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Goals of this Presentation

Give an introduction to reinforcement learning (RL), starting from
optimal control theory.

Illustrate how RL can be considered to cope with two limitations of
optimal control:

the curse of dimensionality;
the difficulty of model identification.
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Optimal control and its limitations

Optimal control problems

Definition

Let T > 0 and x0 ∈ X . In an optimal control problem, we want to

minimize
u∈U

J(xu, u) = Cf (xu(T )) +

ˆ T

0

C(xu(t), u(t))dt

s.t.

{
ẋu(t) = f (t, xu(t), u(t)) ∀t ∈ [0,T ],

xu(0) = x0

where J : X × U → R. A minimizer of J is called an optimal control.

Example:

minimize
u∈U

λPxu(T )2 + λV ẋu(T )2 +

ˆ T

0

u(t)2 dt

s.t.


mẍu(t) = u(t) ∀t ∈ [0,T ],

xu(0) = x0,

ẋu(0) = 0
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Real systems are non-linear!
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Optimal control and its limitations

Optimal control: numerical toolbox

Methods derived from necessary conditions of optimality

Many options, among which:

Adjoint-methodology: express the gradient ∇uJ in terms of the co-state.

Project u on a space of finite dimension and use non-linear programming.

→ No guarantee of finding an optimal solution.

Methods derived from sufficient conditions of optimality

Use Hamilton-Jacobi-Bellman equations to find the optimal value function V ∗,
and derive a feed-back control from it:{

∂tV
∗ +min

u∈U
{C (x , u) + ⟨f (x , u),∇V ∗⟩} = 0 ∀(x , t)

V ∗(x ,T ) = Cf (x) ∀x
(1)

→ Suffers from the curse of dimensionality.

+ All these methods require an explicit mathematical model!
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From optimal control to reinforcement learning

Reinforcement learning: A first definition

Agent

Environment

Action anNew state sn+1

sn

Reward rn

Figure: The agent–environment interaction [SB18, Adapted from Fig. 3.1].

→ The agent aims to maximize the cumulative reward
N−1∑
n=0

rn + rf .
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From optimal control to reinforcement learning

Reinforcement learning: A first definition

Interact with the system without
knowing the model.

Many possible games (about 10600).
AlphaGo beat professional Go players

in 2016.
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From optimal control to reinforcement learning Dynamic programming

Discrete dynamical system

Discrete dynamics

maximize
π

N−1∑
n=0

rn(sn, an) + rf (sN)

s.t. sn+1 = fn
(
sn, πn(sn)

)
→ sn+1 is assumed to depend only on sn and an.

Policy π

Function that maps states to actions: behaviour of the agent.

Discrete value function
V π
n (s) =

N−1∑
k=n

rk(sk , ak) + rf (sN)

sn = s
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From optimal control to reinforcement learning Dynamic programming

Value function

Figure: Representation of the value function.
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From optimal control to reinforcement learning Dynamic programming

Bellman equation

Hamilton-Jacobi-Bellman equation

∂tV
∗ +min

u∈U
{C (x , u) + ⟨f (x , u),∇V ∗⟩} = 0

Bellman equation

V ∗
n (s) = max

a∈A

{
rn(s, a) + V ∗

n+1(fn(s, a))
}
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From optimal control to reinforcement learning Dynamic programming

Deriving a policy

If the optimal value-function V ∗ is known, the optimal policy π∗ can be
derived as its greedy policy:

π∗(s) = argmax
a∈A

{
r(s, a) + V ∗

n (fn(s, a))
}

Curse of dimensionality

The complexity of the Bellman recursion algorithm is

O(NT × N
dim(X )
X × N

dim(A)
A ),

with NT , NX and NA the number of discretization steps in each direction
of time, state and action respectively.
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From optimal control to reinforcement learning Dynamic programming

Value iteration

Value iteration

Initialize some function V 0 : S × A. For k ∈ N:

V k+1
n (s) = max

a∈A

{
rn(s, a) + V k

n+1(fn(s, a))
}

∀n, s

Then, V k
n −→

k→∞
V ∗
n

→ This convergence result also holds for the in-place value iteration
algorithm, i.e.{

V k+1
n (s) = maxa∈A

{
rn(s, a) + V k

n+1(fn(s, a))
}

for a given (n, s)

V k+1 = V k elsewhere

as long as all states and time steps are visited an infinite number of times.
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From optimal control to reinforcement learning Dynamic programming

Value iteration

N.B.: The order in which states are visited matters:

some orders achieve faster convergence (the best order being Bellman
recursion);

some states might not need to be visited (think of a maze with only
one entrance);

a natural order is the one arising when interacting with the system.
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From optimal control to reinforcement learning Q-learning

Introducing Q

Idea: Replace a value-function of state by a value-function of state and
action:

Q-function

Qπ
n (s, a) = rn(s, a) +

N−1∑
k=n+1

rk(sk , π(sk)) + rf (sN)

Why introduce Q? The Bellman equation rewrites:

Bellman equation

Q∗
n(s, a) = rn(s, a) + max

a′∈A

{
Q∗

n+1(s
′, a′)

}
→ Deriving a policy does not require a model and it is cheaper:

π∗(s) = argmax
a

(Q∗(s, a)) (2)
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From optimal control to reinforcement learning Q-learning

Q-learning algorithm

Algorithm Q-learning [Wat89]
Data: Exploration factor ε > 0, learning rate α > 0, episodes Nepisodes, horizon T > 0.
∀t ∈ {0, ...,T − 1}, ∀s ∈ S , ∀a ∈ A, initialize Qt(s, a) arbitrarily.
for episode = 1, 2, . . . , Nepisodes do

Initialize s.
for t = 0, 1, . . . , T − 1 do

a← πε(s). ← choose action with off-policy
s ′ ← f (s, a).
if t = T − 1 then (value-iteration update)

QT−1(s, a)← (1− α)QT (s, a) + α
[
rT−1(s, a) + rf (s)

]
.

else (value-iteration update)

Qt(s, a)← (1− α)Qt(s, a) + α

[
rt(s, a) + max

a′∈A
Qt+1(s, a

′)

]
.

end if
s ← s ′.

end for
end for
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From optimal control to reinforcement learning Q-learning

Q-learning algorithm
Remarks

About the parameters of Q-learning:

ε sets the amount of exploration:

πε(s, t) =

argmax
a∈A

Qt(s, a) with probability 1− ε

a chosen randomly in A with probability ε.

The learning rate α characterizes how fast we update Q.

→ They set the exploration-exploitation balancing of Q-learning.

Q-learning draws inspiration from temporal difference.

Qt(s, a)← Qt(s, a) + α

 target︷ ︸︸ ︷
rt(s, a) + max

a′∈A
Qt+1(s, a

′)−Qt(s, a)


︸ ︷︷ ︸

temporal difference
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From optimal control to reinforcement learning Q-learning

Reinforcement learning: recap

(Value-based) reinforcement learning usually involves the following
concepts:

It starts from an arbitrary behaviour (i.e. policy).

It evaluates this behaviour, for example using a value function.

It uses this evaluation to improve the behaviour.

This is typically done using some variant of value iteration performed
through an interactive exploration of the system.
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Implementations of RL

Goal of the implementations

Illustrate and visualize Q-learning to better understand its parameters.

See how RL applies to a continuous-time optimal control problem.

Discuss RL from the perspective of the limitations of optimal control
we have mentioned:

avoid model identification;
face the curse of dimensionality through exploration-exploitation
balancing;
tackle hard non-linear problems.

T. Terrisse (FAU DCN-AvH) Reinforcement learning and Control July 7th 2023 22 / 50



Implementations of RL Cart-pushing problem

Cart-pushing problem
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Implementations of RL Cart-pushing problem

Cart-pushing problem
Formulation

Sped-up cart version

Here, x : [0,T ] → R and u ∈ U = L2([0,T ],U). We want to

minimize
u∈U

ˆ T

0

(
λxu(t)

2 + u(t)2
)
dt,

s.t.

{
ẋu(t) = u(t) ∀t ∈ [0,T ],

xu(0) = x0,

where λ > 0 and x0 is taken randomly in [−1, 0].

We fix T = 1 and λ = 10.
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Implementations of RL Cart-pushing problem

Sped-up cart
Discretization

We arbitrarily confine action values in Ũ = [UL,UR ] (with UL ∈ Z− and UR ∈ N),
and we introduce discretization steps ∆t = 1

N , ∆u = 1
NU

and ∆x = 1
NX

for time,
action and state spaces respectively. We look for u in

Ũ∆t,∆u =

{
N−1∑
n=0

un1[tn,tn+1)

∣∣∣∣∣ ∀n ∈ {0, ...,N − 1}, un ∈ Ũ∆u

}
where

Ũ∆u = {UL,UL +∆u, ...,UR}
and the position lives in

X̃∆x = {XL,XL +∆u∆t, ...,XR}.
Then the solution x to the ODE verifies:

xn+1 = P(xn, un)

where
P : X × U → X

(x , u) 7→ x +∆t u.

will be called the “simulator”.
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Implementations of RL Cart-pushing problem

Sped-up cart
Discretization

The optimal control problem also rewrites:

minimize
u∈Ũ∆t,∆u

λ

N−1∑
n=0

(
∆t x2n +∆t2xnun +

∆t3

3
u2n

)
+∆t

N−1∑
n=0

u2n.
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Implementations of RL Cart-pushing problem

Sped-up cart
Discretization

λ T N XL XR NX UL UR NU

10 1 20 −9 8 100 −8 8 5

Table: Numerical parameters for the sped up cart problem
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Implementations of RL Cart-pushing problem

Sped-up cart
RL formulation

Formulation as an RL problem

Using the discretization, we formulate the problem in an RL framing:

S = X̃∆x .

A = Ũ∆u.

The dynamics of the system is f = P.

∀n ∈ {0, ...,N − 1}, ∀s ∈ S , ∀a ∈ A,

rn(s, a) := r(s, a) = −λ
(
∆t s2n +∆t2snan +

∆t3

3 a2n

)
−∆t a2n.

rf (x) = 0.
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Implementations of RL Cart-pushing problem

Sped-up cart
ε = 0.85 and α = 0.2

Figure: Trajectory and control for ε = 0.85 and α = 0.2, for x0 = −1

The RL agent achieves a total cost 2% greater than the analytical solution.
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Implementations of RL Cart-pushing problem

Sped-up cart
ε = 0.85 and α = 0.2

Figure: Q for various time-steps, for ε = 0.85 and α = 0.2
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Implementations of RL Cart-pushing problem

Sped-up cart
ε = 0.85 and α = 0.2

Figure: Training curve for ε = 0.85 and α = 0.2
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Implementations of RL Cart-pushing problem

Sped-up cart
ε = 0.1 and α = 1

Figure: Trajectory and control for ε = 0.1 and α = 1, for x0 = −1

The RL agent achieves a total cost 2% greater than the analytical solution.
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Implementations of RL Cart-pushing problem

Sped-up cart
ε = 0.1 and α = 1

Figure: Q for various time-steps, for ε = 0.1 and α = 1
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Implementations of RL Cart-pushing problem

Sped-up cart
ε = 0.1 and α = 1

Figure: Training curve for ε = 0.1 and α = 1
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Implementations of RL Cart-pushing problem

Sped-up cart
Discussion

Parameters of Q-learning allow to solve the exploration-exploitation
dilemma:

Greater ε lead to more exploration, but also to more variance; hence a
slower training process.

Greater γ leads to steeper updates; in the deterministic case, γ = 1 is
equivalent to value iteration.
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Implementations of RL Cart-pushing problem

Cart-pushing problem
Accelerated cart version

A different algorithm, proximal policy iteration [SWD+17], is used to solve
the full-fledged version of this problem:

minimize
u∈U

λPxu(T )2 + λV ẋu(T )2 +

ˆ T

0
u(t)2 dt

s.t.


mẍu(t) = u(t) ∀t ∈ [0,T ],

xu(0) = x0,

ẋu(0) = 0

where m is considered unknown.

m λP λV T N

1 100 50 1 30

Table: Numerical parameters for the accelerated cart problem
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Implementations of RL Cart-pushing problem

Accelerated cart
Solving with PPO

Figure: Trajectory and control given by the trained PPO agent for x0 = −1

The RL agent achieves a cost 21% greater than the optimal.
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Implementations of RL Cart-pushing problem

Accelerated cart
Solving with PPO

Figure: Control given by the trained PPO agent for x0 = −1
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Implementations of RL Cart-pushing problem

Accelerated cart
Using reinforcement learning

Figure: Training curve for the PPO agent
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Implementations of RL Cart-pushing problem

Accelerated cart
Discussion

The model was never given to the RL agent, thus bypassing model
identification.

The RL agent learns to control the system, but it only gets close to the
optimum for this simple problem.

The RL agent required (optimistically) 90 seconds and 50 000 samples (i.e.
state transitions) to train. This illustrates the sample inefficacy of RL. This
should be compared with a model-identification procedure on harder
problems.
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Implementations of RL Controlling the viscous Burgers equations

Towards non-linear problems

Controlling (viscous) Burgers equations

minimize
a∈A

β∥u(T , ·)− u∗(·)∥2L2(Ω) +

ˆ T

0

∥a(t, ·)∥2L2(Ω) dt

s.t.


∂tu + ∂x

(
u2

2

)
− ν∂2

xxu = a(t, x), t ∈ (0,T ), x ∈ Ω,

u(0, x) = u0(x), x ∈ Ω,

u(t, x) = 0, t ∈ (0,T ), x ∈ ∂Ω,

where

A =
{
a ∈ L2((0,T )× Ω)

∣∣ aL ≤ a(t, x) ≤ aU a.e. in (0,T )× Ω
}
,

where 0 < aL < aU are two real numbers.

This problem is tackled starting from code in [THM+21, Chapter 16].
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Implementations of RL Controlling the viscous Burgers equations

Towards non-linear problems

(a) Instance generation process (b) Initial and target velocities

Figure: Example of an instance of the problem.
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Implementations of RL Controlling the viscous Burgers equations

Towards non-linear problems

Figure: Performance of the trained agent.
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Broadening the scope of RL

Classification of methods

→ What mathematical objects are we learning?

A value-function; different ways of approximating:

dynamic programming: value/policy iteration;
Monte-Carlo methods (zero-bias by law of large numbers);
temporal-difference (low-variance thanks to bootstrapping).

A policy (without the value function): parameterize π and use the
log-derivative trick to do gradient ascent.

Both: actor-critic methods.

T. Terrisse (FAU DCN-AvH) Reinforcement learning and Control July 7th 2023 45 / 50



Broadening the scope of RL

Classification of methods

→ Are we using a model?

Model-free methods, e.g. using Q.

Model-based methods: allow planning and data augmentation.

→ Are we using a different policy during training and exploitation phases?

On-policy algorithms; typically better for early performance.

Off-policy algorithms; typically, the off-policy is chosen for exploration.

→ Are we using deep neural networks ?

To learn a model.

To parameterize a value function.

To parameterize a policy.
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Conclusion
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Conclusion

Conclusion

We introduced reinforcement learning and highlighted some of its useful
features:

exploration-exploitation balancing to circumvent the curse of
dimensionality;

working model-free and in a data-driven manner.

We also noticed some drawbacks of reinforcement learning:

Difficult parameter-tuning;

Sample inefficacy, making a simulator often unavoidable.
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Conclusion

Next steps

Further investigation should be carried out regarding hard non-linear
problems.
The previous experiments can also be reproduced with noisy dynamics to
study RL for stochastic systems.

Lastly, we only scratched the surface of reinforcement learning.
Other active research fields include:

Transfer learning: use a pre-trained model or expert observations to
guide and accelerate the training of an agent.

Inverse reinforcement learning: design a reward function from expert
observations.

Partially-observed states.

. . .
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