk(zk2 − qk)|
.

This yields

|Ŝ1
k,T (t)| ≤

1
|Ξk|

8
|zk(zk2−qk)|

|cosh(zkT ) cosh(zk(t− T ))|

|I−| cosh(2 Re(zk)T ) −
∣∣∣I+ cosh(2 Im(zk)T ) − 2Re

(
Ξ2
k

|Ξk|2(z2k−qk)

)∣∣∣ .
This implies the inequality

|Ŝ1
k,T (t)| ≤ 1

|Ξk|2
M̂1 [exp(−|Re(zk)| t) + exp(−|Re(zk)|(T − t))] (5.64)
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with a constant M̂1 > 0 that is independent of k and T .
For T sufficiently large (uniformly with respect to k due to (5.21)) we have the bound

|tanh(zkT ) + tanh(zk(t− T ))| ≤ 4. This yields the bound

|Ŝ2
k,T (t)| ≤

8 1
|Ξk|

∣∣∣ 1
zk(zk2−qk)

cosh(zkT ) cosh(zk(t− T ))
∣∣∣

|I−| cosh(2 Re(zk)T ) −
∣∣∣I+ cosh(2 Im(zk)T ) − 2Re

(
Ξ2
k

|Ξk|2(z2k−qk)

)∣∣∣ .
Hence we obtain the inequality

|Ŝ2
k,T (t)| ≤ 1

|Ξk|2
M̂2 [exp(−|Re(zk)| t) + exp(−|Re(zk)|(T − t))] (5.65)

with a constant M̂2 > 0 that is independent of k and T .
With (5.64) and (5.65) due to (5.63) and (5.21) this implies that for Hk,T (t) we have

|Hk,T (t)| ≤ 1

|Ξk|2
(M̂1 + M̂2)

[
exp(−

√
γ

2
t) + exp(−

√
γ

2
(T − t))

]
. (5.66)

5.3.2 Theorem on Turnpike Property Between the Dynamic and
Static Optimality Systems

We have unique solutions for the optimality systems governed by static and dynamic state
equations. Now, we compare the elements of optimality systems and obtain the turnpike
inequalities for the Optimality Systems.

Indeed, the turnpike inequalities that we have derived lead to the useful for applications
Turnpike Theorem which means that :

The difference νT of the optimal dynamic control and the optimal static control and the
corresponding differences ωT for the state and µT the adjoint state admits an exponential
turnpike property.

To this end, we need some additional regularity assumptions.

Theorem 10. Assume that (5.18) holds and that the initial state satisfies the regularity
condition

∞∑
k=0

λk |ak(0)|2 + |a′k(0)|2 <∞, (5.67)

that is the initial state belongs to the energy space of the elliptic problem defined by the
bilinear form a(·, ·). If Ω = Γ then there exists a constant D̃ = D̃(y0, y1, p

σ) that is
independent of T and t such that for all t ∈ [0, T ]

∥ωT (t)∥2L2(Ω) + ∥νT (t)∥2L2(Ω) + ∥µT (t)∥2L2(Ω) ≤ D̃
[
e−

√
γ t + e−

√
γ(T−t)

]
. (5.68)

Moreover, the constant D̃ depends on Ω only as a function of the energy norm for the
initial state that is determined by Ω as in (5.67).
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Remark 7. In the case of boundary control problems on networks, the Turnpike Property
for optimality systems can be shown. The difference between the boundary control and
the distributed control is the appearance of a linear operator in the optimality conditions.
In the optimality conditions of the boundary control problem, a linear operator maps the
adjoint state into the optimal control.

For the optimal cost the exponential turnpike inequality (5.68) implies the so-called
integral turnpike property (see e.g. [26])

sup
T>0

∫ T

0

∥ωT (t)∥2L2(Ω) + ∥νT (t)∥2L2(Ω) + ∥µT (t)∥2L2(Ω) dt <∞.

This implies in turn

lim
T→∞

1

T
JT (ûT ) = I(v̂), (5.69)

see for example [29].

In shape sensitivity analysis [88] we avoid, if possible, the dependence of the shape
gradient of the cost with respect to given data including e.g., the given initial conditions.
Thus, we define the initial conditions, say y0(x) and y1(x), x ∈ Ωτ , for variable domains
τ → Ωτ used for the derivation of shape gradient of the cost. If Ωτ is e.g., the cross
with variable length of the edges, we select the elements y0, y1 as the restrictions to Ωτ of
functions Y0(x), Y1(x) defined on the cross with the edges of maximal lengths. The shape
derivatives of the restrictions are zero. Therefore, there is no contribution from the initial
conditions to the shape gradient of the cost.

Remark 8. We use the material derivative method [88] for the purposes of shape sensitiv-
ity analysis for networks. The general rule for the data of initial-boundary value problems
is to select the given functions by the restriction to actual domain of some functions de-
fined everywhere. The shape gradients of such initial data are simply zero and the material
derivatives are given by the gradients, thus some regularity is required. In this way the
shape gradient of the cost is independent of the initial data. In our case, this selection
can be used for the initial conditions of the displacement and the velocity. The material
derivatives of such initial conditions Y = Y (x) take the form Y ′(x)V(0, x), where V(τ, x)
is the velocity field of the material derivative method. In other words, the initial condi-
tions are selected in such a way that there is no contribution of the initial conditions to
the shape gradient of the cost function.

The following corollary states a shape-turnpike result. It is a relation between the
optimal values of a dynamic optimal shape problem for large time horizons and the optimal
values for the static optimal shape problem. For the proof, we suggest to proceed by
contradiction.

Assumption 1. Let us consider a tree G = {E, V } with the set of edges Ei = [0, Li],
i = 1, . . . , N , and denote by ℓ = col (L1, . . . , LN). The set of admissible trees Ω(ℓ) ∈ A
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is defined by the conditions Mmin
i ≤ Li ≤ Mmax

i , where 0 < M0 ≤ Mmin
i < Mmax

i <
M1 <∞. The set of admissible trees is convex and compact, therefore, for the minimizing
sequence ℓn of optimization problem, there is a subsequence, still denoted by the same
symbol such that we have ℓn → ℓ∞ in RN and in addition Ω(ℓ∞) ∈ A.

Corollary 1. Let Assumption 1 hold. Let a sequence of shape parameters (ℓn)n and a
bounded sequence of controls (ûn)n with ûn(t) ∈ L2(Ω(ℓn)) for all n ∈ {1, 2, 3, ...} be given.
Let ŷn denote the generated state and p̂n the corresponding adjoint state. Assume that for
all n ∈ {1, 2, 3, ...} we have

∥ωT
n (t)∥2L2(Ω(ℓn))

+ ∥νTn (t)∥2L2(Ω(ℓn))
+ ∥µT

n (t)∥2L2(Ω(ℓn))
≤ D̃

[
e−

√
γ t + e−

√
γ(T−t)

]
(5.70)

where ωT
n = ŷTn − ẑσn , µ

T
n = p̂Tn − p̂σn, ν

T
n = ûTn − v̂σn and (v̂n, ẑn, p̂n) is optimal for Ω(ℓn)

Assume that limn→∞ ℓopt(Tn) = ℓ̂ and that ûn converges weakly to uopt.
Assume that the optimal shape problem with (OCE) has a solution (ℓopt, uopt). Then

uopt is a solution of (OCE).
Let v̂opt denote the solution of (OCS) for ℓopt.
Then we have

∥ωT
opt(t)∥2L2(Ω(ℓopt))

+ ∥νTopt(t)∥2L2(Ω(ℓopt))
+ ∥µT

opt(t)∥2L2(Ω(ℓopt))
≤ D̃

[
e−

√
γ t + e−

√
γ(T−t)

]
.

(5.71)
Assume that for a subsequence we have limTn→∞ ℓopt(Tn) = ℓ̂.
Then we have

lim
n→∞

1

Tn
JTn(ûTn

opt, ℓopt(Tn)) = I(v̂, ℓ̂). (5.72)

and v̂ is the optimal control for the network defined in Ω(ℓ̂), the limit shape parameter ℓ̂
is optimal for the static problem ℓ→ (OCS)(ℓ), the optimal shape reads Ω(ℓ̂). In general,
an optimal shape is not unique but it does exist for the compact set of admissible shapes.

Remark 9. Under Assumption 1 the set of admissible shapes is convex and compact in
RN . Denote by ℓ̂ an optimal shape for the static problem, note that the optimal shape is
not unique, and let the admissible sequence of shapes ℓn be convergent to an optimal shape
for n→ ∞,

ℓn → ℓ̂

then

I(v̂, ℓ̂) = lim
n→∞

1

Tn
JTn(ûTn

opt, ℓn) ≥ lim
n→∞

1

Tn
JTn(ûTn

opt, ℓopt(Tn)) = I(v̂, ℓ̃) (5.73)

therefore

I(v̂, ℓ̂) = I(v̂, ℓ̃).

Proof of the corollary.
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The constant control with the value v̂ can be considered as an element of L2(Ω(ℓopt(Tn))).
We have the inequality∣∣∣∥ûTn

opt(ℓopt(Tn)) − ud∥2L2(Ω(ℓopt(Tn)))
− ∥v̂ − ud∥2L2(Ω(ℓopt(Tn)))

∣∣∣
≤ ∥ûTn

opt(ℓopt(Tn))−v̂∥L2(Ω(ℓopt(Tn)))

(
∥ûTn

opt(ℓopt(Tn)) − ud∥L2(Ω(ℓopt(Tn))) + ∥v̂ − ud∥L2(Ω(ℓopt(Tn)))

)
.

Integration from 0 to Tn and division by Tn yields∣∣∣∣∣
∫ Tn

0
∥ûTn

opt(ℓopt(Tn)) − ud∥2L2(Ω(ℓopt(Tn)))
dt

Tn
− ∥v̂ − ud∥2L2(Ω(ℓopt(Tn)))

∣∣∣∣∣
≤

∫ Tn
0 ∥ûTn

opt(ℓopt(Tn))−v̂∥L2(Ω(ℓopt(Tn)))

(
∥ûTn

opt(ℓopt(Tn))−ud∥L2(Ω(ℓopt(Tn)))+∥v̂−ud∥L2(Ω(ℓopt(Tn)))

)
dt

Tn

≤
∫ Tn

0
∥ûTn

opt(ℓopt(Tn)) − v̂∥2L2(Ω(ℓopt(Tn)))
dt

Tn

+
2∥v̂ − ud∥L2(Ω(ℓopt(Tn)))

∫ Tn

0
∥ûTn

opt(ℓopt(Tn)) − v̂∥L2(Ω(ℓopt(Tn))) dt

Tn
.

For the state we obtain a similar inequality, namely∣∣∣∣∣
∫ Tn

0
∥ŷTn

opt(ℓopt(Tn)) − yd∥2L2(Ω(ℓopt(Tn)))
dt

Tn
− ∥ẑ − yd∥2L2(Ω(ℓopt(Tn)))

∣∣∣∣∣
≤
∫ Tn

0
∥ŷTn

opt(ℓopt(Tn)) − ẑ∥2L2(Ω(ℓopt(Tn)))
dt

Tn

+
2∥ẑ − yd∥L2(Ω(ℓopt(Tn)))

∫ Tn

0
∥ŷTn

opt(ℓopt(Tn)) − ẑ∥L2(Ω(ℓopt(Tn))) dt

Tn
.

For the optimal cost the exponential turnpike inequality (5.68) implies the integral
turnpike property (see e.g. [26])

sup
T>0

sup
ℓ

∫ T

0

∥ωT (t)∥2L2(Ω) + ∥νT (t)∥2L2(Ω) + ∥µT (t)∥2L2(Ω) dt <∞.

Moreover, we have

sup
T>0

sup
ℓ

∫ T

0

∥ωT (t)∥L2(Ω) + ∥νT (t)∥L2(Ω) + ∥µT (t)∥L2(Ω) dt <∞.

Thus adding up the inequalities for the control and the state and taking the limit for
Tn → ∞ yields (5.72).
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Remark 10. For tree-shaped graphs often the system is exactly controllable in some fi-
nite time tmin. Recently it was shown that if there is also control action at the inte-
rior nodes of the graph, exact controllability is also possible for a graph with cycles, see
[6]. In this case, we can choose for all n ∈ {1, 2, 3, ...} a control function u

(n)
init(t) ∈

L2 (0, tmin;L2(Ω(ℓopt(Tn)))) that steers the system to the constant state y(tmin, ·) = ŷ,
yt(tmin, ·) = 0 and satisfies

max
n

∥u(n)init∥L2(0, tmin;L2(Ω(ℓopt(Tn)))) <∞. (5.74)

Such a control can be determined using the classical method of moments as described for
example in [78].

We define the control ṽ(n)(t) =

{
u
(n)
init(t), t ∈ (0, tmin),

v̂, t ≥ tmin.

Then ṽ(n) is feasible for (OCE)(Tn, Ω(ℓopt(Tn))) and thus we have

JTn(ûTn
opt, ℓopt(Tn)) ≤ JTn(ṽ(n), ℓopt(Tn)). (5.75)

Moreover, (5.72) implies that for all ε > 0 if Tn > 0 is sufficiently large we have

lim
Tn→∞

1

Tn
JTn(ṽ(n), ℓopt(Tn)) ≤ 1

Tn
JTn(ûTn

opt, ℓopt(Tn)) + ε. (5.76)

This can be seen as follows. Since limn→∞ Tn = ∞ due to (5.74) the contribution of the
integral on the time interval (0, tmin) vanishes in the limit, that is we have

lim
n→∞

∫ tmin

0
∥y(ṽ(n)) − yd∥2L2(Ω) + γ ∥∂t(y(ṽ(n)) − yd)∥2L2(Ω) + ∥ṽ(n) − ud∥2L2(Γ) dt

Tn
= 0

and since limTn→∞ ℓopt(Tn) = ℓ̂ we have

lim
n→∞

JTn(ṽ(n), ℓopt(Tn))

Tn
= lim

n→∞

Tn − tmin

Tn
I(v̂, ℓopt(Tn)) = I(v̂, ℓ̂).

Assuming the exact controllability of the system in the finite time tmin allows to choose
for all n ∈ {1, 2, 3, ...}, a control function u

(n)
init(t) ∈ L2 (0, tmin;L2(Ω(ℓopt(Tn)))) that steers

the system to the constant state y(tmin, ·) = ŷ, yt(tmin, ·) = 0 and satisfies

max
n

∥u(n)init∥L2(0, tmin;L2(Ω(ℓopt(Tn)))) <∞. (5.77)

Such a control can be determined using the classical method of moments as described for
example in [78].

We define the control ṽ(n)(t) =

{
u
(n)
init(t), t ∈ (0, tmin],

v̂, t ≥ tmin.
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For all n ∈ {1, 2, 3, ...} this implies the inequality

1

Tn
JTn(ûTn

opt, ℓopt(Tn)) ≤ 1

Tn
JTn(ṽ(n), ℓopt(Tn)).

This yields (5.75).
Assume that the optimal shape problem with (OCE) has a solution (ℓopt, uopt). Then

uopt is a solution of (OCE). Let v̂opt denote the solution of (OCS) for ℓopt. Then Theorem
10 implies that (5.71) holds.

Proof of Theorem 10. Define MF = M1+M2+M3, MG = M̃1+M̃2, MH = M̂1+M̂2.
Due to (5.24), (5.57), (5.62) and (5.66) for all k ∈ {0, 1, 2, 3, ...} we have

|bk,T (t)| ≤MF e
−

√
γ

2
(T−t) |bk,T (T )| (5.78)

+[
√

1 + γ λkMG |ak(0)| +MH |a′k(0)|]
[
exp(−

√
γ

2
t) + exp(−

√
γ

2
(T − t))

]
.

For the square, this yields the bound

|bk,T (t)|2 ≤ 3M2
F e

−√
γ(T−t) |bk,T (T )|2

+
[
6 (1 + γλk)M2

G |ak(0)|2 + 6M2
H |a′k(0)|2

]
[exp(−√

γt) + exp(−√
γ(T − t))].

Due to Parseval’s equation this implies for all t ∈ [0, T ]

∥µT (t)∥2L2(Ω) =
∞∑
k=0

|bk(t)|2

≤
∞∑
k=0

3M2
F e

−√
γ(T−t) |bk(T )|2

+ [6(1 + γ λk)M2
G |ak(0)|2 + 6M2

H |a′k(0)|2] [exp(−√
γ t) + exp(−√

γ(T − t))] .

Since the initial state (y0, y1) satisfies

∞∑
k=0

λk |ak(0)|2 + |a′k(0)|2 <∞,

this yields an exponential turnpike property for the adjoint state. To be precise, we have
for all t ∈ [0, T ]

∥µT (t)∥2L2(Ω) ≤ C̃(y0, y1, p
σ) [exp(−√

γ t) + exp(−√
γ(T − t))] (5.79)

with a real number C̃(y0, y1, p
σ) that is independent of T and k.

For the optimal controls, for Γ = Ω we have νT = µT , hence we have a similar
inequality as (5.79) for ∥νT (t)∥2L2(Ω).
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Note that in proof of (5.57), (5.62) and (5.66) in the estimates, we did not take
advantage of the real part that appears in the representations. In fact, we have always
used upper bound for the modulus of the complex number whose real part appears in the
expressions. In the representation of the second order derivatives, the only change is that
the factor z2k appears in the complex variable representations compared to the original
expression. Therefore our proof also yields the inequality

|b′′k,T (t)|2 ≤ 3|zk|2M2
F e

−√
γ(T−t) |bk,T (T )|2 (5.80)

+|zk|2[6(1 + γ λk)M2
G |ak(0)|2 + 6M2

H |a′k(0)|2] [exp(−√
γ t) + exp(−√

γ(T − t))] .

We have

ak =
−b′′k + (γ − λk) bk

1 + γ λk
. (5.81)

Define

Mα := sup
k

|zk|2

1 + γ λk
= sup

k

√
1 + λ2k

1 + γ λk
<∞, Mβ := sup

k

λk − γ

1 + γ λk
<∞

and
Mκ := MF |bk,T (T )| +

√
1 + γ λkMG |ak(0)| +MH |a′k(0)|.

Due to (5.81) we also have the following exponential inequality for the coefficients in the
expansion of the optimal state:

|ak(t)| ≤ (Mα +Mβ)Mκ

[
e−

√
γ

2
t + e−

√
γ

2
(T−t)

]
.

This yields the turnpike inequality for the state ωT :

∥ωT (t)∥2L2(Ω) ≤ C̃(y0, y1, p
σ) [exp(−√

γ t) + exp(−√
γ(T − t))] (5.82)

with a real number C̃(y0, y1, p
σ) that is independent of T .

Note that in proof of (5.57), (5.62) and (5.66) in the estimates, we did not take advan-
tage of the structure of the spectrum. In fact, the constants in the turnpike inequalities
(5.57) and MG = M̃1 + M̃2 in (5.62) and MH = M̂1 + M̂2 in (5.66) are independent of k.

Remark 11. From the mathematical point of view, it is of interest to analyze the nu-
cleation of a cycle at the internal node of network. This means that the internal node
is replaced by a small cycle, see Figures 5.11, 5.12. The question which internal node is
selected can be solved in the steady state case, the topological derivative of the cost is intro-
duced to this end. The domain decomposition method is applied to derive the topological
derivative’s form. The associated Steklov-Poincaré operator is represented by a matrix
ε → Λ(ε) which is semidefinite positive and differentiable at ε = 0+, the derivative is
denoted Λ′(0) for the sake of simplicity. In the case of wave equation such a result is not
known, however, the numerical experiments show that dependence is regular. Therefore,
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we assume that for a given initial conditions the solution of wave equation enjoys the
properties of the steady state boundary value problem for the nucleation of the small cycle.
Let us note that for ε > 0 the wave equation is well defined and the regularity of initial
conditions required for the turnpike property is already given. Here we assume that the
limit of the cost for ε → 0+ is well defined and the value of the cost is continuous ε = 0.
This assumption does not imply the differentiability of the cost at ε→ 0+.

Assumption 2. Let us consider the wave equation on network and let J (Ω) be the cost
for given initial conditions y0, y1 and given time horizon T > 0. At the internal node P0

of the network a cycle of size ε > 0 is introduced, which leads to the cost J (Ωε). The
topological variation of the network is admissible provided we have

lim
ε→0+

J (Ωε) = J (Ω).

5.4 Control Problem for a Single Edge

Let real numbers L > 0, T > 0, c > 0 and γ > 0 be given. Let y0 ∈ H1(0, L) with
y0(0) = 0 and y1 ∈ L2(0, L), z ∈ H1(0, L) with ζ = z′(L) be given. Consider the problem

min

∫ T

0

∫ L

0

|y(t, x) − z(x)|2 + γ |yt(t, x)|2 dx+ |u(t) − ζ|2 dt

subject to 
y(0, x) = y0(x), x ∈ (0, L),
yt(0, x) = y1(x), x ∈ (0, L),
ytt(t, x) = c2yxx(t, x), (t, x) ∈ (0, T ) × (0, L),
y(t, 0) = 0, t ∈ (0, T ),
yx(t, L) = u(t), t ∈ (0, T ).

(5.83)

The solution to the initial boundary value problem for a control u ∈ L2(0, T ) is stated
in [25], Theorem 2.3, p. 17 in the form

y(t, x) =
∞∑
n=0

αn(t)φn(x) (5.84)

with the eigenfunctions φn(x) =
√
2√
L

sin
((

π
2

+ nπ
)

x
L

)
, n ∈ {0, 1, 2, ...}. For the eigenvalues

we have

λn =
1

L2

(π
2

+ nπ
)2

and the minimal eigenvalue is λ0 = π2

4
1
L2 . For n ∈ {0, 1, 2, ...}, let

α0
n =

∫ L

0

y0(x)φn(x) dx, α1
n =

∫ L

0

y1(x)φn(x) dx. (5.85)
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We have

αn(t) = α0
n cos

(
(
π

2
+ nπ)

t

t0

)
+ α1

n

t0
π
2

+ nπ
sin

(
(
π

2
+ nπ)

t

t0

)
(5.86)

+(−1)n c2
√

2√
L

t0
π
2

+ nπ

∫ t

0

u(s) sin

(
(
π

2
+ nπ)

t− s

t0

)
ds,

where t0 = L
c
. Since Parseval’s identity states that almost everywhere on [0, T ], we have∫ L

0

y(t, x)2 dx =
∞∑
n=0

|αn(t)|2 and

∫ L

0

yt(t, x)2 dx =
∞∑
n=0

|α′
n(t)|2.

We can represent the objective functional in the form∫ T

0

∫ L

0

|y(t, x) − z(x)|2 + γ |yt(t, x)|2 dx+ |u(t) − ζ|2 dt

=

∫ T

0

∞∑
n=0

|αn(t)|2 + γ|α′
n(t)|2 + |u(t) − ζ|2 dt+

∫ T

0

∫ L

0

z2(x) +
∞∑
n=0

2αn(t)φn(x)z(x) dxdt.

If the control space L2(0, T ) is replaced by a finite dimensional space of piecewise constant
control functions, this yields a finite dimensional quadratic optimization problem. Since
in this case, the necessary optimality conditions are a finite dimensional system of linear
equations, this can be used to obtain numerical approximations of the optimal control.

5.4.1 Numerical Solutions

In this section, we discuss the numerical solutions for three examples. We consider the
following problem data:

c := 1; γ := 0.1; T := 1, 10, 100; L := 1;

We choose y1(x) := 0 (x ∈ (0, L)).

1. y0(x) := x, z = 0, ζ = 0 (Example 1);

2. y0(x) := π−1 sin(πx), z = 0, ζ = 0 (Example 2);

3. y0(x) := π−1 sin(πx), z = x, ζ = 1 (Example 3);

The coefficients α0
n and α1

n in (5.85) are obtained as the Fourier coefficients of the
chosen functions y0(x), y1(x).

In order to solve the optimal boundary control problem numerically, a finite-dimensional
approximation is used on two sides of (5.83) simultaneously:

First, the series expansion in the objective functional has to be cut after N terms
which leads us to the consideration of the problem (OPT)(γ, N). Second, we compute
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approximations for the optimal controls u ∈ L2(0, T ) in the space of piecewise constant
functions. Let a grid 0 = t0 < t1 < t2 < ... < tM = T be given. For i ∈ {1, . . . ,M} let

vj(t) :=

{
1 if t ∈ [tj−1, tj),
0 elsewhere,

and, define the finite dimensional space XM(T ) by

XM(T ) := span{vj(·) : j = 1, . . . ,M}.

For any u ∈ XM(T ) we use the representation

u(t) =
M∑
j=1

u(tj−1)vj(t), t ∈ [0, T ),

where vj(t) stands for the characteristic function χ[tj−1,tj)(t) of the interval [tj−1, tj) and
the approximation of control is defined by the vector U = col(U1, . . . , UM) ∈ RM . Hence,
we are finally led to solve the problem

(Dopt)(γ, N, M) min
u∈XM (T )

M∑
j=1

(tj − tj−1) (u(tj−1)
2 + 2u(tj−1)ζ + ζ2)

+
M∑
j=1

N∑
n=0

∫ tj

tj−1

|αn(t)|2 + γ|α′
n(t)|2 dt

+
M∑
j=1

N∑
n=0

∫ tj

tj−1

∫ L

0

2αn(t)φn(x)z(x) + z2(x) dxdt

(5.87)

with αj(t) as defined in (5.86). Problem

(Dopt)(γ, N, M)

can be equivalently formulated as a quadratic programming problem in RM

min
U∈RM

U⊤QU + q⊤U +W

where the matrix Q(N)M×M , depending on the fixed number N , and the vector q ∈ RM

are to be assembled for fixed N from the cost as stated in (5.87). The assemblage is
described below. We use the notation Uj = u(tj−1), (j ∈ {1, . . . ,M}) and take into
account a constant term W that is independent of U . We have

U⊤QU + q⊤U +W =
M∑
j=1

(tj − tj−1) (u(tj−1)
2 + 2u(tj−1)ζ + ζ2)
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+
M∑
j=1

N∑
n=0

∫ tj

tj−1

|αn(t)|2 + γ|α′
n(t)|2 dt

+
M∑
j=1

N∑
n=0

∫ tj

tj−1

∫ L

0

2αn(t)φn(x)z(x) + z2(x) dxdt.

For the convergence of the approximation, it is important to increase both N and M
simultaneously. Otherwise, if only M → ∞ convergence to the optimal control in general
does not occur (due to a possible spillover effect). For t ∈ (tj−1, tj) we have

αn(t) = α0
n cos

(
(
π

2
+ nπ)t

)
+ (−1)n

√
2

π
2

+ nπ

∫ t

0

u(s) sin
(

(
π

2
+ nπ)(t− s)

)
ds

= α0
n cos

(
(
π

2
+ nπ)t

)
+ (−1)n

√
2

π
2

+ nπ

j∑
k=1

Uk

∫ t

0

vk(s) sin
(

(
π

2
+ nπ)(t− s)

)
ds

= α0
n cos

(
(
π

2
+ nπ)t

)
+ (−1)n

√
2

π
2

+ nπ
V ⊤
j U,

where Vj = col(Vj,1, Vj,2, · · · , Vj,j, 0, · · · , 0),

Vj,k =


∫ tk
tk−1

sin
(
(π
2

+ nπ)(t− s)
)
ds if k < j,∫ t

tk−1
sin
(
(π
2

+ nπ)(t− s)
)
ds if k = j,

0 if k > j.

and

|αn(t)|2 = (α0
n)2 cos2

(
(
π

2
+ nπ)t

)
+

2

(π
2

+ nπ)2
U⊤VjV

⊤
j U

+ (−1)n
2
√

2α0
n

π
2

+ nπ
cos
(

(
π

2
+ nπ)t

)
V ⊤
j U.

(5.88)

This implies

M∑
j=1

N∑
n=0

∫ tj

tj−1

|αn(t)|2 =
M∑
j=1

N∑
n=0

(α0
n)2
∫ tj

tj−1

cos2
(

(
π

2
+ nπ)t

)
dt

+
M∑
j=1

N∑
n=0

2

(π
2

+ nπ)2
U⊤
∫ tj

tj−1

VjV
⊤
j dt U

+
M∑
j=1

N∑
n=0

(−1)n
2
√

2α0
n

π
2

+ nπ

∫ tj

tj−1

cos
(

(
π

2
+ nπ)t

)
V ⊤
j dt U

= W1 + U⊤Q1U + q⊤1 U. (5.89)
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Moreover, for the derivatives α′
n(t), we have for t ∈ (tj−1, tj)

α′
n(t) = −(

π

2
+ nπ)α0

n sin
(

(
π

2
+ nπ)t

)
+ (−1)n

√
2

j∑
k=1

Uk

∫ t

0

vk(s) cos
(

(
π

2
+ nπ)(t− s)

)
ds

= −(
π

2
+ nπ)α0

n sin
(

(
π

2
+ nπ)t

)
+ (−1)n

√
2Ṽ ⊤

j U,

(5.90)
where Ṽj = col(Ṽj,1, Ṽj,2, · · · , Ṽj,j, 0, · · · , 0),

Ṽj,k =


∫ tk
tk−1

cos
(
(π
2

+ nπ)(t− s)
)
ds (k < j),∫ t

tk−1
cos
(
(π
2

+ nπ)(t− s)
)
ds (k = j),

0 (k > j).

This yields

|α′
n(t)|2 = (α0

n)2(
π

2
+ nπ)2 sin2

(
(
π

2
+ nπ)t

)
+ 2U⊤ṼjṼ

⊤
j U

+ (−1)n+12
√

2α0
n(
π

2
+ nπ) sin

(
(
π

2
+ nπ)t

)
Ṽ ⊤
j U.

Hence we obtain

γ
M∑
j=1

N∑
n=0

∫ tj

tj−1

|α′
n(t)|2 = γ

M∑
j=1

N∑
n=0

(α0
n)2(

π

2
+ nπ)2

∫ tj

tj−1

sin2
(

(
π

2
+ nπ)t

)
dt

+ γ
M∑
j=1

N∑
n=0

2U⊤
∫ tj

tj−1

ṼjṼ
⊤
j dt U

+ γ

M∑
j=1

N∑
n=0

(−1)n+12
√

2α0
n(
π

2
+ nπ)

∫ tj

tj−1

sin
(

(
π

2
+ nπ)t

)
Ṽ ⊤
j dt U

= γ(W2 + U⊤Q2U + q⊤2 U).

And we have

M∑
j=1

N∑
n=0

∫ tj

tj−1

αn(t)φn(x)z(x) =
M∑
j=1

N∑
n=0

∫ tj

tj−1

α0
n cos

(
(
π

2
+ nπ)t

)
dt

∫ L

0

z(x)φ(x)dx

+
M∑
j=1

N∑
n=0

(−1)n
√

2
π
2

+ nπ

∫ tj

tj−1

V ⊤
j dt U

= W3 + q⊤3 U.

(5.91)
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For the objective function, this implies

M∑
j=1

(tj − tj−1) (u(tj−1)
2 + 2u(tj−1)ζ + ζ2) := U⊤Q3U + 2q⊤τ U +Wτ ,

M∑
j=1

N∑
n=0

∫ tj

tj−1

|αn(t)|2 + γ|α′
n(t)|2 dt := U + q⊤1 U +W1 + γ(U⊤Q2 U + q⊤2 U +W2),

M∑
j=1

N∑
n=0

∫ tj

tj−1

∫ L

0

2αn(t)φn(x)z(x) + z2(x) dxdt = 2q⊤3 U +W3.

Thus

U⊤QU+q⊤U+W = U⊤(Q1+γQ2+Q3)U+(q1+γq2+q3+qτ )⊤U+W1+γW2+W3+Wτ .

Here we use the notation

Q1 =
M∑
j=1

N∑
n=0

2

(π
2

+ nπ)2

∫ tj

tj−1

VjV
⊤
j dt,

Q2 =
M∑
j=1

N∑
n=0

2

∫ tj

tj−1

ṼjṼ
⊤
j dt,

Q3 = diag(t1 − t0, · · · , tk − tk−1, · · · , tM − tM−1),

q1 =
M∑
j=1

N∑
n=0

(−1)n
2
√

2α0
n

π
2

+ nπ

∫ tj

tj−1

cos
(

(
π

2
+ nπ)t

)
Vjdt,

q2 =
M∑
j=1

N∑
n=0

(−1)n+12
√

2α0
n(
π

2
+ nπ)

∫ tj

tj−1

sin
(

(
π

2
+ nπ)t

)
Ṽjdt,

q3 =
M∑
j=1

N∑
n=0

(−1)n
√

2
π
2

+ nπ

∫ tj

tj−1

V ⊤
j dt,

qτ = (t1 − t0, t2 − t1, · · · , tM − tM−1)
⊤,

W1 =
M∑
j=1

N∑
n=0

(α0
n)2
∫ tj

tj−1

cos2
(

(
π

2
+ nπ)t

)
dt,

W2 =
M∑
j=1

N∑
n=0

(α0
n)2
∫ tj

tj−1

sin2
(

(
π

2
+ nπ)t

)
dt,

W3 =
M∑
j=1

N∑
n=0

∫ tj

tj−1

α0
n cos

(
(
π

2
+ nπ)t

)
dt

∫ L

0

z(x)φ(x)dx.
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We employ Matlab for the computational analysis of all examples. Fig. 5.1 and Fig.
5.2 illustrate the optimal control and state, respectively, for varying values of T in Example
1. Notably, as T increases significantly, the control variable u converges to ζ. Moreover,
with the increment in T , there is a discernible trend towards stabilization in the norms
of both u and y, as evidenced in Fig. 5.3. Fig. 5.4-5.6 present the results obtained from
Example 2, whereas Fig. 5.7 to 5.9 depicts the outcomes of Example 3. Additionally,
Fig. 5.10 presents the quotient of the optimal value of (Dopt)(γ, N, M), which adheres to
the turnpike property, thereby providing valuable insights into the behavior of the system
concerning varying T values.

(a) T = 1 (b) T = 10

(c) T = 100

Figure 5.1: Optimal control for different values of T in Example 1
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(a) T = 1 (b) T = 10

(c) T = 100

Figure 5.2: Optimal state for different values of T in Example 1
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(a) T = 1 (b) T = 10

(c) T = 100

Figure 5.3: Optimal
∫ t

0
(u−ξ)2dt and

∫ t

0

∫ L

0
(y−z)2dxdt for different values of T in Example

1 (ξ = 0, z = 0, y0 = x)



5.4. CONTROL PROBLEM FOR A SINGLE EDGE 121

(a) T = 1 (b) T = 10

(c) T = 100

Figure 5.4: Optimal control for different values of T in Example 2
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(a) T = 1 (b) T = 10

(c) T = 100

Figure 5.5: Optimal state for different values of T in Example 2
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(a) T = 1 (b) T = 10

(c) T = 100

Figure 5.6: Optimal
∫ t

0
(u−ξ)2dt and

∫ t

0

∫ L

0
(y−z)2dxdt for different values of T in Example

2 (ξ = 0, z = 0, y0 = π−1 sin(πx))
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(a) T = 1 (b) T = 10

(c) T = 100

Figure 5.7: Optimal control for different values of T in Example 3
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(a) T = 1 (b) T = 10

(c) T = 100

Figure 5.8: Optimal state for different values of T in Example 3
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(a) T = 1 (b) T = 10

(c) T = 100

Figure 5.9: Optimal
∫ t

0
(u−ξ)2dt and

∫ t

0

∫ L

0
(y−z)2dxdt for different values of T in Example

3 (ξ = 1, z = x, y0 = π−1 sin(πx))
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(a) Example 1 (b) Example 2

(c) Example 3

Figure 5.10: Convergence for different examples

5.5 Topological Derivatives for Network Optimal Con-

trol Problems

The topology of network for the purposes of optimal control problems is selected in the
framework of the topological derivative method for static problems, we refer to [30] for
an elementary example. It turns out, that that the topological derivatives for a class of
cost functions can be determined by using the domain decomposition technique for the
state equation [87]. We describe in detail the topological derivative method and present
numerical results for examples.

Let us consider the network static problem. We define the topological derivatives
for optimal cost of network control problems with respect to nucleation of a small cycle.
We present also numerical examples. The simplest example of a network is the three-
star graph with one central vertex P0 and three boundary vertices P1, P2, P3, thus V =
{P0, P1, P2, P3} (See Fig. 5.11). There are three edges E = {E1, E2, E3}.
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x = 0

x = l3 x = l2

x = l1

Figure 5.11: The three-star graph

For the steady state problem, singular domain perturbations of the shape are con-
sidered. The topological derivatives of the shape functional are defined. The shape and
topology optimization is performed. The network is singularly perturbed by a small cycle
of the size ε → 0 (See Fig. 5.12). In such a case the domain decomposition technique
is used and the Steklov-Poincaré operator is introduced. The topological derivative tech-
nique is employed in order to decide if a small cycle is useful for the topology optimization
of the network.

E3

E1 E2

E4

E5E6

x = 1

x = 1x = 1

ε

Figure 5.12: Nucleation of a cycle of size ε in three-star graph

We introduce multiple perturbations of network represented in Figure 5.13. The
Steklov-Poincaré operator Λε replaces the subgraph Gε in the state equation of the net-
work. In this way, the topological derivative of the cost for optimal control problem on
the perturbed network is obtained for the nucleation of multiple cycles in the three-star
graph.

5.5.1 Shape and Topology Optimization on Networks

We recall briefly the shape and topological derivatives of a given cost for the network.
We restrict ourselves to static problems however the shape and topology optimization can
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Eε,1

P1

Eε,6

Q5

Eε,5

P5

Eε,7

P6

Eε,4

Eε,8

P4

Q4

Eε,9

Eε,2

P2

Eε,3

P3

Q1

Q2

Q3

Gε

Figure 5.13: Multiple perturbations of the three-star graph for domain decomposition
technique.

also be performed for dynamic optimal control problems on networks. For the optimal
control problems with the turnpike Property the analysis of static problem is useful for
the solution of dynamic problem. In particular, the topology of the network is designed
using the static problem.

The shape Ω of the network for fixed topology is governed by the finite dimensional
vector ℓ, which contains the lengths of edges, ℓ = col (L1, . . . , LN) where N = #E =
{Ei|i ∈ I}. Therefore, Ω := Ω(ℓ), and the cost ℓ 7→ I(ℓ) := J (Ω(ℓ)) is defined by
the optimal cost of control problem J (Ω) := J(û(Ω)) for evolution problem. For the
steady state problem the optimal cost of control problem is denoted by ℓ 7→ J(v̂(Ω(ℓ))),
where v̂(Ω(ℓ)) is steady state optimal control in the domain defined by the shape Ω(ℓ). We
consider the Neumann control in the numerical examples presented for the wave equation.

5.5.2 Examples of Topological Derivatives for Networks

Two examples are presented of singular network perturbation by nucleation of a small
cycle. In the first example, the topological derivative is evaluated for the optimal control
problem with the static state equation, and then for the dynamic state equation, the
optimal size of the cycle is determined. In the second example, the topological derivative
is evaluated for multiple singular perturbations of the three-star network.

Example 4 (for one cycle): In this example the optimal control u is computed for the
geometry depicted in Figure 5.14. The variables z and ζ satisfy

−z′′i = 0, x ∈ [0, Li], i = 1, · · · , 6,
z′1(0) = ζ, z2(L2) = z3(L3) = 0,
Continuity and Kirchhoff Condition.

(5.92)

Set ζ = 1, L1 = L2 = L3 = 2, ε0 = 0.5, εmax = 1, and 0 ≤ ε ≤ εmax. Here, Gε =
{Eε, Vε} contains a small cycle. Eε = {Eε,1, Eε,2, · · · , Eε,6}, Vε = {Q1, Q2, Q3, P4, P5, P6},
|Eε,1| = |Eε,2| = |Eε,3| = εmax − ε = 1− ε, |Eε,4| = |Eε,5| = |Eε,6| = ε. The cost functional
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Eε,6

Eε,4Eε,5

Q1 Q2

Q3

E1 E2

E3

P3

P2P1

Figure 5.14: Domain decomposition for tripod directed network with an elementary small
cycle.

under consideration is defined as:

J(u) =
1

2

3∑
i=1

∫ Li−εmax

0

(yi − zi)
2 +

1

2
|u− ζ|2.

By the Lagrange method, the optimality system is given by
3∑

i=1

∫ Li−εmax

0
yiϕi + a(Ω0; p, ϕ) − ϕ(Li − εmax)

⊤Λεp(Li − εmax) =
3∑

i=1

∫ Li−εmax

0
ziϕi,

a(Ω0; y, ϕ) − p1(0)ϕ1(0) − y(Li − εmax)
⊤Λεϕ(Li − εmax) = −ζϕ1(0),

where

ϕ ∈ H =
{
ϕi, ϕ

′
i ∈ L2 (0, Li) , ϕ2(0) = ϕ3(0) = 0, continuity at interior vertices.}

and

Λε =
1

2ε− 3

 2 −1 −1
−1 2 −1
−1 −1 2

 . (5.93)

Fig. 5.15 shows the shape functional with respect to ε. The derivative of J with respect
to ε is consistently negative as ε approaches 0. This is the information that allows for
the topology variations by nucleation of a small cycle at an interior vertex of the graph.
Another observation emerges: as ε approaches ε0, the cost functional (J) converges to
0, indicating an optimal length for the introduced cycle. This implies that at ε = ε0,
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Figure 5.15: The shape functional for ε ∈ [0, 1] in Example 4
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the network experiences an optimal configuration, emphasizing the critical nature of this
parameter in shaping the network.
Example 5 (for multiple cycles): In this example, the geometry is depicted in Figure
5.13. Here, Gε = {Eε, Vε} contains a small cycle. Eε = {Eε,1, Eε,2, · · · , Eε,9}, Vε =
{Q1, Q2, · · · , Q5, P4, P5, P6}, |Q1P5| = |Q2P6| = |Q3P4| = εmax−ε = 1−ε, |Eε,5| = |Eε,6| =
|Eε,9| = ε2, |Eε,4| = |Eε,7| = ε − ε2, |Eε,8| = ε, and |PiQi| = Li − εmax (i = 1, 2, 3). The
parameters, cost functional, and optimality system remain consistent with the Example
for one cycle (static), with the sole distinction being the form of Λε. The Steklov-Poincaré
operator for the small, double cycle is:

Λε = − 1

2ε− 3


−2 1 1

1
−5ε2 + 20ε− 18

2ε2 − 10ε+ 9

3ε2 − 10ε+ 9

2ε2 − 10ε+ 9

1
3ε2 − 10ε+ 9

2ε2 − 10ε+ 9

−5ε2 + 20ε− 18

2ε2 − 10ε+ 9

 .

For numerical results, refer to Fig. 5.16. The topological derivative at ε = 0+ is negative.
And the optimal size of the cycle is ε = ε0 = 0.5.

All in all, we exploit the properties of shape and topology optimization problems in
one space dimension. The optimal control problems are considered in static and dynamic
cases. For the tree network, we show the Turnpike Property for the wave equation and
consider the geometric shape optimization. The new case is the tree with a small cycle.
In such a case the topology of network is determined by using the topological derivatives
obtained in static case. Numerically, the case of the cycle also does not pose a problem.
This is new: Also here shape optimization works!

This also holds for a graph with multiple cycles as long as in the shape optimization
no topology change occurs, that is no cycle vanishes. The Turnpike property also holds
if a cycle disappears. We have shown this under the assumption that the initial state is
not supported on the cycle. We expect that this condition is not sharp.

The convergence of gradient flow for shape optimization is also relevant to networks.
The modeling of shapes of animals is another possibility for the spectral methods. We refer
to [72], and [14] for the related results. Further research will concern the corresponding
shape optimization problems in the general three dimensional case.
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Figure 5.16: The shape functional for the size of cycle ε ∈ [0, 1] in Example 5.
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Chapter 6

Conclusions and Further Research

The complete results, considering Turnpike Property, on control and design of network
with scalar wave equation are presented. The topological derivatives are derived for shape
functional on networks. The necessary and sufficient optimality conditions are obtained
for control and designed networks with nonlinear ODEs. In the linear case, the topological
derivatives are used for singular geometric perturbations of network in order to perform
the topology optimization. Numerical examples show that this strategy is efficient in
improving the cost of optimal control problems.

Further research and open problems:

• Turnpike Property for linear state equations of Timoshenko beams of networks

• Turnpike Property for nonlinear state equations of geometrically exact beams

• Topological derivatives for network of geometrically exact beams in static setting

• Shape and topology optimization of control problems for networks of Timoshenko
beams

• Shape optimum design of networks with geometrically exact beams for optimal
control problems

• Shape and control of nonlinear state equations in fluid mechanics on networks.

135
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[60] A. Myśliński. Level set method for shape and topology optimization of contact
problems. In System Modeling and Optimization, volume 312 of IFIP Adv. Inf.
Commun. Technol., pages 397–410. Springer, Berlin, 2009.

[61] S. A. Nazarov and J. Soko lowski. Spectral problems in the shape optimization.
Singular boundary perturbations. Asymptot. Anal., 56(3-4):159–204, 2008.

[62] A. A. Novotny and J. Soko lowski. Topological Derivatives in Shape Optimization.
Springer, 2013.

[63] A. A. Novotny and J. Soko lowski. An Introduction to the Topological Derivative
Method. SpringerBriefs in Mathematics. Springer, Cham, 2020.

[64] A. A. Novotny, J. Soko lowski, and A. Żochowski. Applications of the Topologi-
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[86] J. Soko lowski and A. Żochowski. Topological derivatives for elliptic problems. Inverse
problems, 15(1):123–134, 1999.
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Appendix A

Program

The topological derivative method can be used for the numerical solutions of optimum
design problems for networks. The examples with Matlab codes show the constructive
way to proceed.

A.1 Nonlinear Beams

This section provides the MATLAB implementation for the nonlinear beam example dis-
cussed in Example 2 in section 3.3.2. The objective is to optimize control problems for a
nonlinear beam system, using the Newton method to handle the nonlinear terms efficiently
and achieve optimal control.

1 %% This is a contruct example for nonlinear beam
2 % +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
3 % | phi(r) = −E(x)r + L(r)Cr; |
4 % | z1 hat = −x+1; |
5 % | zi hat = 0; i=2,3,4,5,6 |
6 % | f1 hat = −1; |
7 % | fi hat = 0; i=2,3,4,5,6 |
8 % | |
9 % | z'(x) = phi(z) + e 1(f hat − p), |

10 % | −p'(x) = p(x)phi'(z(x)) + z(x) −z hat, |
11 % | z(l) = 0, p(0) = 0; |
12 % | P2 element |
13 % +−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−+
14

15 function J = optControl(L)
16 if nargin == 0
17 L = 1; % L \in [1/2,3/2]
18 end
19

20 % Define optimization parameters
21 Lopt = 1; % Optimal beam length
22 Lmax = 3/2; % Maximum allowable beam length
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23 hmax = 0.01;
24 N0l = ceil((L)/hmax);
25 Nx = 2*N0l + 1;
26

27 % Calculate number of nodes for optimal and maximum beam lengths
28 Nopt = Lopt/hmax;
29 Nmax = Lmax/hmax;
30

31 % Generate node coordinates for different beam lengths
32 x0l = linspace(0,L,N0l+1);
33 xopt = linspace(0,Lopt,Nopt+1)';
34 xmax = linspace(0,Lmax,Nmax+1)';
35

36 % Compute stiffness matrices and mass matrix for finite element analysis
37 [Pb,A1,A2] = graph1D matirx P2(N0l,x0l);
38 [Pbmax,A1max,˜] = graph1D matirx P2(Nmax,xmax);
39

40 [Ks1,Ks2] = deal(cell(6,6));
41

42 for i = 1 : 6
43 for j = 1 : 6
44 Ks1{i,j} = zeros(size(A1));
45 Ks2{i,j} = zeros(size(A1));
46 end
47 end
48

49 for i = 1 : 6
50 Ks1{i,i} = A2;
51 Ks2{i,i} = A2;
52 end
53

54 Ks1{5,3} = A1;
55 Ks1{6,2} = −A1;
56

57 Ks2{5,3} = −A1;
58 Ks2{6,2} = A1;
59

60 for i = 1 : 6
61 Ks1{i,i}(1,1) = Ks1{i,i}(1,1) + 1;
62 Ks2{i,i}(end,end) = Ks2{i,i}(end,end) − 1;
63 end
64

65 M = deal(cell(6,6));
66 for i = 1 : 6
67 for j = 1 : 6
68 M{i,j} = zeros(size(A1));
69 end
70 end
71

72 for i = 1 : 6
73 M{i,i} = A1;
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74 end
75

76 % Convert cell arrays to numerical matrices
77 Ks1 matrix = cell2mat(Ks1);
78 Ks2 matrix = cell2mat(Ks2);
79 M matrix = cell2mat(M);
80

81 A = [−Ks1 matrix M matrix;−M matrix Ks2 matrix];
82

83 %% Dirichlet condition
84 bdyL = (1:12) * Nx;
85 bdy0 = 1 + (0:11)*Nx;
86

87 %% control
88 xopt = Pbmax';
89

90 fhat = −ones(size(xopt))*1; % Desired force distribution
91 zhat = −xopt+1;
92

93 % Calculate force and state distributions
94 Fhat = A1max*fhat;
95 Zhat = A1max*zhat;
96

97 Fhat(Nx+1:end) = [];
98 Zhat(Nx+1:end) = [];
99

100 % Construct control force vector F
101 F = zeros(12*Nx,1);
102 F(bdy0(1):bdyL(1)) = Fhat;
103 F(bdy0(7):bdyL(7)) = −Zhat;
104

105 C = diag([10ˆ4,10ˆ4,10ˆ4,500,500,500])ˆ(−1);
106

107 %% Initialization of the state
108 % Consistent structural linearisation in flexible−body dynamics with ...

large rigid−body motion
109 % Henrik Hesse, Rafael Palacios, 2012
110 EA = 10ˆ4; GAs = 10ˆ4;
111 EI = 500; GJ = 500;
112 rhoA = 1; rhoJ = diag([20, 10, 10]);
113 massMat = blkdiag(rhoA*eye(3), rhoJ); % the MASS matrix
114 flexMat = inv(diag([EA, GAs, GAs, GJ, EI, EI])); % the FLEXIBILITY matrix
115

116 Gamma0 = [0; 0; 0]; % there is no initial shear
117 W0hat = [0, −1/sqrt(2), 0; 1/sqrt(2), 0, 1/sqrt(2); 0, −1/sqrt(2), 0];
118 Upsilon0 = func vec(W0hat);
119

120 z0 = [Gamma0; Upsilon0]; % strains
121 z0 = flexMat\z0; % corresponding stresses
122

123 Y0 = zeros(6*Nx, 1);
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124 p0 = zeros(6*Nx,1);
125

126 wm = [Y0;p0]; % initialize wm
127

128 disp('Solving the semilinear system..');
129 %%% M.A. code %%%
130 tolzero=1e−12;
131 reltolX=1e−6;
132 tolF=1e−15;
133 %%%%%%%%%%%%%%%%%
134 iter = 0;
135

136 while 1
137 %%% Newton method: the scheme reads %%%
138 % wm1 = wm − (JacFk(wm))ˆ{−1} Fk(wm) %
139 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
140 ML martix = MCL(wm,Nx,C,L,N0l);
141 MG martix = MG(wm,Nx,C,L,N0l);
142 NL = blkdiag(ML martix,MG martix);
143 Fk wm = A*wm − NL*wm − F;
144 % boundary condition
145 Fk wm(bdyL(1:6),1) = 0;
146 Fk wm(bdy0(7:12),1) = 0;
147

148 JacFk wm = A − NL;
149 for i = 1 : 6
150 JacFk wm(bdyL(i),:) = 0;
151 JacFk wm(bdyL(i),bdyL(i)) = 1;
152 JacFk wm(bdy0(i+6),:) = 0;
153 JacFk wm(bdy0(i+6),bdy0(i+6)) = 1;
154 end
155

156 wm1 = wm − JacFk wm\Fk wm;
157

158 %%% M.A. code %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
159 rel err = (wm1 − wm)./wm; %
160 nan or inf = find( isnan(rel err) + isinf(rel err) ... %
161 + (abs(wm)<=tolzero) ); %
162 rel err(nan or inf) = 0; %
163 if (norm(rel err,inf) <= reltolX) && (norm(Fk wm,inf) <= tolF)%
164 break %
165 end %
166 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
167

168 wm = wm1;
169 iter = iter + 1;
170 end
171

172 z exp = wm1;
173 z solu = cell(6,1);
174 for i = 1 : 6
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175 z solu{i,1} = zeros(Nx,1);
176 z solu{i,1} = z exp(bdy0(i):bdyL(i));
177 end
178

179 p solu = cell(6,1);
180 for i = 7 : 12
181 p solu{i−6,1} = zeros(Nx,1);
182 p solu{i−6,1} = z exp(bdy0(i):bdyL(i));
183 end
184

185 f solu = cell(6,1);
186 for i = 1 : 6
187 f solu{i,1} = zeros(Nx,1);
188 f solu{1,1} = fhat(1:Nx)−p solu{1,1};
189 end
190

191 f err = trapz(Pb,(f solu{1,1}−fhat(1:Nx)).ˆ2);
192 z err = trapz(Pb,(z solu{1,1}−zhat(1:Nx)).ˆ2);
193

194 J = f err + z err + (L−Lopt)ˆ2 ;
195 J = J/2;
196 disp(['f err = ', num2str(f err)]);
197 disp(['z err = ', num2str(z err)]);
198 disp(['J = ', num2str(J)]);
199

200 end

A.2 Timoshenko Beam

In this section, we present the exact solution and the optimal control code for both the
1D and 3D Timoshenko models.

The first file contains the MATLAB code implementing the exact solution for the 1D
Timoshenko model in section 4.6.1. This solution enables precise calculation of displace-
ments and stresses within the structure under specified loading and boundary conditions.
The OptControl function presents the optimal control problem code shown for the 1D/3D
Timoshenko model in section 4.10.

1 % This is to get the exact solution of the 1D model
2 clear
3

4 % parameters
5 % elastic modulus
6 % em = 2.1e11;
7 % % shear modulus
8 % sm = 8.1*1e10 ;
9 % % cross−section area

10 % cs = 0.01 ;
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11 % % torsion constant
12 % tor = 1.41*1e−5 ;
13 % % second moments
14 % secm = 8.33*1e−6 ;
15 % % axial stiffness
16 % kx = cs*em ;
17 % % shear stiffness
18 % kappa = 0.850 ;
19 % ks = kappa*sm*cs ;
20 % % torsional stiffness
21 % cx = sm*tor ;
22 % % bending stiffness
23 % cy = secm*em ;
24 % cz = secm*em ;
25

26 ks = 688500000;
27 cy = 1749300;
28

29 epsVal = 0.5;
30

31 Len = 2;
32

33 L = [Len−epsVal,Len−epsVal,Len−epsVal,epsVal,epsVal,epsVal];
34

35 syms x;
36 f = piecewise(x <= Len−1.00000, 2e6, x > Len−1.00000 & x <= L(2), 0);
37 fz = [0,−f,0,0,0,0];
38 my = [0,0,0,0,0,0];
39 rz = [0,0,0,0,0,0];
40 phiy = [0,0,0,0,0,0];
41 for i = 1 : 3
42 q{i} = [fz(i);my(i)];
43 u0{i} = [rz(i);phiy(i)];
44 end
45

46 for i = 1 : 6
47 D1E{i} = D1(ks,L(i),cy);
48 D2E{i} = D2(ks,L(i),cy);
49 D3E{i} = D3(ks,L(i),cy);
50 D4E{i} = D4(ks,L(i),cy);
51 dE{i} = d(fz(i),my(i),cy,L(i));
52 wE{i} = w(fz(i),my(i),ks,cy,L(i));
53 RE{i} = R(cy,ks,L(i));
54 QE{i} = Q(cy,ks,L(i));
55 end
56

57 A = [D4E{1}+D4E{4}−D1E{5}, −D2E{5}, D3E{4};
58 D3E{5}, D4E{2}+D4E{5}−D1E{6}, −D2E{6};
59 −D2E{4}, D3E{6}, D4E{3}+D4E{6}−D1E{4}]; %symmertic
60

61 b = sym(zeros(6,1));
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62 b(1:2,1) = − q{1} − D3E{1}*u0{1} ...
63 − D4E{1}*subs(wE{1},L(1)) − D4E{4}*subs(wE{4},L(4)) + ...

D2E{5}*subs(wE{5},L(5)) ...
64 + subs(dE{1},L(1)) + subs(dE{4},L(4));
65 b(3:4,1) = − q{2} − D3E{2}*u0{2} ...
66 − D4E{2}*subs(wE{2},L(2)) − D4E{5}*subs(wE{5},L(5)) + ...

D2E{6}*subs(wE{6},L(6)) ...
67 + subs(dE{2},L(2)) + subs(dE{5},L(5));
68 b(5:6,1) = − q{3} − D3E{3}*u0{3} ...
69 − D4E{3}*subs(wE{3},L(3)) − D4E{6}*subs(wE{6},L(6)) + ...

D2E{4}*subs(wE{4},L(4)) ...
70 + subs(dE{3},L(3)) + subs(dE{6},L(6));
71

72 solu = A\b;
73 uL{1} = subs(solu(1:2),L(1));
74 uL{2} = subs(solu(3:4),L(2));
75 uL{3} = subs(solu(5:6),L(3));
76

77 u0{4} = uL{3};
78 u0{5} = uL{1};
79 u0{6} = uL{2};
80

81 uL{4} = uL{1};
82 uL{5} = uL{2};
83 uL{6} = uL{3};
84

85 for i = 1 : 6
86 u{i} = QE{i}*u0{i} + RE{i}*(subs(uL{i},L(i))+subs(wE{i},L(i)))−wE{i};
87 end
88

89 save('u data.mat', 'u',"Len");
90 save('fz.mat', 'fz');
91 save('my.mat', 'my');
92 close all
93

94 figure
95 subplot(2,1,1)
96 fplot(u{1}(1),[0 L(1)])
97 hold on
98 fplot(u{2}(1),[0 L(2)])
99 hold on

100 fplot(u{3}(1),[0 L(3)])
101 legend('u 1','u 2','u 3')
102 title('r z')
103

104 % figure
105 subplot(2,1,2)
106 fplot(u{1}(2),[0 L(1)])
107 hold on
108 fplot(u{2}(2),[0 L(2)])
109 hold on
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110 fplot(u{3}(2),[0 L(3)])
111 legend('u 1','u 2','u 3')
112 title('phi y')
113

114 figure
115 subplot(2,1,1)
116 fplot(u{4}(1),[0 L(4)])
117 hold on
118 fplot(u{5}(1),[0 L(5)])
119 hold on
120 fplot(u{6}(1),[0 L(6)])
121 legend('u 4','u 5','u 6')
122 title('r z')
123

124 % figure
125 subplot(2,1,2)
126 fplot(u{4}(2),[0 L(4)])
127 hold on
128 fplot(u{5}(2),[0 L(5)])
129 hold on
130 fplot(u{6}(2),[0 L(6)])
131 legend('u 4','u 5','u 6')
132 title('phi y')
133

134 function muy = mu(ks,L,cy)
135 muy = ks/(ks*Lˆ3+12*cy*L);
136 % muz = ks/(ks*Lˆ3+12*cz*L);
137 end
138

139 function Ei1 = E(t)
140 Ei1 = [cos(t) sin(t);
141 −sin(t) cos(t)];
142 end
143

144 function D1i = D1(ks,L,cy)
145 muy = mu(ks,L,cy);
146 D1i = zeros(2,2);
147 D1i(1,1) = −12*cy*muy;
148 D1i(2,2) = −cy*(1/L+3*muy*Lˆ2);
149 D1i(2,1) = 6*cy*muy*L;
150 D1i(1,2) = 6*cy*muy*L;
151 end
152

153 function D2i = D2(ks,L,cy)
154 muy = mu(ks,L,cy);
155 D2i = zeros(2,2);
156 D2i(1,1) = 12*cy*muy;
157 D2i(2,2) = cy*(1/L−3*muy*Lˆ2);
158 D2i(2,1) = −6*cy*muy*L;
159 D2i(1,2) = 6*cy*muy*L;
160 end
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161

162 function D3i = D3(ks,L,cy)
163 muy = mu(ks,L,cy);
164 D3i = zeros(2,2);
165 D3i(1,1) = −12*cy*muy;
166 D3i(2,2) = −cy*(1/L−3*muy*Lˆ2);
167 D3i(2,1) = −6*cy*muy*L;
168 D3i(1,2) = 6*cy*muy*L;
169 end
170

171 function D4i = D4(ks,L,cy)
172 muy = mu(ks,L,cy);
173 D4i = zeros(2,2);
174 D4i(1,1) = 12*cy*muy;
175 D4i(2,2) = cy*(1/L+3*muy*Lˆ2);
176 D4i(2,1) = 6*cy*muy*L;
177 D4i(1,2) = 6*cy*muy*L;
178 end
179

180 function [fInt,fInt2,fInt3] = Int(f,L)
181 syms x;
182 fInt = int(f,x,0,x);
183 fInt2 = int(fInt,x,0,x);
184 fInt3 = int(fInt2,x,0,x);
185 end
186

187 function gyi = gy(fz,my,cy,L)
188 [fzInt1,˜,˜] = Int(fz,L);
189 gyi = 1/cy*(my+fzInt1);
190 end
191

192 function wi = w(fz,my,ks,cy,L)
193 wi = sym(zeros(2,1));
194 gyi = gy(fz,my,cy,L);
195 [˜,fzInt2,˜] = Int(fz,L);
196 [˜,gyInt2,gyInt3] = Int(gyi,L);
197 wi(1) = 1/ks*fzInt2 − gyInt3;
198 wi(2) = gyInt2;
199 end
200

201 function di = d(fz,my,cy,L)
202 di = sym(zeros(2,1));
203 gyi = gy(fz,my,cy,L);
204 [fzInt1,˜,˜] = Int(fz,L);
205 [gyInt1,˜,˜] = Int(gyi,L);
206 di(1) = fzInt1;
207 di(2) = cy*gyInt1;
208 end
209

210 function Qi = Q(cy,ks,L)
211 muy = mu(ks,L,cy);
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212 Qi = sym(zeros(2,2));
213 syms x
214 Qi(1,1) = muy*(L−x)*(Lˆ2+L*x−2*xˆ2+12/ks*cy);
215 Qi(2,2) = muy*(L−x)*(Lˆ2−3*L*x+12/ks*cy);
216 Qi(1,2) = −muy*x*(L−x)*(Lˆ2−L*x+6/ks*cy);
217 Qi(2,1) = 6*muy*x*(L−x);
218 end
219

220 function Ri = R(cy,ks,L)
221 muy = mu(ks,L,cy);
222 Ri = sym(zeros(2,2));
223 syms x
224 Ri(1,1) = muy*x*(3*L*x−2*xˆ2+12/ks*cy);
225 Ri(2,2) = muy*x*(−2*Lˆ2+3*L*x+12/ks*cy);
226 Ri(1,2) = muy*x*(L−x)*(L*x+6/ks*cy);
227 Ri(2,1) = −6*muy*x*(L−x);
228 end

1 function [J,urz,uphiy,vz,vy] = OptControl(eps)
2

3 % Optcontrol: Solves an optimization problem
4 % of the Reduced Timoshenko beam
5 % with boundary conditions
6 % for a given epsilon value.
7 % Input:
8 % − eps: Value of epsilon. Default is 0.5.
9 % Output:

10 % − J: Cost function value.
11 % − urz, uphiy, vz, vy: Solution vectors.
12

13 % Default value for epsilon if not provided
14 if nargin == 0
15 eps = 0.5;
16 end
17

18 % Load data files
19 load("u data.mat");
20 load("LAMBDA.mat");
21 load("fz.mat");
22 load("my.mat");
23

24 % material coefficient
25 ksv = 688500000;
26 cyv = 1749300;
27

28 u0 = zeros(6,1);
29

30 %% ===== Setting ===========
31 eps0 = 0.5;
32 epsmax = 1;
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33

34 % The length of each edge.
35 L = Len;
36 hmax = 0.01;
37

38 l = L − epsmax;
39 N0l = ceil(l/hmax);
40 x0l = linspace(0,l,N0l+1);
41

42 % number of basis functions
43 Nfy = 2*(N0l+1);
44

45 %% FEM matrices
46 [A1,A2,A3,A4] = graph1D matirx Hermite(N0l,x0l);
47

48 AA = cell(4,4);
49 for i = 1 : 4
50 for j = 1 : 4
51 AA{i,j} = deal(zeros(Nfy,Nfy));
52 end
53 end
54

55 AA{1,1} = A4;
56 AA{2,2} = A4;
57 AA{3,3} = −A4;
58 AA{4,4} = −A4;
59 AA{1,3} = ksv*A1;
60 AA{1,4} = ksv*A2;
61 AA{2,3} = ksv*A3;
62 AA{2,4} = ksv*A4+cyv*A1;
63 AA{3,1} = ksv*A1;
64 AA{3,2} = ksv*A2;
65 AA{4,1} = ksv*A3;
66 AA{4,2} = ksv*A4+cyv*A1;
67

68 AA = cell2mat(AA);
69

70 A = blkdiag(AA,AA,AA);
71

72 Nf = [repmat(Nfy,1,12)];
73 index = cumsum(Nf);
74 index = [0 index];
75 for i = 1 : 3
76 % index of [y(0),y(L),y'(0),y'(L)];
77 urz bdy{i} = index(4*i−3)+[1,Nf(2*i−1)/2,Nf(2*i−1)/2+1,Nf(2*i−1)];
78 uphiy bdy{i} = index(4*i−2)+[1,Nf(2*i)/2,Nf(2*i)/2+1,Nf(2*i)];
79 % index of [p(0),p(L),p'(0),p'(L)];
80 prz bdy{i} = index(4*i−1)+[1,Nf(2*i−1)/2,Nf(2*i−1)/2+1,Nf(2*i−1)];
81 pphiy bdy{i} = index(4*i)+[1,Nf(2*i)/2,Nf(2*i)/2+1,Nf(2*i)];
82 end
83 syms epsVal ks cy
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84 Lval = subs(Lambda,[epsVal,ks,cy],[eps,ksv,cyv]);
85

86 A(urz bdy{1}(2),prz bdy{1}(2)) = A(urz bdy{1}(2),prz bdy{1}(2)) − ...
Lval(1,1);

87 A(urz bdy{1}(2),pphiy bdy{1}(2)) = A(urz bdy{1}(2),pphiy bdy{1}(2)) − ...
Lval(2,1);

88 A(urz bdy{1}(2),prz bdy{2}(2)) = A(urz bdy{1}(2),prz bdy{2}(2)) − ...
Lval(3,1);

89 A(urz bdy{1}(2),pphiy bdy{2}(2)) = A(urz bdy{1}(2),pphiy bdy{2}(2)) − ...
Lval(4,1);

90 A(urz bdy{1}(2),prz bdy{3}(2)) = A(urz bdy{1}(2),prz bdy{3}(2)) − ...
Lval(5,1);

91 A(urz bdy{1}(2),pphiy bdy{3}(2)) = A(urz bdy{1}(2),pphiy bdy{3}(2)) − ...
Lval(6,1);

92

93 A(uphiy bdy{1}(2),prz bdy{1}(2)) = A(uphiy bdy{1}(2),prz bdy{1}(2)) − ...
Lval(1,2);

94 A(uphiy bdy{1}(2),pphiy bdy{1}(2)) = A(uphiy bdy{1}(2),pphiy bdy{1}(2)) ...
− Lval(2,2);

95 A(uphiy bdy{1}(2),prz bdy{2}(2)) = A(uphiy bdy{1}(2),prz bdy{2}(2)) − ...
Lval(3,2);

96 A(uphiy bdy{1}(2),pphiy bdy{2}(2)) = A(uphiy bdy{1}(2),pphiy bdy{2}(2)) ...
− Lval(4,2);

97 A(uphiy bdy{1}(2),prz bdy{3}(2)) = A(uphiy bdy{1}(2),prz bdy{3}(2)) − ...
Lval(5,2);

98 A(uphiy bdy{1}(2),pphiy bdy{3}(2)) = A(uphiy bdy{1}(2),pphiy bdy{3}(2)) ...
− Lval(6,2);

99

100 A(urz bdy{2}(2),prz bdy{1}(2)) = A(urz bdy{2}(2),prz bdy{1}(2)) − ...
Lval(1,3);

101 A(urz bdy{2}(2),pphiy bdy{1}(2)) = A(urz bdy{2}(2),pphiy bdy{1}(2)) − ...
Lval(2,3);

102 A(urz bdy{2}(2),prz bdy{2}(2)) = A(urz bdy{2}(2),prz bdy{2}(2)) − ...
Lval(3,3);

103 A(urz bdy{2}(2),pphiy bdy{2}(2)) = A(urz bdy{2}(2),pphiy bdy{2}(2)) − ...
Lval(4,3);

104 A(urz bdy{2}(2),prz bdy{3}(2)) = A(urz bdy{2}(2),prz bdy{3}(2)) − ...
Lval(5,3);

105 A(urz bdy{2}(2),pphiy bdy{3}(2)) = A(urz bdy{2}(2),pphiy bdy{3}(2)) − ...
Lval(6,3);

106

107 A(uphiy bdy{2}(2),prz bdy{1}(2)) = A(uphiy bdy{2}(2),prz bdy{1}(2)) − ...
Lval(1,4);

108 A(uphiy bdy{2}(2),pphiy bdy{1}(2)) = A(uphiy bdy{2}(2),pphiy bdy{1}(2)) ...
− Lval(2,4);

109 A(uphiy bdy{2}(2),prz bdy{2}(2)) = A(uphiy bdy{2}(2),prz bdy{2}(2)) − ...
Lval(3,4);

110 A(uphiy bdy{2}(2),pphiy bdy{2}(2)) = A(uphiy bdy{2}(2),pphiy bdy{2}(2)) ...
− Lval(4,4);

111 A(uphiy bdy{2}(2),prz bdy{3}(2)) = A(uphiy bdy{2}(2),prz bdy{3}(2)) − ...
Lval(5,4);
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112 A(uphiy bdy{2}(2),pphiy bdy{3}(2)) = A(uphiy bdy{2}(2),pphiy bdy{3}(2)) ...
− Lval(6,4);

113

114 A(urz bdy{3}(2),prz bdy{1}(2)) = A(urz bdy{3}(2),prz bdy{1}(2)) − ...
Lval(1,5);

115 A(urz bdy{3}(2),pphiy bdy{1}(2)) = A(urz bdy{3}(2),pphiy bdy{1}(2)) − ...
Lval(2,5);

116 A(urz bdy{3}(2),prz bdy{2}(2)) = A(urz bdy{3}(2),prz bdy{2}(2)) − ...
Lval(3,5);

117 A(urz bdy{3}(2),pphiy bdy{2}(2)) = A(urz bdy{3}(2),pphiy bdy{2}(2)) − ...
Lval(4,5);

118 A(urz bdy{3}(2),prz bdy{3}(2)) = A(urz bdy{3}(2),prz bdy{3}(2)) − ...
Lval(5,5);

119 A(urz bdy{3}(2),pphiy bdy{3}(2)) = A(urz bdy{3}(2),pphiy bdy{3}(2)) − ...
Lval(6,5);

120

121 A(uphiy bdy{3}(2),prz bdy{1}(2)) = A(uphiy bdy{3}(2),prz bdy{1}(2)) − ...
Lval(1,6);

122 A(uphiy bdy{3}(2),pphiy bdy{1}(2)) = A(uphiy bdy{3}(2),pphiy bdy{1}(2)) ...
− Lval(2,6);

123 A(uphiy bdy{3}(2),prz bdy{2}(2)) = A(uphiy bdy{3}(2),prz bdy{2}(2)) − ...
Lval(3,6);

124 A(uphiy bdy{3}(2),pphiy bdy{2}(2)) = A(uphiy bdy{3}(2),pphiy bdy{2}(2)) ...
− Lval(4,6);

125 A(uphiy bdy{3}(2),prz bdy{3}(2)) = A(uphiy bdy{3}(2),prz bdy{3}(2)) − ...
Lval(5,6);

126 A(uphiy bdy{3}(2),pphiy bdy{3}(2)) = A(uphiy bdy{3}(2),pphiy bdy{3}(2)) ...
− Lval(6,6);

127

128

129 A(prz bdy{1}(2),urz bdy{1}(2)) = A(prz bdy{1}(2),urz bdy{1}(2)) − ...
Lval(1,1);

130 A(prz bdy{1}(2),uphiy bdy{1}(2)) = A(prz bdy{1}(2),uphiy bdy{1}(2)) − ...
Lval(2,1);

131 A(prz bdy{1}(2),urz bdy{2}(2)) = A(prz bdy{1}(2),urz bdy{2}(2)) − ...
Lval(3,1);

132 A(prz bdy{1}(2),uphiy bdy{2}(2)) = A(prz bdy{1}(2),uphiy bdy{2}(2)) − ...
Lval(4,1);

133 A(prz bdy{1}(2),urz bdy{3}(2)) = A(prz bdy{1}(2),urz bdy{3}(2)) − ...
Lval(5,1);

134 A(prz bdy{1}(2),uphiy bdy{3}(2)) = A(prz bdy{1}(2),uphiy bdy{3}(2)) − ...
Lval(6,1);

135

136 A(pphiy bdy{1}(2),urz bdy{1}(2)) = A(pphiy bdy{1}(2),urz bdy{1}(2)) − ...
Lval(1,2);

137 A(pphiy bdy{1}(2),uphiy bdy{1}(2)) = A(pphiy bdy{1}(2),uphiy bdy{1}(2)) ...
− Lval(2,2);

138 A(pphiy bdy{1}(2),urz bdy{2}(2)) = A(pphiy bdy{1}(2),urz bdy{2}(2)) − ...
Lval(3,2);

139 A(pphiy bdy{1}(2),uphiy bdy{2}(2)) = A(pphiy bdy{1}(2),uphiy bdy{2}(2)) ...
− Lval(4,2);
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140 A(pphiy bdy{1}(2),urz bdy{3}(2)) = A(pphiy bdy{1}(2),urz bdy{3}(2)) − ...
Lval(5,2);

141 A(pphiy bdy{1}(2),uphiy bdy{3}(2)) = A(pphiy bdy{1}(2),uphiy bdy{3}(2)) ...
− Lval(6,2);

142

143 A(prz bdy{2}(2),urz bdy{1}(2)) = A(prz bdy{2}(2),urz bdy{1}(2)) − ...
Lval(1,3);

144 A(prz bdy{2}(2),uphiy bdy{1}(2)) = A(prz bdy{2}(2),uphiy bdy{1}(2)) − ...
Lval(2,3);

145 A(prz bdy{2}(2),urz bdy{2}(2)) = A(prz bdy{2}(2),urz bdy{2}(2)) − ...
Lval(3,3);

146 A(prz bdy{2}(2),uphiy bdy{2}(2)) = A(prz bdy{2}(2),uphiy bdy{2}(2)) − ...
Lval(4,3);

147 A(prz bdy{2}(2),urz bdy{3}(2)) = A(prz bdy{2}(2),urz bdy{3}(2)) − ...
Lval(5,3);

148 A(prz bdy{2}(2),uphiy bdy{3}(2)) = A(prz bdy{2}(2),uphiy bdy{3}(2)) − ...
Lval(6,3);

149

150 A(pphiy bdy{2}(2),urz bdy{1}(2)) = A(pphiy bdy{2}(2),urz bdy{1}(2)) − ...
Lval(1,4);

151 A(pphiy bdy{2}(2),uphiy bdy{1}(2)) = A(pphiy bdy{2}(2),uphiy bdy{1}(2)) ...
− Lval(2,4);

152 A(pphiy bdy{2}(2),urz bdy{2}(2)) = A(pphiy bdy{2}(2),urz bdy{2}(2)) − ...
Lval(3,4);

153 A(pphiy bdy{2}(2),uphiy bdy{2}(2)) = A(pphiy bdy{2}(2),uphiy bdy{2}(2)) ...
− Lval(4,4);

154 A(pphiy bdy{2}(2),urz bdy{3}(2)) = A(pphiy bdy{2}(2),urz bdy{3}(2)) − ...
Lval(5,4);

155 A(pphiy bdy{2}(2),uphiy bdy{3}(2)) = A(pphiy bdy{2}(2),uphiy bdy{3}(2)) ...
− Lval(6,4);

156

157 A(prz bdy{3}(2),urz bdy{1}(2)) = A(prz bdy{3}(2),urz bdy{1}(2)) − ...
Lval(1,5);

158 A(prz bdy{3}(2),uphiy bdy{1}(2)) = A(prz bdy{3}(2),uphiy bdy{1}(2)) − ...
Lval(2,5);

159 A(prz bdy{3}(2),urz bdy{2}(2)) = A(prz bdy{3}(2),urz bdy{2}(2)) − ...
Lval(3,5);

160 A(prz bdy{3}(2),uphiy bdy{2}(2)) = A(prz bdy{3}(2),uphiy bdy{2}(2)) − ...
Lval(4,5);

161 A(prz bdy{3}(2),urz bdy{3}(2)) = A(prz bdy{3}(2),urz bdy{3}(2)) − ...
Lval(5,5);

162 A(prz bdy{3}(2),uphiy bdy{3}(2)) = A(prz bdy{3}(2),uphiy bdy{3}(2)) − ...
Lval(6,5);

163

164 A(pphiy bdy{3}(2),urz bdy{1}(2)) = A(pphiy bdy{3}(2),urz bdy{1}(2)) − ...
Lval(1,6);

165 A(pphiy bdy{3}(2),uphiy bdy{1}(2)) = A(pphiy bdy{3}(2),uphiy bdy{1}(2)) ...
− Lval(2,6);

166 A(pphiy bdy{3}(2),urz bdy{2}(2)) = A(pphiy bdy{3}(2),urz bdy{2}(2)) − ...
Lval(3,6);

167 A(pphiy bdy{3}(2),uphiy bdy{2}(2)) = A(pphiy bdy{3}(2),uphiy bdy{2}(2)) ...
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− Lval(4,6);
168 A(pphiy bdy{3}(2),urz bdy{3}(2)) = A(pphiy bdy{3}(2),urz bdy{3}(2)) − ...

Lval(5,6);
169 A(pphiy bdy{3}(2),uphiy bdy{3}(2)) = A(pphiy bdy{3}(2),uphiy bdy{3}(2)) ...

− Lval(6,6);
170

171 syms x
172 for i = 1 : 3
173 z{i} = u{i};
174 zNum{i} = double(subs(z{i},x0l));
175 dz{i} = diff(z{i},x);
176 dzNum{i} = double(subs(dz{i},x0l));
177 dzNum{i}(:,end) = double(subs(dz{i}, x, 0.999999));
178 dzNum{i}(:,1) = double(subs(dz{i}, x, 0.000001));
179

180 dfz{i} = diff(fz(i),x);
181 dfzNum{i} = double(subs(dfz{i},x0l));
182 dfzNum{i}(:,end) = double(subs(dfz{i}, x, 0.999999));
183 dfzNum{i}(:,1) = double(subs(dfz{i}, x, 0.000001));
184

185 dmy{i} = diff(my(i),x);
186 dmyNum{i} = double(subs(dmy{i},x0l));
187 dmyNum{i}(:,end) = double(subs(dmy{i}, x, 0.999999));
188 dmyNum{i}(:,1) = double(subs(dmy{i}, x, 0.000001));
189 end
190

191 b = zeros(size(A,1),1);
192

193 b(1:Nfy) = A4*[zNum{1}(1,:) dzNum{1}(1,:)*hmax]';
194 b(Nfy+1:2*Nfy) = A4*[zNum{1}(2,:) dzNum{1}(2,:)*hmax]';
195 b(2*Nfy+1:3*Nfy) = A4*[double(subs(fz(1),x0l)) dfzNum{1}*hmax]';
196 b(3*Nfy+1:4*Nfy) = A4*[double(subs(my(2),x0l)) dmyNum{2}*hmax]';
197

198 b(4*Nfy+1:5*Nfy) = A4*[zNum{2}(1,:) dzNum{2}(1,:)*hmax]';
199 b(5*Nfy+1:6*Nfy) = A4*[zNum{2}(2,:) dzNum{2}(2,:)*hmax]';
200 b(6*Nfy+1:7*Nfy) = A4*[double(subs(fz(2),x0l)) dfzNum{2}*hmax]';
201 b(7*Nfy+1:8*Nfy) = A4*[double(subs(my(2),x0l)) dmyNum{2}*hmax]';
202

203 b(8*Nfy+1:9*Nfy) = A4*[zNum{3}(1,:) dzNum{3}(1,:)*hmax]';
204 b(9*Nfy+1:10*Nfy) = A4*[zNum{3}(2,:) dzNum{3}(2,:)*hmax]';
205 b(10*Nfy+1:11*Nfy) = A4*[double(subs(fz(3),x0l)) dfzNum{3}*hmax]';
206 b(11*Nfy+1:12*Nfy) = A4*[double(subs(my(3),x0l)) dmyNum{3}*hmax]';
207

208 % bounday condition
209 for i = 1 : 3
210 A(urz bdy{i}(1),:) = 0;
211 A(urz bdy{i}(1),urz bdy{i}(1)) = 1;
212 b(urz bdy{i}(1)) = u0(i);
213

214 A(uphiy bdy{i}(1),:) = 0;
215 A(uphiy bdy{i}(1),uphiy bdy{i}(1)) = 1;
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216 b(uphiy bdy{i}(1)) = u0(i);
217

218 A(prz bdy{i}(1),:) = 0;
219 A(prz bdy{i}(1),prz bdy{i}(1)) = 1;
220 b(prz bdy{i}(1)) = u0(i);
221

222 A(pphiy bdy{i}(1),:) = 0;
223 A(pphiy bdy{i}(1),pphiy bdy{i}(1)) = 1;
224 b(pphiy bdy{i}(1)) = u0(i);
225 end
226

227 solu = A\b;
228

229 for i = 1 : 3
230 urz{i} = solu(urz bdy{i}(1):urz bdy{i}(2));
231 uphiy{i} = solu(uphiy bdy{i}(1):uphiy bdy{i}(2));
232 prz{i} = solu(prz bdy{i}(1):prz bdy{i}(2));
233 pphiy{i} = solu(pphiy bdy{i}(1):pphiy bdy{i}(2));
234 vz{i} = prz{i} + subs(fz(i),x0l)';
235 vy{i} = pphiy{i} + subs(my(i),x0l)';
236 end
237

238 J = 0;
239 for i = 1 : 3
240 tmp = norm(urz{i}−double(subs(z{i}(1),x0l))')ˆ2*hmax;
241 J = J + tmp;
242 tmp = norm(uphiy{i}−double(subs(z{i}(2),x0l))')ˆ2*hmax;
243 J = J + tmp;
244 tmp = norm(prz{i})ˆ2*hmax;
245 J = J + tmp;
246 tmp = norm(pphiy{i})ˆ2*hmax;
247 J = J + tmp;
248 end
249 J = J/2;
250

251 end

1 % This is to get the exact solution of the 3D model
2

3 load("ks.mat")
4 load("kx.mat")
5 load("cx.mat")
6 load("cy.mat")
7 load("cz.mat")
8

9 % Define lengths
10 L = [2−epsVal,2−epsVal,2−epsVal,epsVal,epsVal,epsVal];
11

12 % Define piecewise distributed force
13 syms x;
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14 f = piecewise(x <= 1.00000, 2e10, x > 1.00000 & x <= L(2), 0);
15

16 % Define local forces and moments
17 fx = [0,−f,0,0,0,0];
18 fy = [0,0,0,0,0,0];
19 fz = [0,0,0,0,0,0];
20 mx = [0,0,0,0,0,0];
21 my = [0,0,0,0,0,0];
22 mz = [0,0,0,0,0,0];
23

24 % Define local displacement and rotation
25 rx = [0,0,0,0,0,0];
26 ry = [0,0,0,0,0,0];
27 rz = [0,0,0,0,0,0];
28 phix = [0,0,0,0,0,0];
29 phiy = [0,0,0,0,0,0];
30 phiz = [0,0,0,0,0,0];
31

32 for i = 1 : 6
33 q{i} = [fx(i);fy(i);fz(i);mx(i);my(i);mz(i)];
34 u0{i} = [rx(i);ry(i);rz(i);phix(i);phiy(i);phiz(i)];
35 end
36

37 % Define rotation angles
38 theta = [−1/6*pi,pi/2,−5/6*pi,−pi,−pi/3,pi/3];
39

40 % Compute matrices based on rotation angles
41 [DFe,DPe,DMe,Se ] = deal(cell(6,1));
42 for i = 1 : 6
43 DFe{i} = simplify(E(theta(i))*DF(kx,ks,L(i),cy,cz)*E(theta(i)).');
44 DPe{i} = simplify(E(theta(i))*DP(ks,L(i),cx,cy,cz)*E(theta(i)).');
45 DMe{i} = simplify(E(theta(i))*DM(ks,L(i),cx,cy,cz)*E(theta(i)).');
46 Se{i} = simplify(E(theta(i))*S(ks,L(i),cy,cz)*E(theta(i)).');
47 end
48

49 for i = 1 : 6
50 D1E{i} = −[DFe{i} −Se{i}.';−Se{i} DPe{i}];
51 D2E{i} = [DFe{i} Se{i}.';−Se{i} DMe{i}];
52 D3E{i} = −[DFe{i} −Se{i}.'; Se{i} DMe{i}];
53 D4E{i} = [DFe{i} Se{i}.'; Se{i} DPe{i}];
54 end
55

56 % Compute forces, moments, and displacements based on rotation angles
57 for i = 1 : 6
58 dE{i} = blkdiag(E(theta(i)),E(theta(i)))
59 *d(fx(i),fy(i),fz(i),mx(i),my(i),mz(i),cy,cz,L(i));
60 wE{i} = blkdiag(E(theta(i)),E(theta(i)))
61 *w(fx(i),fy(i),fz(i),mx(i),my(i),mz(i),kx,ks,cx,cy,cz,L(i));
62 RE{i} = blkdiag(E(theta(i)),E(theta(i)))
63 *R(cy,cz,ks,L(i))*blkdiag(E(theta(i))',E(theta(i))');
64 QE{i} = blkdiag(E(theta(i)),E(theta(i)))
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65 *Q(cy,cz,ks,L(i))*blkdiag(E(theta(i))',E(theta(i))');
66 end
67

68 % Compute the global A
69 A = [D4E{1}+D4E{4}−D1E{5}, −D2E{5}, D3E{4};
70 D3E{5}, D4E{2}+D4E{5}−D1E{6}, −D2E{6};
71 −D2E{4}, D3E{6}, D4E{3}+D4E{6}−D1E{4}]; %symmertic
72

73 b = sym(zeros(18,1));
74 b(1:6,1) = − q{1} − D3E{1}*u0{1} ...
75 − D4E{1}*subs(wE{1},L(1)) − D4E{4}*subs(wE{4},L(4)) + ...

D2E{5}*subs(wE{5},L(5)) ...
76 + subs(dE{1},L(1)) + subs(dE{4},L(4));
77 b(7:12,1) = − q{2} − D3E{2}*u0{2} ...
78 − D4E{2}*subs(wE{2},L(2)) − D4E{5}*subs(wE{5},L(5)) + ...

D2E{6}*subs(wE{6},L(6)) ...
79 + subs(dE{2},L(2)) + subs(dE{5},L(5));
80 b(13:18,1) = − q{3} − D3E{3}*u0{3} ...
81 − D4E{3}*subs(wE{3},L(3)) − D4E{6}*subs(wE{6},L(6)) + ...

D2E{4}*subs(wE{4},L(4)) ...
82 + subs(dE{3},L(3)) + subs(dE{6},L(6));
83

84 solu = A\b;
85

86 % Extract local displacements
87 uL{1} = subs(solu(1:6),L(1));
88 uL{2} = subs(solu(7:12),L(2));
89 uL{3} = subs(solu(13:18),L(3));
90

91 u0{4} = uL{3};
92 u0{5} = uL{1};
93 u0{6} = uL{2};
94

95 uL{4} = uL{1};
96 uL{5} = uL{2};
97 uL{6} = uL{3};
98

99 % Here u is Global
100 for i = 1 : 6
101 u{i} = QE{i}*u0{i} + RE{i}*(subs(uL{i},L(i))+subs(wE{i},L(i)))−wE{i};
102 end
103

104 for i = 1 : 6
105 ulocal{i} = blkdiag(E(theta(i)),E(theta(i)))'*u{i};
106 end
107

108 % save('uglo.mat', 'u');
109 % save('uloc.mat', 'ulocal');
110 % save('q.mat', 'q');
111 % close all
112
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113 function DFi = DF(kx,ks,L,cy,cz)
114 [muy,muz] = mu(ks,L,cy,cz);
115 DFi = sym(zeros(3,3));
116 DFi(1,1) = 1/L*kx;
117 DFi(2,2) = 12*cz*muz;
118 DFi(3,3) = 12*cy*muy;
119 end
120

121 function DPi = DP(ks,L,cx,cy,cz)
122 [muy,muz] = mu(ks,L,cy,cz);
123 DPi = sym(zeros(3,3));
124 DPi(1,1) = 1/L*cx;
125 DPi(2,2) = cy*(1/L+3*muy*Lˆ2);
126 DPi(3,3) = cz*(1/L+3*muz*Lˆ2);
127 end
128

129 function DMi = DM(ks,L,cx,cy,cz)
130 [muy,muz] = mu(ks,L,cy,cz);
131 DMi = sym(zeros(3,3));
132 DMi(1,1) = 1/L*cx;
133 DMi(2,2) = cy*(1/L−3*muy*Lˆ2);
134 DMi(3,3) = cz*(1/L−3*muz*Lˆ2);
135 end
136

137 function Si = S(ks,L,cy,cz)
138 [muy,muz] = mu(ks,L,cy,cz);
139 Si = sym(zeros(3,3));
140 Si(2,3) = 6*cy*muy*L;
141 Si(3,2) = −6*cz*muz*L;
142 end
143

144 function [muy,muz] = mu(ks,L,cy,cz)
145 muy = ks/(ks*Lˆ3+12*cy*L);
146 muz = ks/(ks*Lˆ3+12*cz*L);
147 end
148

149 function Ei1 = E(t)
150 Ei1 = [cos(t) sin(t) 0;
151 −sin(t) cos(t) 0;
152 0 0 1];
153 end
154

155 function [fInt,fInt2,fInt3] = Int(f,L)
156 syms x;
157 fInt = int(f,x,0,x);
158 fInt2 = int(fInt,x,0,x);
159 fInt3 = int(fInt2,x,0,x);
160 end
161

162 function [gyi,gzi] = gy(fy,fz,my,mz,cy,cz,L)
163 [fzInt1,˜,˜] = Int(fz,L);
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164 [fyInt1,˜,˜] = Int(fy,L);
165 gyi = 1/cy*(my+fzInt1);
166 gzi = 1/cz*(mz−fyInt1);
167 end
168

169 function wi = w(fx,fy,fz,mx,my,mz,kx,ks,cx,cy,cz,L)
170 wi = sym(zeros(6,1));
171 [gyi,gzi] = gy(fy,fz,my,mz,cy,cz,L);
172

173 [˜,fzInt2,˜] = Int(fz,L);
174 [˜,fxInt2,˜] = Int(fx,L);
175 [˜,fyInt2,˜] = Int(fy,L);
176

177 [˜,gyInt2,gyInt3] = Int(gyi,L);
178 [˜,gzInt2,gzInt3] = Int(gzi,L);
179

180 [˜,mxInt2,˜] = Int(mx,L);
181

182 wi(3) = 1/ks*fzInt2 − gyInt3;
183 wi(5) = gyInt2;
184

185 wi(1) = 1/kx*fxInt2;
186 wi(2) = 1/ks*fyInt2 + gzInt3;
187 wi(4) = 1/cx*(mxInt2);
188 wi(6) = gzInt2;
189 end
190

191 function di = d(fx,fy,fz,mx,my,mz,cy,cz,L)
192 di = sym(zeros(2,1));
193 [gyi,gzi] = gy(fy,fz,my,mz,cy,cz,L);
194 [fxInt1,˜,˜] = Int(fx,L);
195 [fzInt1,˜,˜] = Int(fz,L);
196 [fyInt1,˜,˜] = Int(fy,L);
197 [mxInt1,˜,˜] = Int(mx,L);
198

199 [gyInt1,˜,˜] = Int(gyi,L);
200 [gzInt1,˜,˜] = Int(gzi,L);
201 di(3) = fzInt1;
202 di(5) = cy*gyInt1;
203

204 di(1) = fxInt1;
205 di(2) = fyInt1;
206 di(4) = mxInt1;
207 di(6) = cz*gzInt1;
208

209 end
210

211 function Qi = Q(cy,cz,ks,L)
212 [muy,muz] = mu(ks,L,cy,cz);
213 Qi = sym(zeros(6,6));
214 syms x
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215 Qi(3,3) = muy*(L−x)*(Lˆ2+L*x−2*xˆ2+12/ks*cy);
216 Qi(5,5) = muy*(L−x)*(Lˆ2−3*L*x+12/ks*cy);
217 Qi(3,5) = −muy*x*(L−x)*(Lˆ2−L*x+6/ks*cy);
218 Qi(5,3) = 6*muy*x*(L−x);
219

220 Qi(1,1) = 1 − Lˆ−1*x;
221 Qi(2,2) = muz*(L−x)*(Lˆ2+L*x−2*xˆ2+12*ksˆ−1*cz);
222 Qi(4,4) = 1 − Lˆ−1*x;
223 Qi(6,6) = muz*(L−x)*(Lˆ2−3*L*x+12/ks*cz);
224 Qi(2,6) = muz*x*(L−x)*(Lˆ2−L*x+6*ksˆ−1*cz);
225 Qi(6,2) = −6*muz*x*(L−x);
226

227 end
228

229 function Ri = R(cy,cz,ks,L)
230 [muy,muz] = mu(ks,L,cy,cz);
231 Ri = sym(zeros(6,6));
232 syms x
233 Ri(3,3) = muy*x*(3*L*x−2*xˆ2+12/ks*cy);
234 Ri(5,5) = muy*x*(−2*Lˆ2+3*L*x+12/ks*cy);
235 Ri(3,5) = muy*x*(L−x)*(L*x+6/ks*cy);
236 Ri(5,3) = −6*muy*x*(L−x);
237

238 Ri(1,1) = 1/L*x;
239 Ri(2,2) = muz*x*(3*L*x−2*xˆ2+12/ks*cz);
240 Ri(4,4) = 1/L*x;
241 Ri(6,6) = muz*x*(−2*Lˆ2+3*L*x+12/ks*cz);
242 Ri(2,6) = −muz*x*(L−x)*(L*x+6/ks*cz);
243 Ri(6,2) = 6*muz*x*(L−x);
244 end

1 function J = OptControlFull(epsVal)
2 % Function to calculate the optimal control based on certain epsilon ...

value
3

4 % If epsilon value is not provided, set it to 0.5
5 if nargin == 0
6 epsVal = 0.5;
7 end
8

9 % Load necessary data
10 load("ks.mat")
11 load("kx.mat")
12 load("cx.mat")
13 load("cy.mat")
14 load("cz.mat")
15

16 load("uloc.mat");
17 load("q.mat");
18
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19 % Calculate operator lambda value
20 Lval = Val lambdaFullModel(epsVal);
21

22 u0 = zeros(6,1);
23

24 %% ======== Setting up parameters ==========
25 epsmax = 1;
26

27 theta = [−1/6*pi,pi/2,−5/6*pi,−pi,−pi/3,pi/3];
28

29 % Define length and discretization
30 L = 2;
31 hmax = 0.02;
32

33 l = L−epsmax;
34 N0l = ceil(l/hmax);
35 x0l = linspace(0,L−epsmax,N0l+1);
36

37 % number of basis functions
38 Nfy = 2*(N0l+1);
39

40 %% FEM matrices
41 [A1,A2,A3,A4] = graph1D matirx Hermite(N0l,x0l);
42

43 AA = cell(12,12);
44 for i = 1 : 12
45 for j = 1 : 12
46 AA{i,j} = deal(zeros(Nfy,Nfy));
47 end
48 end
49

50 for i = 1 : 6
51 AA{i,i} = A4;
52 end
53

54 for i = 7 : 12
55 AA{i,i} = −A4;
56 end
57

58 AA{3,3+6} = ks*A1;
59 AA{3,5+6} = ks*A2;
60 AA{5,3+6} = ks*A3;
61 AA{5,5+6} = ks*A4+cy*A1;
62

63 AA{1,1+6} = kx*A1;
64 AA{2,2+6} = ks*A1;
65 AA{4,4+6} = cx*A1;
66 AA{6,6+6} = ks*A4+cz*A1;
67 AA{2,6+6} = −ks*A2;
68 AA{6,2+6} = −ks*A3;
69
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70 AA{3+6,3} = ks*A1;
71 AA{3+6,5} = ks*A2;
72 AA{5+6,3} = ks*A3;
73 AA{5+6,5} = ks*A4+cy*A1;
74

75 AA{1+6,1} = kx*A1;
76 AA{2+6,2} = ks*A1;
77 AA{4+6,4} = cx*A1;
78 AA{6+6,6} = ks*A4+cz*A1;
79 AA{2+6,6} = −ks*A2;
80 AA{6+6,2} = −ks*A3;
81

82 AA = cell2mat(AA);
83

84 Aold = blkdiag(AA,AA,AA);
85 A = Aold;
86

87 % Set up boundary indices
88 Nf = [repmat(Nfy,1,36)];
89 index = cumsum(Nf);
90 index = [0 index];
91 for i = 1 : 3
92 % index of [y(0),y(L),y'(0),y'(L)];
93 urx bdy{i} = index(12*i−11)+[1,Nf(2*i−1)/2,Nf(2*i−1)/2+1,Nf(2*i−1)];
94 ury bdy{i} = index(12*i−10)+[1,Nf(2*i−1)/2,Nf(2*i−1)/2+1,Nf(2*i−1)];
95 urz bdy{i} = index(12*i−9)+[1,Nf(2*i−1)/2,Nf(2*i−1)/2+1,Nf(2*i−1)];
96 uphix bdy{i} = index(12*i−8)+[1,Nf(2*i)/2,Nf(2*i)/2+1,Nf(2*i)];
97 uphiy bdy{i} = index(12*i−7)+[1,Nf(2*i)/2,Nf(2*i)/2+1,Nf(2*i)];
98 uphiz bdy{i} = index(12*i−6)+[1,Nf(2*i)/2,Nf(2*i)/2+1,Nf(2*i)];
99 % index of [p(0),p(L),p'(0),p'(L)];

100 prx bdy{i} = index(12*i−5)+[1,Nf(2*i−1)/2,Nf(2*i−1)/2+1,Nf(2*i−1)];
101 pry bdy{i} = index(12*i−4)+[1,Nf(2*i−1)/2,Nf(2*i−1)/2+1,Nf(2*i−1)];
102 prz bdy{i} = index(12*i−3)+[1,Nf(2*i−1)/2,Nf(2*i−1)/2+1,Nf(2*i−1)];
103 pphix bdy{i} = index(12*i−2)+[1,Nf(2*i)/2,Nf(2*i)/2+1,Nf(2*i)];
104 pphiy bdy{i} = index(12*i−1)+[1,Nf(2*i)/2,Nf(2*i)/2+1,Nf(2*i)];
105 pphiz bdy{i} = index(12*i)+[1,Nf(2*i)/2,Nf(2*i)/2+1,Nf(2*i)];
106 end
107

108 % Rotate lambda
109 E3 = blkdiag(E(theta(1)),E(theta(1)), ...
110 E(theta(2)),E(theta(2)), ...
111 E(theta(3)),E(theta(3)));
112

113 Lval = E3'*Lval*E3;
114

115 % Update A matrix with lambda values at boundaries
116 for i = 1 : 3
117 A(urx bdy{i}(2),prx bdy{1}(2)) = A(urx bdy{i}(2),prx bdy{1}(2)) − ...

Lval(1,1+(i−1)*6);
118 A(urx bdy{i}(2),pry bdy{1}(2)) = A(urx bdy{i}(2),pry bdy{1}(2)) − ...

Lval(2,1+(i−1)*6);
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119 A(urx bdy{i}(2),prz bdy{1}(2)) = A(urx bdy{i}(2),prz bdy{1}(2)) − ...
Lval(3,1+(i−1)*6);

120 A(urx bdy{i}(2),pphix bdy{1}(2)) = A(urx bdy{i}(2),pphix bdy{1}(2)) ...
− Lval(4,1+(i−1)*6);

121 A(urx bdy{i}(2),pphiy bdy{1}(2)) = A(urx bdy{i}(2),pphiy bdy{1}(2)) ...
− Lval(5,1+(i−1)*6);

122 A(urx bdy{i}(2),pphiz bdy{1}(2)) = A(urx bdy{i}(2),pphiz bdy{1}(2)) ...
− Lval(6,1+(i−1)*6);

123 A(urx bdy{i}(2),prx bdy{2}(2)) = A(urx bdy{i}(2),prx bdy{2}(2)) − ...
Lval(7,1+(i−1)*6);

124 A(urx bdy{i}(2),pry bdy{2}(2)) = A(urx bdy{i}(2),pry bdy{2}(2)) − ...
Lval(8,1+(i−1)*6);

125 A(urx bdy{i}(2),prz bdy{2}(2)) = A(urx bdy{i}(2),prz bdy{2}(2)) − ...
Lval(9,1+(i−1)*6);

126 A(urx bdy{i}(2),pphix bdy{2}(2)) = A(urx bdy{i}(2),pphix bdy{2}(2)) ...
− Lval(10,1+(i−1)*6);

127 A(urx bdy{i}(2),pphiy bdy{2}(2)) = A(urx bdy{i}(2),pphiy bdy{2}(2)) ...
− Lval(11,1+(i−1)*6);

128 A(urx bdy{i}(2),pphiz bdy{2}(2)) = A(urx bdy{i}(2),pphiz bdy{2}(2)) ...
− Lval(12,1+(i−1)*6);

129 A(urx bdy{i}(2),prx bdy{3}(2)) = A(urx bdy{i}(2),prx bdy{3}(2)) − ...
Lval(13,1+(i−1)*6);

130 A(urx bdy{i}(2),pry bdy{3}(2)) = A(urx bdy{i}(2),pry bdy{3}(2)) − ...
Lval(14,1+(i−1)*6);

131 A(urx bdy{i}(2),prz bdy{3}(2)) = A(urx bdy{i}(2),prz bdy{3}(2)) − ...
Lval(15,1+(i−1)*6);

132 A(urx bdy{i}(2),pphix bdy{3}(2)) = A(urx bdy{i}(2),pphix bdy{3}(2)) ...
− Lval(16,1+(i−1)*6);

133 A(urx bdy{i}(2),pphiy bdy{3}(2)) = A(urx bdy{i}(2),pphiy bdy{3}(2)) ...
− Lval(17,1+(i−1)*6);

134 A(urx bdy{i}(2),pphiz bdy{3}(2)) = A(urx bdy{i}(2),pphiz bdy{3}(2)) ...
− Lval(18,1+(i−1)*6);

135

136 A(ury bdy{i}(2),prx bdy{1}(2)) = A(ury bdy{i}(2),prx bdy{1}(2)) − ...
Lval(1,2+(i−1)*6);

137 A(ury bdy{i}(2),pry bdy{1}(2)) = A(ury bdy{i}(2),pry bdy{1}(2)) − ...
Lval(2,2+(i−1)*6);

138 A(ury bdy{i}(2),prz bdy{1}(2)) = A(ury bdy{i}(2),prz bdy{1}(2)) − ...
Lval(3,2+(i−1)*6);

139 A(ury bdy{i}(2),pphix bdy{1}(2)) = A(ury bdy{i}(2),pphix bdy{1}(2)) ...
− Lval(4,2+(i−1)*6);

140 A(ury bdy{i}(2),pphiy bdy{1}(2)) = A(ury bdy{i}(2),pphiy bdy{1}(2)) ...
− Lval(5,2+(i−1)*6);

141 A(ury bdy{i}(2),pphiz bdy{1}(2)) = A(ury bdy{i}(2),pphiz bdy{1}(2)) ...
− Lval(6,2+(i−1)*6);

142 A(ury bdy{i}(2),prx bdy{2}(2)) = A(ury bdy{i}(2),prx bdy{2}(2)) − ...
Lval(7,2+(i−1)*6);

143 A(ury bdy{i}(2),pry bdy{2}(2)) = A(ury bdy{i}(2),pry bdy{2}(2)) − ...
Lval(8,2+(i−1)*6);

144 A(ury bdy{i}(2),prz bdy{2}(2)) = A(ury bdy{i}(2),prz bdy{2}(2)) − ...
Lval(9,2+(i−1)*6);



A.2. TIMOSHENKO BEAM 173

145 A(ury bdy{i}(2),pphix bdy{2}(2)) = A(ury bdy{i}(2),pphix bdy{2}(2)) ...
− Lval(10,2+(i−1)*6);

146 A(ury bdy{i}(2),pphiy bdy{2}(2)) = A(ury bdy{i}(2),pphiy bdy{2}(2)) ...
− Lval(11,2+(i−1)*6);

147 A(ury bdy{i}(2),pphiz bdy{2}(2)) = A(ury bdy{i}(2),pphiz bdy{2}(2)) ...
− Lval(12,2+(i−1)*6);

148 A(ury bdy{i}(2),prx bdy{3}(2)) = A(ury bdy{i}(2),prx bdy{3}(2)) − ...
Lval(13,2+(i−1)*6);

149 A(ury bdy{i}(2),pry bdy{3}(2)) = A(ury bdy{i}(2),pry bdy{3}(2)) − ...
Lval(14,2+(i−1)*6);

150 A(ury bdy{i}(2),prz bdy{3}(2)) = A(ury bdy{i}(2),prz bdy{3}(2)) − ...
Lval(15,2+(i−1)*6);

151 A(ury bdy{i}(2),pphix bdy{3}(2)) = A(ury bdy{i}(2),pphix bdy{3}(2)) ...
− Lval(16,2+(i−1)*6);

152 A(ury bdy{i}(2),pphiy bdy{3}(2)) = A(ury bdy{i}(2),pphiy bdy{3}(2)) ...
− Lval(17,2+(i−1)*6);

153 A(ury bdy{i}(2),pphiz bdy{3}(2)) = A(ury bdy{i}(2),pphiz bdy{3}(2)) ...
− Lval(18,2+(i−1)*6);

154

155 A(urz bdy{i}(2),prx bdy{1}(2)) = A(urz bdy{i}(2),prx bdy{1}(2)) − ...
Lval(1,3+(i−1)*6);

156 A(urz bdy{i}(2),pry bdy{1}(2)) = A(urz bdy{i}(2),pry bdy{1}(2)) − ...
Lval(2,3+(i−1)*6);

157 A(urz bdy{i}(2),prz bdy{1}(2)) = A(urz bdy{i}(2),prz bdy{1}(2)) − ...
Lval(3,3+(i−1)*6);

158 A(urz bdy{i}(2),pphix bdy{1}(2)) = A(urz bdy{i}(2),pphix bdy{1}(2)) ...
− Lval(4,3+(i−1)*6);

159 A(urz bdy{i}(2),pphiy bdy{1}(2)) = A(urz bdy{i}(2),pphiy bdy{1}(2)) ...
− Lval(5,3+(i−1)*6);

160 A(urz bdy{i}(2),pphiz bdy{1}(2)) = A(urz bdy{i}(2),pphiz bdy{1}(2)) ...
− Lval(6,3+(i−1)*6);

161 A(urz bdy{i}(2),prx bdy{2}(2)) = A(urz bdy{i}(2),prx bdy{2}(2)) − ...
Lval(7,3+(i−1)*6);

162 A(urz bdy{i}(2),pry bdy{2}(2)) = A(urz bdy{i}(2),pry bdy{2}(2)) − ...
Lval(8,3+(i−1)*6);

163 A(urz bdy{i}(2),prz bdy{2}(2)) = A(urz bdy{i}(2),prz bdy{2}(2)) − ...
Lval(9,3+(i−1)*6);

164 A(urz bdy{i}(2),pphix bdy{2}(2)) = A(urz bdy{i}(2),pphix bdy{2}(2)) ...
− Lval(10,3+(i−1)*6);

165 A(urz bdy{i}(2),pphiy bdy{2}(2)) = A(urz bdy{i}(2),pphiy bdy{2}(2)) ...
− Lval(11,3+(i−1)*6);

166 A(urz bdy{i}(2),pphiz bdy{2}(2)) = A(urz bdy{i}(2),pphiz bdy{2}(2)) ...
− Lval(12,3+(i−1)*6);

167 A(urz bdy{i}(2),prx bdy{3}(2)) = A(urz bdy{i}(2),prx bdy{3}(2)) − ...
Lval(13,3+(i−1)*6);

168 A(urz bdy{i}(2),pry bdy{3}(2)) = A(urz bdy{i}(2),pry bdy{3}(2)) − ...
Lval(14,3+(i−1)*6);

169 A(urz bdy{i}(2),prz bdy{3}(2)) = A(urz bdy{i}(2),prz bdy{3}(2)) − ...
Lval(15,3+(i−1)*6);

170 A(urz bdy{i}(2),pphix bdy{3}(2)) = A(urz bdy{i}(2),pphix bdy{3}(2)) ...
− Lval(16,3+(i−1)*6);



174 APPENDIX A. PROGRAM

171 A(urz bdy{i}(2),pphiy bdy{3}(2)) = A(urz bdy{i}(2),pphiy bdy{3}(2)) ...
− Lval(17,3+(i−1)*6);

172 A(urz bdy{i}(2),pphiz bdy{3}(2)) = A(urz bdy{i}(2),pphiz bdy{3}(2)) ...
− Lval(18,3+(i−1)*6);

173

174 A(uphix bdy{i}(2),prx bdy{1}(2)) = A(uphix bdy{i}(2),prx bdy{1}(2)) ...
− Lval(1,4+(i−1)*6);

175 A(uphix bdy{i}(2),pry bdy{1}(2)) = A(uphix bdy{i}(2),pry bdy{1}(2)) ...
− Lval(2,4+(i−1)*6);

176 A(uphix bdy{i}(2),prz bdy{1}(2)) = A(uphix bdy{i}(2),prz bdy{1}(2)) ...
− Lval(3,4+(i−1)*6);

177 A(uphix bdy{i}(2),pphix bdy{1}(2)) = ...
A(uphix bdy{i}(2),pphix bdy{1}(2)) − Lval(4,4+(i−1)*6);

178 A(uphix bdy{i}(2),pphiy bdy{1}(2)) = ...
A(uphix bdy{i}(2),pphiy bdy{1}(2)) − Lval(5,4+(i−1)*6);

179 A(uphix bdy{i}(2),pphiz bdy{1}(2)) = ...
A(uphix bdy{i}(2),pphiz bdy{1}(2)) − Lval(6,4+(i−1)*6);

180 A(uphix bdy{i}(2),prx bdy{2}(2)) = A(uphix bdy{i}(2),prx bdy{2}(2)) ...
− Lval(7,4+(i−1)*6);

181 A(uphix bdy{i}(2),pry bdy{2}(2)) = A(uphix bdy{i}(2),pry bdy{2}(2)) ...
− Lval(8,4+(i−1)*6);

182 A(uphix bdy{i}(2),prz bdy{2}(2)) = A(uphix bdy{i}(2),prz bdy{2}(2)) ...
− Lval(9,4+(i−1)*6);

183 A(uphix bdy{i}(2),pphix bdy{2}(2)) = ...
A(uphix bdy{i}(2),pphix bdy{2}(2)) − Lval(10,4+(i−1)*6);

184 A(uphix bdy{i}(2),pphiy bdy{2}(2)) = ...
A(uphix bdy{i}(2),pphiy bdy{2}(2)) − Lval(11,4+(i−1)*6);

185 A(uphix bdy{i}(2),pphiz bdy{2}(2)) = ...
A(uphix bdy{i}(2),pphiz bdy{2}(2)) − Lval(12,4+(i−1)*6);

186 A(uphix bdy{i}(2),prx bdy{3}(2)) = A(uphix bdy{i}(2),prx bdy{3}(2)) ...
− Lval(13,4+(i−1)*6);

187 A(uphix bdy{i}(2),pry bdy{3}(2)) = A(uphix bdy{i}(2),pry bdy{3}(2)) ...
− Lval(14,4+(i−1)*6);

188 A(uphix bdy{i}(2),prz bdy{3}(2)) = A(uphix bdy{i}(2),prz bdy{3}(2)) ...
− Lval(15,4+(i−1)*6);

189 A(uphix bdy{i}(2),pphix bdy{3}(2)) = ...
A(uphix bdy{i}(2),pphix bdy{3}(2)) − Lval(16,4+(i−1)*6);

190 A(uphix bdy{i}(2),pphiy bdy{3}(2)) = ...
A(uphix bdy{i}(2),pphiy bdy{3}(2)) − Lval(17,4+(i−1)*6);

191 A(uphix bdy{i}(2),pphiz bdy{3}(2)) = ...
A(uphix bdy{i}(2),pphiz bdy{3}(2)) − Lval(18,4+(i−1)*6);

192

193 A(uphiy bdy{i}(2),prx bdy{1}(2)) = A(uphiy bdy{i}(2),prx bdy{1}(2)) ...
− Lval(1,5+(i−1)*6);

194 A(uphiy bdy{i}(2),pry bdy{1}(2)) = A(uphiy bdy{i}(2),pry bdy{1}(2)) ...
− Lval(2,5+(i−1)*6);

195 A(uphiy bdy{i}(2),prz bdy{1}(2)) = A(uphiy bdy{i}(2),prz bdy{1}(2)) ...
− Lval(3,5+(i−1)*6);

196 A(uphiy bdy{i}(2),pphix bdy{1}(2)) = ...
A(uphiy bdy{i}(2),pphix bdy{1}(2)) − Lval(4,5+(i−1)*6);

197 A(uphiy bdy{i}(2),pphiy bdy{1}(2)) = ...
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A(uphiy bdy{i}(2),pphiy bdy{1}(2)) − Lval(5,5+(i−1)*6);
198 A(uphiy bdy{i}(2),pphiz bdy{1}(2)) = ...

A(uphiy bdy{i}(2),pphiz bdy{1}(2)) − Lval(6,5+(i−1)*6);
199 A(uphiy bdy{i}(2),prx bdy{2}(2)) = A(uphiy bdy{i}(2),prx bdy{2}(2)) ...

− Lval(7,5+(i−1)*6);
200 A(uphiy bdy{i}(2),pry bdy{2}(2)) = A(uphiy bdy{i}(2),pry bdy{2}(2)) ...

− Lval(8,5+(i−1)*6);
201 A(uphiy bdy{i}(2),prz bdy{2}(2)) = A(uphiy bdy{i}(2),prz bdy{2}(2)) ...

− Lval(9,5+(i−1)*6);
202 A(uphiy bdy{i}(2),pphix bdy{2}(2)) = ...

A(uphiy bdy{i}(2),pphix bdy{2}(2)) − Lval(10,5+(i−1)*6);
203 A(uphiy bdy{i}(2),pphiy bdy{2}(2)) = ...

A(uphiy bdy{i}(2),pphiy bdy{2}(2)) − Lval(11,5+(i−1)*6);
204 A(uphiy bdy{i}(2),pphiz bdy{2}(2)) = ...

A(uphiy bdy{i}(2),pphiz bdy{2}(2)) − Lval(12,5+(i−1)*6);
205 A(uphiy bdy{i}(2),prx bdy{3}(2)) = A(uphiy bdy{i}(2),prx bdy{3}(2)) ...

− Lval(13,5+(i−1)*6);
206 A(uphiy bdy{i}(2),pry bdy{3}(2)) = A(uphiy bdy{i}(2),pry bdy{3}(2)) ...

− Lval(14,5+(i−1)*6);
207 A(uphiy bdy{i}(2),prz bdy{3}(2)) = A(uphiy bdy{i}(2),prz bdy{3}(2)) ...

− Lval(15,5+(i−1)*6);
208 A(uphiy bdy{i}(2),pphix bdy{3}(2)) = ...

A(uphiy bdy{i}(2),pphix bdy{3}(2)) − Lval(16,5+(i−1)*6);
209 A(uphiy bdy{i}(2),pphiy bdy{3}(2)) = ...

A(uphiy bdy{i}(2),pphiy bdy{3}(2)) − Lval(17,5+(i−1)*6);
210 A(uphiy bdy{i}(2),pphiz bdy{3}(2)) = ...

A(uphiy bdy{i}(2),pphiz bdy{3}(2)) − Lval(18,5+(i−1)*6);
211

212 A(uphiz bdy{i}(2),prx bdy{1}(2)) = A(uphiz bdy{i}(2),prx bdy{1}(2)) ...
− Lval(1,6+(i−1)*6);

213 A(uphiz bdy{i}(2),pry bdy{1}(2)) = A(uphiz bdy{i}(2),pry bdy{1}(2)) ...
− Lval(2,6+(i−1)*6);

214 A(uphiz bdy{i}(2),prz bdy{1}(2)) = A(uphiz bdy{i}(2),prz bdy{1}(2)) ...
− Lval(3,6+(i−1)*6);

215 A(uphiz bdy{i}(2),pphix bdy{1}(2)) = ...
A(uphiz bdy{i}(2),pphix bdy{1}(2)) − Lval(4,6+(i−1)*6);

216 A(uphiz bdy{i}(2),pphiy bdy{1}(2)) = ...
A(uphiz bdy{i}(2),pphiy bdy{1}(2)) − Lval(5,6+(i−1)*6);

217 A(uphiz bdy{i}(2),pphiz bdy{1}(2)) = ...
A(uphiz bdy{i}(2),pphiz bdy{1}(2)) − Lval(6,6+(i−1)*6);

218 A(uphiz bdy{i}(2),prx bdy{2}(2)) = A(uphiz bdy{i}(2),prx bdy{2}(2)) ...
− Lval(7,6+(i−1)*6);

219 A(uphiz bdy{i}(2),pry bdy{2}(2)) = A(uphiz bdy{i}(2),pry bdy{2}(2)) ...
− Lval(8,6+(i−1)*6);

220 A(uphiz bdy{i}(2),prz bdy{2}(2)) = A(uphiz bdy{i}(2),prz bdy{2}(2)) ...
− Lval(9,6+(i−1)*6);

221 A(uphiz bdy{i}(2),pphix bdy{2}(2)) = ...
A(uphiz bdy{i}(2),pphix bdy{2}(2)) − Lval(10,6+(i−1)*6);

222 A(uphiz bdy{i}(2),pphiy bdy{2}(2)) = ...
A(uphiz bdy{i}(2),pphiy bdy{2}(2)) − Lval(11,6+(i−1)*6);

223 A(uphiz bdy{i}(2),pphiz bdy{2}(2)) = ...
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A(uphiz bdy{i}(2),pphiz bdy{2}(2)) − Lval(12,6+(i−1)*6);
224 A(uphiz bdy{i}(2),prx bdy{3}(2)) = A(uphiz bdy{i}(2),prx bdy{3}(2)) ...

− Lval(13,6+(i−1)*6);
225 A(uphiz bdy{i}(2),pry bdy{3}(2)) = A(uphiz bdy{i}(2),pry bdy{3}(2)) ...

− Lval(14,6+(i−1)*6);
226 A(uphiz bdy{i}(2),prz bdy{3}(2)) = A(uphiz bdy{i}(2),prz bdy{3}(2)) ...

− Lval(15,6+(i−1)*6);
227 A(uphiz bdy{i}(2),pphix bdy{3}(2)) = ...

A(uphiz bdy{i}(2),pphix bdy{3}(2)) − Lval(16,6+(i−1)*6);
228 A(uphiz bdy{i}(2),pphiy bdy{3}(2)) = ...

A(uphiz bdy{i}(2),pphiy bdy{3}(2)) − Lval(17,6+(i−1)*6);
229 A(uphiz bdy{i}(2),pphiz bdy{3}(2)) = ...

A(uphiz bdy{i}(2),pphiz bdy{3}(2)) − Lval(18,6+(i−1)*6);
230 end
231

232 for i = 1 : 3
233 A(prx bdy{i}(2),urx bdy{1}(2)) = A(prx bdy{i}(2),urx bdy{1}(2)) − ...

Lval(1,1+(i−1)*6);
234 A(prx bdy{i}(2),ury bdy{1}(2)) = A(prx bdy{i}(2),ury bdy{1}(2)) − ...

Lval(2,1+(i−1)*6);
235 A(prx bdy{i}(2),urz bdy{1}(2)) = A(prx bdy{i}(2),urz bdy{1}(2)) − ...

Lval(3,1+(i−1)*6);
236 A(prx bdy{i}(2),uphix bdy{1}(2)) = A(prx bdy{i}(2),uphix bdy{1}(2)) ...

− Lval(4,1+(i−1)*6);
237 A(prx bdy{i}(2),uphiy bdy{1}(2)) = A(prx bdy{i}(2),uphiy bdy{1}(2)) ...

− Lval(5,1+(i−1)*6);
238 A(prx bdy{i}(2),uphiz bdy{1}(2)) = A(prx bdy{i}(2),uphiz bdy{1}(2)) ...

− Lval(6,1+(i−1)*6);
239 A(prx bdy{i}(2),urx bdy{2}(2)) = A(prx bdy{i}(2),urx bdy{2}(2)) − ...

Lval(7,1+(i−1)*6);
240 A(prx bdy{i}(2),ury bdy{2}(2)) = A(prx bdy{i}(2),ury bdy{2}(2)) − ...

Lval(8,1+(i−1)*6);
241 A(prx bdy{i}(2),urz bdy{2}(2)) = A(prx bdy{i}(2),urz bdy{2}(2)) − ...

Lval(9,1+(i−1)*6);
242 A(prx bdy{i}(2),uphix bdy{2}(2)) = A(prx bdy{i}(2),uphix bdy{2}(2)) ...

− Lval(10,1+(i−1)*6);
243 A(prx bdy{i}(2),uphiy bdy{2}(2)) = A(prx bdy{i}(2),uphiy bdy{2}(2)) ...

− Lval(11,1+(i−1)*6);
244 A(prx bdy{i}(2),uphiz bdy{2}(2)) = A(prx bdy{i}(2),uphiz bdy{2}(2)) ...

− Lval(12,1+(i−1)*6);
245 A(prx bdy{i}(2),urx bdy{3}(2)) = A(prx bdy{i}(2),urx bdy{3}(2)) − ...

Lval(13,1+(i−1)*6);
246 A(prx bdy{i}(2),ury bdy{3}(2)) = A(prx bdy{i}(2),ury bdy{3}(2)) − ...

Lval(14,1+(i−1)*6);
247 A(prx bdy{i}(2),urz bdy{3}(2)) = A(prx bdy{i}(2),urz bdy{3}(2)) − ...

Lval(15,1+(i−1)*6);
248 A(prx bdy{i}(2),uphix bdy{3}(2)) = A(prx bdy{i}(2),uphix bdy{3}(2)) ...

− Lval(16,1+(i−1)*6);
249 A(prx bdy{i}(2),uphiy bdy{3}(2)) = A(prx bdy{i}(2),uphiy bdy{3}(2)) ...

− Lval(17,1+(i−1)*6);
250 A(prx bdy{i}(2),uphiz bdy{3}(2)) = A(prx bdy{i}(2),uphiz bdy{3}(2)) ...
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− Lval(18,1+(i−1)*6);
251

252 A(pry bdy{i}(2),urx bdy{1}(2)) = A(pry bdy{i}(2),urx bdy{1}(2)) − ...
Lval(1,2+(i−1)*6);

253 A(pry bdy{i}(2),ury bdy{1}(2)) = A(pry bdy{i}(2),ury bdy{1}(2)) − ...
Lval(2,2+(i−1)*6);

254 A(pry bdy{i}(2),urz bdy{1}(2)) = A(pry bdy{i}(2),urz bdy{1}(2)) − ...
Lval(3,2+(i−1)*6);

255 A(pry bdy{i}(2),uphix bdy{1}(2)) = A(pry bdy{i}(2),uphix bdy{1}(2)) ...
− Lval(4,2+(i−1)*6);

256 A(pry bdy{i}(2),uphiy bdy{1}(2)) = A(pry bdy{i}(2),uphiy bdy{1}(2)) ...
− Lval(5,2+(i−1)*6);

257 A(pry bdy{i}(2),uphiz bdy{1}(2)) = A(pry bdy{i}(2),uphiz bdy{1}(2)) ...
− Lval(6,2+(i−1)*6);

258 A(pry bdy{i}(2),urx bdy{2}(2)) = A(pry bdy{i}(2),urx bdy{2}(2)) − ...
Lval(7,2+(i−1)*6);

259 A(pry bdy{i}(2),ury bdy{2}(2)) = A(pry bdy{i}(2),ury bdy{2}(2)) − ...
Lval(8,2+(i−1)*6);

260 A(pry bdy{i}(2),urz bdy{2}(2)) = A(pry bdy{i}(2),urz bdy{2}(2)) − ...
Lval(9,2+(i−1)*6);

261 A(pry bdy{i}(2),uphix bdy{2}(2)) = A(pry bdy{i}(2),uphix bdy{2}(2)) ...
− Lval(10,2+(i−1)*6);

262 A(pry bdy{i}(2),uphiy bdy{2}(2)) = A(pry bdy{i}(2),uphiy bdy{2}(2)) ...
− Lval(11,2+(i−1)*6);

263 A(pry bdy{i}(2),uphiz bdy{2}(2)) = A(pry bdy{i}(2),uphiz bdy{2}(2)) ...
− Lval(12,2+(i−1)*6);

264 A(pry bdy{i}(2),urx bdy{3}(2)) = A(pry bdy{i}(2),urx bdy{3}(2)) − ...
Lval(13,2+(i−1)*6);

265 A(pry bdy{i}(2),ury bdy{3}(2)) = A(pry bdy{i}(2),ury bdy{3}(2)) − ...
Lval(14,2+(i−1)*6);

266 A(pry bdy{i}(2),urz bdy{3}(2)) = A(pry bdy{i}(2),urz bdy{3}(2)) − ...
Lval(15,2+(i−1)*6);

267 A(pry bdy{i}(2),uphix bdy{3}(2)) = A(pry bdy{i}(2),uphix bdy{3}(2)) ...
− Lval(16,2+(i−1)*6);

268 A(pry bdy{i}(2),uphiy bdy{3}(2)) = A(pry bdy{i}(2),uphiy bdy{3}(2)) ...
− Lval(17,2+(i−1)*6);

269 A(pry bdy{i}(2),uphiz bdy{3}(2)) = A(pry bdy{i}(2),uphiz bdy{3}(2)) ...
− Lval(18,2+(i−1)*6);

270

271 A(prz bdy{i}(2),urx bdy{1}(2)) = A(prz bdy{i}(2),urx bdy{1}(2)) − ...
Lval(1,3+(i−1)*6);

272 A(prz bdy{i}(2),ury bdy{1}(2)) = A(prz bdy{i}(2),ury bdy{1}(2)) − ...
Lval(2,3+(i−1)*6);

273 A(prz bdy{i}(2),urz bdy{1}(2)) = A(prz bdy{i}(2),urz bdy{1}(2)) − ...
Lval(3,3+(i−1)*6);

274 A(prz bdy{i}(2),uphix bdy{1}(2)) = A(prz bdy{i}(2),uphix bdy{1}(2)) ...
− Lval(4,3+(i−1)*6);

275 A(prz bdy{i}(2),uphiy bdy{1}(2)) = A(prz bdy{i}(2),uphiy bdy{1}(2)) ...
− Lval(5,3+(i−1)*6);

276 A(prz bdy{i}(2),uphiz bdy{1}(2)) = A(prz bdy{i}(2),uphiz bdy{1}(2)) ...
− Lval(6,3+(i−1)*6);



178 APPENDIX A. PROGRAM

277 A(prz bdy{i}(2),urx bdy{2}(2)) = A(prz bdy{i}(2),urx bdy{2}(2)) − ...
Lval(7,3+(i−1)*6);

278 A(prz bdy{i}(2),ury bdy{2}(2)) = A(prz bdy{i}(2),ury bdy{2}(2)) − ...
Lval(8,3+(i−1)*6);

279 A(prz bdy{i}(2),urz bdy{2}(2)) = A(prz bdy{i}(2),urz bdy{2}(2)) − ...
Lval(9,3+(i−1)*6);

280 A(prz bdy{i}(2),uphix bdy{2}(2)) = A(prz bdy{i}(2),uphix bdy{2}(2)) ...
− Lval(10,3+(i−1)*6);

281 A(prz bdy{i}(2),uphiy bdy{2}(2)) = A(prz bdy{i}(2),uphiy bdy{2}(2)) ...
− Lval(11,3+(i−1)*6);

282 A(prz bdy{i}(2),uphiz bdy{2}(2)) = A(prz bdy{i}(2),uphiz bdy{2}(2)) ...
− Lval(12,3+(i−1)*6);

283 A(prz bdy{i}(2),urx bdy{3}(2)) = A(prz bdy{i}(2),urx bdy{3}(2)) − ...
Lval(13,3+(i−1)*6);

284 A(prz bdy{i}(2),ury bdy{3}(2)) = A(prz bdy{i}(2),ury bdy{3}(2)) − ...
Lval(14,3+(i−1)*6);

285 A(prz bdy{i}(2),urz bdy{3}(2)) = A(prz bdy{i}(2),urz bdy{3}(2)) − ...
Lval(15,3+(i−1)*6);

286 A(prz bdy{i}(2),uphix bdy{3}(2)) = A(prz bdy{i}(2),uphix bdy{3}(2)) ...
− Lval(16,3+(i−1)*6);

287 A(prz bdy{i}(2),uphiy bdy{3}(2)) = A(prz bdy{i}(2),uphiy bdy{3}(2)) ...
− Lval(17,3+(i−1)*6);

288 A(prz bdy{i}(2),uphiz bdy{3}(2)) = A(prz bdy{i}(2),uphiz bdy{3}(2)) ...
− Lval(18,3+(i−1)*6);

289

290 A(pphix bdy{i}(2),urx bdy{1}(2)) = A(pphix bdy{i}(2),urx bdy{1}(2)) ...
− Lval(1,4+(i−1)*6);

291 A(pphix bdy{i}(2),ury bdy{1}(2)) = A(pphix bdy{i}(2),ury bdy{1}(2)) ...
− Lval(2,4+(i−1)*6);

292 A(pphix bdy{i}(2),urz bdy{1}(2)) = A(pphix bdy{i}(2),urz bdy{1}(2)) ...
− Lval(3,4+(i−1)*6);

293 A(pphix bdy{i}(2),uphix bdy{1}(2)) = ...
A(pphix bdy{i}(2),uphix bdy{1}(2)) − Lval(4,4+(i−1)*6);

294 A(pphix bdy{i}(2),uphiy bdy{1}(2)) = ...
A(pphix bdy{i}(2),uphiy bdy{1}(2)) − Lval(5,4+(i−1)*6);

295 A(pphix bdy{i}(2),uphiz bdy{1}(2)) = ...
A(pphix bdy{i}(2),uphiz bdy{1}(2)) − Lval(6,4+(i−1)*6);

296 A(pphix bdy{i}(2),urx bdy{2}(2)) = A(pphix bdy{i}(2),urx bdy{2}(2)) ...
− Lval(7,4+(i−1)*6);

297 A(pphix bdy{i}(2),ury bdy{2}(2)) = A(pphix bdy{i}(2),ury bdy{2}(2)) ...
− Lval(8,4+(i−1)*6);

298 A(pphix bdy{i}(2),urz bdy{2}(2)) = A(pphix bdy{i}(2),urz bdy{2}(2)) ...
− Lval(9,4+(i−1)*6);

299 A(pphix bdy{i}(2),uphix bdy{2}(2)) = ...
A(pphix bdy{i}(2),uphix bdy{2}(2)) − Lval(10,4+(i−1)*6);

300 A(pphix bdy{i}(2),uphiy bdy{2}(2)) = ...
A(pphix bdy{i}(2),uphiy bdy{2}(2)) − Lval(11,4+(i−1)*6);

301 A(pphix bdy{i}(2),uphiz bdy{2}(2)) = ...
A(pphix bdy{i}(2),uphiz bdy{2}(2)) − Lval(12,4+(i−1)*6);

302 A(pphix bdy{i}(2),urx bdy{3}(2)) = A(pphix bdy{i}(2),urx bdy{3}(2)) ...
− Lval(13,4+(i−1)*6);
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303 A(pphix bdy{i}(2),ury bdy{3}(2)) = A(pphix bdy{i}(2),ury bdy{3}(2)) ...
− Lval(14,4+(i−1)*6);

304 A(pphix bdy{i}(2),urz bdy{3}(2)) = A(pphix bdy{i}(2),urz bdy{3}(2)) ...
− Lval(15,4+(i−1)*6);

305 A(pphix bdy{i}(2),uphix bdy{3}(2)) = ...
A(pphix bdy{i}(2),uphix bdy{3}(2)) − Lval(16,4+(i−1)*6);

306 A(pphix bdy{i}(2),uphiy bdy{3}(2)) = ...
A(pphix bdy{i}(2),uphiy bdy{3}(2)) − Lval(17,4+(i−1)*6);

307 A(pphix bdy{i}(2),uphiz bdy{3}(2)) = ...
A(pphix bdy{i}(2),uphiz bdy{3}(2)) − Lval(18,4+(i−1)*6);

308

309 A(pphiy bdy{i}(2),urx bdy{1}(2)) = A(pphiy bdy{i}(2),urx bdy{1}(2)) ...
− Lval(1,5+(i−1)*6);

310 A(pphiy bdy{i}(2),ury bdy{1}(2)) = A(pphiy bdy{i}(2),ury bdy{1}(2)) ...
− Lval(2,5+(i−1)*6);

311 A(pphiy bdy{i}(2),urz bdy{1}(2)) = A(pphiy bdy{i}(2),urz bdy{1}(2)) ...
− Lval(3,5+(i−1)*6);

312 A(pphiy bdy{i}(2),uphix bdy{1}(2)) = ...
A(pphiy bdy{i}(2),uphix bdy{1}(2)) − Lval(4,5+(i−1)*6);

313 A(pphiy bdy{i}(2),uphiy bdy{1}(2)) = ...
A(pphiy bdy{i}(2),uphiy bdy{1}(2)) − Lval(5,5+(i−1)*6);

314 A(pphiy bdy{i}(2),uphiz bdy{1}(2)) = ...
A(pphiy bdy{i}(2),uphiz bdy{1}(2)) − Lval(6,5+(i−1)*6);

315 A(pphiy bdy{i}(2),urx bdy{2}(2)) = A(pphiy bdy{i}(2),urx bdy{2}(2)) ...
− Lval(7,5+(i−1)*6);

316 A(pphiy bdy{i}(2),ury bdy{2}(2)) = A(pphiy bdy{i}(2),ury bdy{2}(2)) ...
− Lval(8,5+(i−1)*6);

317 A(pphiy bdy{i}(2),urz bdy{2}(2)) = A(pphiy bdy{i}(2),urz bdy{2}(2)) ...
− Lval(9,5+(i−1)*6);

318 A(pphiy bdy{i}(2),uphix bdy{2}(2)) = ...
A(pphiy bdy{i}(2),uphix bdy{2}(2)) − Lval(10,5+(i−1)*6);

319 A(pphiy bdy{i}(2),uphiy bdy{2}(2)) = ...
A(pphiy bdy{i}(2),uphiy bdy{2}(2)) − Lval(11,5+(i−1)*6);

320 A(pphiy bdy{i}(2),uphiz bdy{2}(2)) = ...
A(pphiy bdy{i}(2),uphiz bdy{2}(2)) − Lval(12,5+(i−1)*6);

321 A(pphiy bdy{i}(2),urx bdy{3}(2)) = A(pphiy bdy{i}(2),urx bdy{3}(2)) ...
− Lval(13,5+(i−1)*6);

322 A(pphiy bdy{i}(2),ury bdy{3}(2)) = A(pphiy bdy{i}(2),ury bdy{3}(2)) ...
− Lval(14,5+(i−1)*6);

323 A(pphiy bdy{i}(2),urz bdy{3}(2)) = A(pphiy bdy{i}(2),urz bdy{3}(2)) ...
− Lval(15,5+(i−1)*6);

324 A(pphiy bdy{i}(2),uphix bdy{3}(2)) = ...
A(pphiy bdy{i}(2),uphix bdy{3}(2)) − Lval(16,5+(i−1)*6);

325 A(pphiy bdy{i}(2),uphiy bdy{3}(2)) = ...
A(pphiy bdy{i}(2),uphiy bdy{3}(2)) − Lval(17,5+(i−1)*6);

326 A(pphiy bdy{i}(2),uphiz bdy{3}(2)) = ...
A(pphiy bdy{i}(2),uphiz bdy{3}(2)) − Lval(18,5+(i−1)*6);

327

328 A(pphiz bdy{i}(2),urx bdy{1}(2)) = A(pphiz bdy{i}(2),urx bdy{1}(2)) ...
− Lval(1,6+(i−1)*6);

329 A(pphiz bdy{i}(2),ury bdy{1}(2)) = A(pphiz bdy{i}(2),ury bdy{1}(2)) ...
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− Lval(2,6+(i−1)*6);
330 A(pphiz bdy{i}(2),urz bdy{1}(2)) = A(pphiz bdy{i}(2),urz bdy{1}(2)) ...

− Lval(3,6+(i−1)*6);
331 A(pphiz bdy{i}(2),uphix bdy{1}(2)) = ...

A(pphiz bdy{i}(2),uphix bdy{1}(2)) − Lval(4,6+(i−1)*6);
332 A(pphiz bdy{i}(2),uphiy bdy{1}(2)) = ...

A(pphiz bdy{i}(2),uphiy bdy{1}(2)) − Lval(5,6+(i−1)*6);
333 A(pphiz bdy{i}(2),uphiz bdy{1}(2)) = ...

A(pphiz bdy{i}(2),uphiz bdy{1}(2)) − Lval(6,6+(i−1)*6);
334 A(pphiz bdy{i}(2),urx bdy{2}(2)) = A(pphiz bdy{i}(2),urx bdy{2}(2)) ...

− Lval(7,6+(i−1)*6);
335 A(pphiz bdy{i}(2),ury bdy{2}(2)) = A(pphiz bdy{i}(2),ury bdy{2}(2)) ...

− Lval(8,6+(i−1)*6);
336 A(pphiz bdy{i}(2),urz bdy{2}(2)) = A(pphiz bdy{i}(2),urz bdy{2}(2)) ...

− Lval(9,6+(i−1)*6);
337 A(pphiz bdy{i}(2),uphix bdy{2}(2)) = ...

A(pphiz bdy{i}(2),uphix bdy{2}(2)) − Lval(10,6+(i−1)*6);
338 A(pphiz bdy{i}(2),uphiy bdy{2}(2)) = ...

A(pphiz bdy{i}(2),uphiy bdy{2}(2)) − Lval(11,6+(i−1)*6);
339 A(pphiz bdy{i}(2),uphiz bdy{2}(2)) = ...

A(pphiz bdy{i}(2),uphiz bdy{2}(2)) − Lval(12,6+(i−1)*6);
340 A(pphiz bdy{i}(2),urx bdy{3}(2)) = A(pphiz bdy{i}(2),urx bdy{3}(2)) ...

− Lval(13,6+(i−1)*6);
341 A(pphiz bdy{i}(2),ury bdy{3}(2)) = A(pphiz bdy{i}(2),ury bdy{3}(2)) ...

− Lval(14,6+(i−1)*6);
342 A(pphiz bdy{i}(2),urz bdy{3}(2)) = A(pphiz bdy{i}(2),urz bdy{3}(2)) ...

− Lval(15,6+(i−1)*6);
343 A(pphiz bdy{i}(2),uphix bdy{3}(2)) = ...

A(pphiz bdy{i}(2),uphix bdy{3}(2)) − Lval(16,6+(i−1)*6);
344 A(pphiz bdy{i}(2),uphiy bdy{3}(2)) = ...

A(pphiz bdy{i}(2),uphiy bdy{3}(2)) − Lval(17,6+(i−1)*6);
345 A(pphiz bdy{i}(2),uphiz bdy{3}(2)) = ...

A(pphiz bdy{i}(2),uphiz bdy{3}(2)) − Lval(18,6+(i−1)*6);
346 end
347

348 syms x
349 for i = 1 : 3
350 z{i} = ulocal{i};
351 zNum{i} = double(subs(z{i},x0l));
352 dz{i} = diff(z{i},x);
353 dzNum{i} = double(subs(dz{i},x0l));
354 dzNum{i}(:,end) = double(subs(dz{i}, x, 0.999999));
355 dzNum{i}(:,1) = double(subs(dz{i}, x, 0.000001));
356

357 fx(i) = q{i}(1);
358 dfx{i} = diff(fx(i),x);
359 dfxNum{i} = double(subs(dfx{i},x0l));
360 dfxNum{i}(:,end) = double(subs(dfx{i}, x, 0.999999));
361 dfxNum{i}(:,1) = double(subs(dfx{i}, x, 0.000001));
362

363 fy(i) = q{i}(2);
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364 dfy{i} = diff(fy(i),x);
365 dfyNum{i} = double(subs(dfy{i},x0l));
366 dfyNum{i}(:,end) = double(subs(dfy{i}, x, 0.999999));
367 dfyNum{i}(:,1) = double(subs(dfy{i}, x, 0.000001));
368

369 fz(i) = q{i}(3);
370 dfz{i} = diff(fz(i),x);
371 dfzNum{i} = double(subs(dfz{i},x0l));
372 dfzNum{i}(:,end) = double(subs(dfz{i}, x, 0.999999));
373 dfzNum{i}(:,1) = double(subs(dfz{i}, x, 0.000001));
374

375 mx(i) = q{i}(4);
376 dmx{i} = diff(mx(i),x);
377 dmxNum{i} = double(subs(dmx{i},x0l));
378 dmxNum{i}(:,end) = double(subs(dmx{i}, x, 0.999999));
379 dmxNum{i}(:,1) = double(subs(dmx{i}, x, 0.000001));
380

381 my(i) = q{i}(5);
382 dmy{i} = diff(my(i),x);
383 dmyNum{i} = double(subs(dmy{i},x0l));
384 dmyNum{i}(:,end) = double(subs(dmy{i}, x, 0.999999));
385 dmyNum{i}(:,1) = double(subs(dmy{i}, x, 0.000001));
386

387 mz(i) = q{i}(6);
388 dmz{i} = diff(mz(i),x);
389 dmzNum{i} = double(subs(dmz{i},x0l));
390 dmzNum{i}(:,end) = double(subs(dmz{i}, x, 0.999999));
391 dmzNum{i}(:,1) = double(subs(dmz{i}, x, 0.000001));
392 end
393

394 bold = zeros(size(A,1),1);
395

396 for i = 1 : 3
397 bold(urx bdy{i}(1):urx bdy{i}(4)) = A4*[zNum{i}(1,:) ...

dzNum{i}(1,:)*hmax]';
398 bold(ury bdy{i}(1):ury bdy{i}(4)) = A4*[zNum{i}(2,:) ...

dzNum{i}(2,:)*hmax]';
399 bold(urz bdy{i}(1):urz bdy{i}(4)) = A4*[zNum{i}(3,:) ...

dzNum{i}(3,:)*hmax]';
400 bold(uphix bdy{i}(1):uphix bdy{i}(4)) = A4*[zNum{i}(4,:) ...

dzNum{i}(4,:)*hmax]';
401 bold(uphiy bdy{i}(1):uphiy bdy{i}(4)) = A4*[zNum{i}(5,:) ...

dzNum{i}(5,:)*hmax]';
402 bold(uphiz bdy{i}(1):uphiz bdy{i}(4)) = A4*[zNum{i}(6,:) ...

dzNum{i}(6,:)*hmax]';
403

404 bold(prx bdy{i}(1):prx bdy{i}(4)) = A4*[double(subs(fx(i),x0l)) ...
dfxNum{i}*hmax]';

405 bold(pry bdy{i}(1):pry bdy{i}(4)) = A4*[double(subs(fy(i),x0l)) ...
dfyNum{i}*hmax]';

406 bold(prz bdy{i}(1):prz bdy{i}(4)) = A4*[double(subs(fz(i),x0l)) ...



182 APPENDIX A. PROGRAM

dfzNum{i}*hmax]';
407 bold(pphix bdy{i}(1):pphix bdy{i}(4)) = A4*[double(subs(mx(i),x0l)) ...

dmxNum{i}*hmax]';
408 bold(pphiy bdy{i}(1):pphiy bdy{i}(4)) = A4*[double(subs(my(i),x0l)) ...

dmyNum{i}*hmax]';
409 bold(pphiz bdy{i}(1):pphiz bdy{i}(4)) = A4*[double(subs(mz(i),x0l)) ...

dmzNum{i}*hmax]';
410 end
411

412 b = bold;
413

414

415 % bounday condition
416 for i = 1 : 3
417 A(urx bdy{i}(1),:) = 0;
418 A(urx bdy{i}(1),urx bdy{i}(1)) = 1;
419 b(urx bdy{i}(1)) = 0;
420

421 A(ury bdy{i}(1),:) = 0;
422 A(ury bdy{i}(1),ury bdy{i}(1)) = 1;
423 b(ury bdy{i}(1)) = 0;
424

425 A(urz bdy{i}(1),:) = 0;
426 A(urz bdy{i}(1),urz bdy{i}(1)) = 1;
427 b(urz bdy{i}(1)) = u0(i);
428

429 A(uphix bdy{i}(1),:) = 0;
430 A(uphix bdy{i}(1),uphix bdy{i}(1)) = 1;
431 b(uphix bdy{i}(1)) = u0(i);
432

433 A(uphiy bdy{i}(1),:) = 0;
434 A(uphiy bdy{i}(1),uphiy bdy{i}(1)) = 1;
435 b(uphiy bdy{i}(1)) = u0(i);
436

437 A(uphiz bdy{i}(1),:) = 0;
438 A(uphiz bdy{i}(1),uphiz bdy{i}(1)) = 1;
439 b(uphiz bdy{i}(1)) = u0(i);
440

441 A(prx bdy{i}(1),:) = 0;
442 A(prx bdy{i}(1),prx bdy{i}(1)) = 1;
443 b(prx bdy{i}(1)) = 0;
444

445 A(pry bdy{i}(1),:) = 0;
446 A(pry bdy{i}(1),pry bdy{i}(1)) = 1;
447 b(pry bdy{i}(1)) = 0;
448

449 A(prz bdy{i}(1),:) = 0;
450 A(prz bdy{i}(1),prz bdy{i}(1)) = 1;
451 b(prz bdy{i}(1)) = u0(i);
452

453 A(pphix bdy{i}(1),:) = 0;
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454 A(pphix bdy{i}(1),pphix bdy{i}(1)) = 1;
455 b(pphix bdy{i}(1)) = u0(i);
456

457 A(pphiy bdy{i}(1),:) = 0;
458 A(pphiy bdy{i}(1),pphiy bdy{i}(1)) = 1;
459 b(pphiy bdy{i}(1)) = u0(i);
460

461 A(pphiz bdy{i}(1),:) = 0;
462 A(pphiz bdy{i}(1),pphiz bdy{i}(1)) = 1;
463 b(pphiz bdy{i}(1)) = u0(i);
464

465 A(prz bdy{i}(1),:) = 0;
466 A(prz bdy{i}(1),prz bdy{i}(1)) = 1;
467 b(prz bdy{i}(1)) = u0(i);
468

469 end
470

471 solu = A\b;
472

473 for i = 1 : 3
474 urx{i} = solu(urx bdy{i}(1):urx bdy{i}(2));
475 ury{i} = solu(ury bdy{i}(1):ury bdy{i}(2));
476 urz{i} = solu(urz bdy{i}(1):urz bdy{i}(2));
477 uphix{i} = solu(uphix bdy{i}(1):uphix bdy{i}(2));
478 uphiy{i} = solu(uphiy bdy{i}(1):uphiy bdy{i}(2));
479 uphiz{i} = solu(uphiz bdy{i}(1):uphiz bdy{i}(2));
480

481 prx{i} = solu(prx bdy{i}(1):prx bdy{i}(2));
482 pry{i} = solu(pry bdy{i}(1):pry bdy{i}(2));
483 prz{i} = solu(prz bdy{i}(1):prz bdy{i}(2));
484 pphix{i} = solu(pphix bdy{i}(1):pphix bdy{i}(2));
485 pphiy{i} = solu(pphiy bdy{i}(1):pphiy bdy{i}(2));
486 pphiz{i} = solu(pphiz bdy{i}(1):pphiz bdy{i}(2));
487

488 vrx{i} = prx{i} + subs(fx(i),x0l)';
489 vry{i} = pry{i} + subs(fy(i),x0l)';
490 vrz{i} = prz{i} + subs(fz(i),x0l)';
491 vphix{i} = pphix{i} + subs(mx(i),x0l)';
492 vphiy{i} = pphiy{i} + subs(my(i),x0l)';
493 vphiz{i} = pphiz{i} + subs(mz(i),x0l)';
494 end
495

496 J = 0;
497

498 for i = 1 : 3
499 tmp = norm(urx{i}−double(subs(z{i}(1),x0l))')ˆ2*hmax;
500 J = J + tmp;
501 tmp = norm(ury{i}−double(subs(z{i}(2),x0l))')ˆ2*hmax;
502 J = J + tmp;
503 tmp = norm(urz{i}−double(subs(z{i}(3),x0l))')ˆ2*hmax;
504 J = J + tmp;
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505 tmp = norm(uphix{i}−double(subs(z{i}(4),x0l))')ˆ2*hmax;
506 J = J + tmp;
507 tmp = norm(uphiy{i}−double(subs(z{i}(5),x0l))')ˆ2*hmax;
508 J = J + tmp;
509 tmp = norm(uphiz{i}−double(subs(z{i}(6),x0l))')ˆ2*hmax;
510 J = J + tmp;
511 tmp = norm(prx{i})ˆ2*hmax+norm(pry{i})ˆ2*hmax+norm(prz{i})ˆ2*hmax;
512 J = J + tmp;
513 tmp = ...

norm(pphix{i})ˆ2*hmax+norm(pphiy{i})ˆ2*hmax+norm(pphiz{i})ˆ2*hmax;
514 J = J + tmp;
515 end
516

517 J = J/2;
518 end
519

520 function Ei1 = E(t)
521 Ei1 = [cos(t) sin(t) 0;
522 −sin(t) cos(t) 0;
523 0 0 1];
524 end

A.3 Wave Equation

In this section, we delve into the application of dynamic optimization techniques to the
wave equation. Specifically, we explore example 1 in section 5.4.1, focusing on optimizing
boundary control while verifying the Turnpike property.

1 % Example 1
2 % y0 = x;y1=0;
3

4 % Function to compute convergence using quadprog
5 % T: Time period
6 % J/T: Convergence ratio
7

8 function J = Example1(T)
9

10 % Set default value for T if not provided
11 if nargin == 0
12 T = 10;
13 end
14

15 % Parameter and time step
16 gamma = 0.1;
17 dt = 0.1;
18

19 % Number of time steps
20 M = T/dt;
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21

22 % Number of expandsion terms
23 N = 20;
24

25 % Gauss point and weights
26 s ref = [−sqrt(3/5),0,sqrt(3/5)];
27 wt = [5,8,5]/9;
28

29 % Function handle for alpha0(x, n) = y0(x) * phin(x, n)
30 alpha0 = @(x, n) y0(x) .* phin(x,n);
31

32 % //////// V sin //////////
33 VM = cell(M,1);
34 Vk = cell(M,1);
35

36 VMint = zeros(M,M);
37 Vkint = zeros(M,1);
38

39 tic;
40 for k = 1 : M
41 tk1 = dt*(k−1);
42 tk = dt*k;
43 VM{k} = @(t,n) ...

1/(pi/2+n*pi)*(cos((pi/2+n*pi)*(t−tk))−cos((pi/2+n*pi)*(t−tk1)));
44 Vk{k} = @(t,n) 1/(pi/2+n*pi)*(1−cos((pi/2+n*pi)*(t−tk1)));
45 end
46 elapsed time = toc;
47 fprintf('Assembly of VMsin code block execution time: %.4f s\n', ...

elapsed time);
48

49 % //////// V cos //////////
50 VMc = cell(M,1);
51 Vkc = cell(M,1);
52

53 VMcint = zeros(M,M);
54 Vkcint = zeros(M,1);
55

56 tic;
57 for k = 1 : M
58 tk1 = dt*(k−1);
59 tk = dt*k;
60 VMc{k} = @(t,n) ...

1/(pi/2+n*pi)*(−sin((pi/2+n*pi)*(t−tk))+sin((pi/2+n*pi)*(t−tk1)));
61 Vkc{k} = @(t,n) 1/(pi/2+n*pi)*(sin((pi/2+n*pi)*(t−tk1)));
62 end
63 elapsed time = toc;
64 fprintf('Assembly of VMcos code block execution time: %.4f s\n', ...

elapsed time);
65

66 %% ============= q ===============
67 % ///// q1 /////
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68 tic;
69

70 for j = 1 : M
71 tj1 = dt*(j−1);
72 tj = dt*j;
73 t = (tj1+tj)/2;
74 for n = 0 : N
75 alpha0int = integral(@(x) alpha0(x, n), 0, 1);
76 for k = 1 : j−1
77 tmp = (−1)ˆn*2*sqrt(2)*alpha0int/(pi/2+n*pi)
78 *cos((pi/2+n*pi)*(t)).*VM{k}(t,n)*dt;
79 VMint(k,j) = VMint(k,j) + tmp;
80 end
81 tmp1 = (−1)ˆn*2*sqrt(2)*alpha0int/(pi/2+n*pi)
82 *cos((pi/2+n*pi)*(t)).*Vk{j}(t,n)*dt;
83 Vkint(j) = Vkint(j) + tmp1;
84 VMint(j,j) = Vkint(j);
85 end
86 end
87 elapsed time = toc;
88 fprintf('Assembly of q1 sub−vector code block execution time: %.4f ...

s\n', elapsed time);
89

90 tic;
91 q1 = sum(VMint,2);
92 elapsed time = toc;
93 fprintf('Generation of q1 code block execution time: %.4f s\n', ...

elapsed time);
94

95 % ///// q2 /////
96 tic;
97 for j = 1 : M
98 tj1 = dt*(j−1);
99 tj = dt*j;

100 s = (tj−tj1)/2*s ref + (tj+tj1)/2;
101 jac = (tj−tj1)/2;
102 for n = 0 : N
103 alpha0int = integral(@(x) alpha0(x, n), 0, 1);
104 for k = 1 : j−1
105 tmp = (−1)ˆ(n+1)*2*sqrt(2)*alpha0int*(pi/2+n*pi)
106 *sum(wt.*sin((pi/2+n*pi)*(s)).*VMc{k}(s,n))*jac;
107 VMcint(k,j) = VMcint(k,j) + tmp;
108 end
109 tmp1 = (−1)ˆ(n+1)*2*sqrt(2)*alpha0int*(pi/2+n*pi)
110 *sum(wt.*sin((pi/2+n*pi)*(s)).*Vkc{j}(s,n))*jac;
111 Vkcint(j) = Vkcint(j) + tmp1;
112 VMcint(j,j) = Vkcint(j);
113 end
114 end
115 elapsed time = toc;
116 fprintf('Assembly of q2 sub−vector code block execution time: %.4f ...
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s\n', elapsed time);
117

118 tic;
119 q2 = sum(VMcint,2);
120 elapsed time = toc;
121 fprintf('Generation of q2 code block execution time: %.4f s\n', ...

elapsed time);
122

123

124 %% ============ Q ============
125 % ///// Q1 /////
126 tic;
127 Q1 = zeros(M,M);
128

129 tic
130

131 for k = 1 : M
132 tk1 = (k−1)*dt;
133 tk = k*dt;
134 s = (tk−tk1)/2*s ref + (tk+tk1)/2;
135 jac = (tk−tk1)/2;
136 Qeint = zeros(M,M);
137 tic
138 for i = 1:k−1
139 for j = 1:i−1
140 for n = 0 : N
141 tmp2 = 2/(pi/2+n*pi)ˆ2*sum(wt.*VM{i}(s,n)*(VM{j}(s,n)'))*jac;
142 Qeint(i, j) = Qeint(i, j) + tmp2;
143 end
144 Qeint(j, i) = Qeint(i, j);
145 end
146 for n = 0 : N
147 tmp = 2/(pi/2+n*pi)ˆ2*sum(wt.*VM{k}(s,n)*(VM{k}(s,n)'))*jac;
148 Qeint(i, i) = Qeint(i, i) + tmp;
149 end
150 end
151 for n = 0 : N
152 tmp = 2/(pi/2+n*pi)ˆ2*sum(wt.*Vk{k}(s,n)*(Vk{k}(s,n)'))*jac;
153 Qeint(k, k) = Qeint(k, k) + tmp;
154 end
155 Q1 = Q1 + Qeint;
156

157 disp(['k = ', num2str(k)]);
158 elapsed time = toc;
159 fprintf('Assembly of Qe{k} integral code block execution time: ...

%.4f s\n', elapsed time);
160 end
161 elapsed time = toc;
162 fprintf('Assembly of Qeint{k} integral code block execution time: ...

%.4f s\n', elapsed time);
163
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164 % ///// Q2 /////
165 tic;
166

167 Q2 = zeros(M,M);
168

169 tic
170 for k = 1 : M
171 tk1 = (k−1)*dt;
172 tk = k*dt;
173 s = (tk−tk1)/2*s ref + (tk+tk1)/2;
174 jac = (tk−tk1)/2;
175 Qeint2 = zeros(M,M);
176 tic
177 for i = 1:k−1
178 for j = 1:i−1
179 for n = 0 : N
180 tmp1 = 2*sum(wt.*VMc{i}(s,n)*(VMc{j}(s,n)'))*jac;
181 Qeint2(i, j) = Qeint2(i, j) + tmp1;
182 end
183 Qeint2(j, i) = Qeint2(i, j);
184 end
185 for n = 0 : N
186 tmp = 2*sum(wt.*VMc{k}(s,n)*(VMc{k}(s,n)'))*jac;
187 Qeint2(i, i) = Qeint2(i, i) + tmp;
188 end
189 end
190 for n = 0 : N
191 tmp = 2*sum(wt.*Vkc{k}(s,n)*(Vkc{k}(s,n)'))*jac;
192 Qeint2(k, k) = Qeint2(k, k) + tmp;
193 end
194 Q2 = Q2 + Qeint2;
195

196 disp(['k = ', num2str(k)]);
197 elapsed time = toc;
198 fprintf('Assembly of Qe2{k} integral code block execution time: ...

%.4f s\n', elapsed time);
199 end
200 elapsed time = toc;
201 fprintf('Assembly of Qeint{k} integral code block execution time: ...

%.4f s\n', elapsed time);
202

203 % ////// Q3 //////
204 Q3 = dt*eye(M);
205

206 %% ==== W =====
207 % Calculate W1
208 W1 = 0;
209 for k = 1 : M
210 tk1 = dt*(k−1);
211 tk = dt*k;
212 s = (tk−tk1)/2*s ref + (tk+tk1)/2;
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213 jac = (tk−tk1)/2;
214 for n = 0 : N
215 alpha0int = integral(@(x) alpha0(x, n), 0, 1);
216 tmp = alpha0intˆ2*sum(wt.*cos((pi/2+n*pi)*(s)).ˆ2)*jac;
217 W1 = W1 + tmp;
218 end
219 end
220

221 % Calculate W2
222 W2 = 0;
223 for k = 1 : M
224 tk1 = dt*(k−1);
225 tk = dt*k;
226 s = (tk−tk1)/2*s ref + (tk+tk1)/2;
227 jac = (tk−tk1)/2;
228 for n = 0 : N
229 alpha0int = integral(@(x) alpha0(x, n), 0, 1);
230 tmp = ...

(pi/2+n*pi)ˆ2*alpha0intˆ2*sum(wt.*sin((pi/2+n*pi)*(s)).ˆ2)*jac;
231 W2 = W2 + tmp;
232 end
233 end
234

235 % Formulate matrices Q, q, and W
236 Q = Q3 + Q1 + gamma*Q2;
237 q = q1 + gamma*q2;
238 W = W1 + gamma*W2;
239

240 % Solve quadratic optimization problem
241 U = quadprog(2*Q,q);
242

243 % Plot control w.r.t time
244 t = 0:dt:T;
245 figure
246 plot(t(1:end−1),U,"LineWidth",1)
247 xlabel('t', 'FontSize', 14);
248 ylabel('control', 'FontSize', 14);
249 filename = strcat('u ', num2str(T), '.mat');
250 save(filename,"U","t");
251

252 % Compute cost function
253 J = U'*Q*U + q'*U + W;
254

255 J = J/2;
256 ratio = J/T;
257

258 % Display results
259 fprintf(['T= ' num2str(T), ' J= ' num2str(J), ' Ratio=' ...

num2str(ratio) '\n']);
260 end
261
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262 function y = y0(x)
263 y = x;
264 end
265

266 function y = y1(x)
267 y = 0*x;
268 end
269

270 function phi = phin(x,n)
271 phi = sqrt(2).* sin((pi/2 + n * pi) .* x);
272 end

This is the code for the optimal control problems for one cycle.

1 function [J,u,y1r,y2r,y3r,z1r,z2r,z3r] = OptControl(eps)
2 % Check if input argument 'eps' is provided, otherwise set default value
3 if nargin == 0
4 eps = 0.5;
5 end
6

7 %% ==== setting Parameters ===========
8 eps0 = 0.5;
9 epsmax = 1;

10

11 % The length of each edge.
12 L = 2;
13 Leps = [L−eps,L−eps,L−eps,eps,eps,eps];
14 Lopt = [L−eps0,L−eps0,L−eps0,eps0,eps0,eps0];
15 hmax = 0.01;
16

17 % Calculate number of intervals
18 l = L−epsmax;
19 v = 1;
20 N0l = ceil(l/hmax);
21 Nlz = ceil((epsmax−eps0)/hmax);
22 Nly = ceil((epsmax−eps)/hmax);
23

24 % Generate node coordinates
25 x0l = linspace(0,L−epsmax,N0l+1);
26 xlz = linspace(L−epsmax,L−eps0,Nlz+1);
27 xly = linspace(L−epsmax,L−eps,Nly+1);
28

29 xlz(1) = [];
30 xly(1) = [];
31

32 % node coordinates
33 xz = [x0l xlz];
34 xy = [x0l xly];
35 % cell sizes
36 hz = diff(xz);
37 hy = diff(xy);
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38 % number of cells
39 Nxy = length(hy);
40 Nxz = length(hz);
41

42 % cell indices for objective functional
43 E = 1:N0l+1;
44

45 % Parameters for small cycle
46 Neps = 10;
47 heps = eps/Neps;
48 hepsOpt = eps0/Neps;
49 xepsopt= linspace(0,eps0,Neps+1);
50

51 % number of basis functions
52 Nfy = 2*(N0l+1);
53 Nfz = 2*(Nxz+1);
54 Nfeps = 2*(Neps+1);
55

56 %% compuet z
57 Nz = [length(hz),length(hz),length(hz),Neps,Neps,Neps];
58 z = cell(6,1);
59 for i = 1 : 6
60 z{i} = zeros(2*Nz(i)+2,1);
61 end
62

63 % Solve equations for coefficients of z
64 syms a2z a3z a4z a5z a6z b1z b4z b5z b6z
65 eq1 = b1z − b5z == −v*Lopt(1);
66 eq2 = a4z*eps0 +b4z −b5z == 0;
67 eq3 = v + a4z −a5z == 0;
68 eq4 = a5z*eps0 + b5z −b6z == 0;
69 eq5 = a2z*Lopt(2) − b6z == 0;
70 eq6 = a2z +a5z −a6z == 0;
71 eq7 = b4z −a6z*eps0 −b6z == 0;
72 eq8 = a3z*Lopt(3) − b4z == 0;
73 eq9 = a3z + a6z −a4z == 0;
74 solu = solve(eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8,eq9);
75

76 az = [v; solu.a2z; solu.a3z; solu.a4z; solu.a5z; solu.a6z];
77 Bz = [solu.b1z; 0; 0; solu.b4z; solu.b5z; solu.b6z; ];
78

79 for i = 1 : 3
80 z{i}(1:Nz(i)+1) = az(i)*xz + Bz(i);
81 z{i}(Nz(i)+2:2*Nz(i)+2) = az(i)*hmax;
82 end
83

84 for i = 4 : 6
85 z{i}(1:Nz(i)+1) = az(i)*xepsopt + Bz(i);
86 z{i}(Nz(i)+2:2*Nz(i)+2) = az(i)*hepsOpt;
87 end
88
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89 %% boundary condition
90 Nf = [repmat(Nfy,1,6)];
91 index = cumsum(Nf);
92 index = [0 index];
93 for i = 1 : 3
94 % index of [y(0),y(L),y'(0),y'(L)];
95 bdy{i} = index(2*i−1)+[1,Nf(2*i−1)/2,Nf(2*i−1)/2+1,Nf(2*i−1)];
96 % index of [p(0),p(L),p'(0),p'(L)];
97 bdp{i} = index(2*i)+[1,Nf(2*i)/2,Nf(2*i)/2+1,Nf(2*i)];
98 end
99

100 %% FEM matrices
101 [As,Am] = graph1D matirx Hermite(N0l,x0l);
102

103 As array = repmat({As}, 1, 6);
104 A = blkdiag(As array{:});
105

106 A(Nfy+1:2*Nfy,1:Nfy) = Am;
107 A(3*Nfy+1:4*Nfy,2*Nfy+1:3*Nfy) = Am;
108 A(5*Nfy+1:6*Nfy,4*Nfy+1:5*Nfy) = Am;
109

110 A(1,Nfy+1) = A(1,Nfy+1)−1;
111

112 A(bdy{1}(2),bdy{1}(2)) = A(bdy{1}(2),bdy{1}(2)) − 2/(2*eps−3);
113 A(bdy{1}(2),bdy{2}(2)) = A(bdy{1}(2),bdy{2}(2)) + 1/(2*eps−3);
114 A(bdy{1}(2),bdy{3}(2)) = A(bdy{1}(2),bdy{3}(2)) + 1/(2*eps−3);
115

116 A(bdy{2}(2),bdy{1}(2)) = A(bdy{2}(2),bdy{1}(2)) + 1/(2*eps−3);
117 A(bdy{2}(2),bdy{2}(2)) = A(bdy{2}(2),bdy{2}(2)) − 2/(2*eps−3);
118 A(bdy{2}(2),bdy{3}(2)) = A(bdy{2}(2),bdy{3}(2)) + 1/(2*eps−3);
119

120 A(bdy{3}(2),bdy{1}(2)) = A(bdy{3}(2),bdy{1}(2)) + 1/(2*eps−3);
121 A(bdy{3}(2),bdy{2}(2)) = A(bdy{3}(2),bdy{2}(2)) + 1/(2*eps−3);
122 A(bdy{3}(2),bdy{3}(2)) = A(bdy{3}(2),bdy{3}(2)) − 2/(2*eps−3);
123

124 A(bdp{1}(2),bdp{1}(2)) = A(bdp{1}(2),bdp{1}(2)) − 2/(2*eps−3);
125 A(bdp{1}(2),bdp{2}(2)) = A(bdp{1}(2),bdp{2}(2)) + 1/(2*eps−3);
126 A(bdp{1}(2),bdp{3}(2)) = A(bdp{1}(2),bdp{3}(2)) + 1/(2*eps−3);
127

128 A(bdp{2}(2),bdp{1}(2)) = A(bdp{2}(2),bdp{1}(2)) + 1/(2*eps−3);
129 A(bdp{2}(2),bdp{2}(2)) = A(bdp{2}(2),bdp{2}(2)) − 2/(2*eps−3);
130 A(bdp{2}(2),bdp{3}(2)) = A(bdp{2}(2),bdp{3}(2)) + 1/(2*eps−3);
131

132 A(bdp{3}(2),bdp{1}(2)) = A(bdp{3}(2),bdp{1}(2)) + 1/(2*eps−3);
133 A(bdp{3}(2),bdp{2}(2)) = A(bdp{3}(2),bdp{2}(2)) + 1/(2*eps−3);
134 A(bdp{3}(2),bdp{3}(2)) = A(bdp{3}(2),bdp{3}(2)) − 2/(2*eps−3);
135

136 b = zeros(size(A,1),1);
137 b(1) = b(1)−v;
138 b(Nfy+1:2*Nfy) = Am*z{1}([E,E+Nfz/2]);
139 b(3*Nfy+1:4*Nfy) = Am*z{2}([E,E+Nfz/2]);
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140 b(5*Nfy+1:6*Nfy) = Am*z{3}([E,E+Nfz/2]);
141

142 %% boundary condition
143 % y2(0) = 0;
144 A(bdy{2}(1),:) = 0;
145 A(bdy{2}(1),bdy{2}(1)) = 1;
146 b(bdy{2}(1)) = 0;
147

148 % y3(0) = 0;
149 A(bdy{3}(1),:) = 0;
150 A(bdy{3}(1),bdy{3}(1)) = 1;
151 b(bdy{3}(1)) = 0;
152

153 % p2(0) = 0;
154 A(bdp{2}(1),:) = 0;
155 A(bdp{2}(1),bdp{2}(1)) = 1;
156 b(bdp{2}(1)) = 0;
157

158 % p3(0) = 0;
159 A(bdp{3}(1),:) = 0;
160 A(bdp{3}(1),bdp{3}(1)) = 1;
161 b(bdp{3}(1)) = 0;
162

163 % Solve linear system
164 solu = A\b;
165

166 for i = 1 : 3
167 y{i} = solu(bdy{i}(1):bdy{i}(2));
168 p{i} = solu(bdp{i}(1):bdp{i}(2));
169 dy{i} = solu(bdy{i}(3):bdy{i}(4))/hmax;
170 dp{i} = solu(bdp{i}(3):bdp{i}(4))/hmax;
171 end
172

173 % Compute objective function J
174 J = 0;
175 for i = 1 : 3
176 tmp = norm(y{i}(E)−z{i}(E))ˆ2*hmax;
177 J = J + tmp;
178 end
179

180 % Compute control variable u
181 u = v − p{1}(1)
182 J = J + (u−v)ˆ2;
183 J = J/2
184

185 y1r = y{1}(E);
186 y2r = y{2}(E);
187 y3r = y{3}(E);
188

189 z1r = z{1}(E);
190 z2r = z{2}(E);
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191 z3r = z{3}(E);
192 end
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