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consensus-based optimization (CBO)

CBO: an evolutionary type of gradient-free optimization algorithms to
find the minimum of a given cost function.

Similar methods; Genetic algorithm, Particle Swarm Optimization,
Wolf-pack optimization, Ant Colony Optimization, etc.:

1 First, spread the particles into the domain.
2 Second, evaluate current values from particles’ positions.
3 Third, process time-evolution toward the possible minimum

positions.

For a given L(x), we want xi (t) to approach x∗ := argminx∈Rd L(x).
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consensus-based optimization (CBO)

SIMULATIONS:

Figure: Initial particle distribution and the Rastrigin cost function

Figure: Particle distribution at (left) t = 2, (middle) t = 10, (right) t = 50 5 / 32
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consensus-based optimization (CBO)

Therefore, each particle explores the domain:
xi = i-th agent’s guess for argminx∈Rd L(x)

Iterate on t ∈ N,

xi (t + 1) = xi (t) + (interactions) + (random walks), i = 1, . . . ,N

Three questions:
1 [Consensus] xi (t)− xj(t) decays to zero.
2 [Convergence] all xi (t) converge to its limit xi (∞).
3 [Optimality] xi (∞) ≈ argminx∈Rd L(x) for some i .
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consensus-based optimization (CBO)

CBO is a kind of simplied version of multi-point optimization methods.

Algorithm [K.–Ha–Jin–Kim 2022] based on [Carrillo–Jin–Li–Zhu 2021]

X i
(t+1) = X i

t + γ(X̄ i,∗
t − X i

t ) + diag(ηi,1t , . . . , ηi,dt )(X̄ i,∗
t − X i

t ),

γ > 0, ηi,`t ∼ N (0,
√
ζ) for each i , `, t and

X̄ i,∗
t := argminx∈{X j

t |j∈Ni (t)} L(x), Ni (t) ⊂ {1, 2, . . . ,N}.

This time-evolution corresponds to a continuous stochastic dynamics:

dX i
t = λ(X̄ i,∗

t − X i
t )dt + σ diag(X̄ i,∗

t − X i
t )dW i

t ,

which is surely gradient-free.
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Main result: Consensus of a general CBO algorithm

For the CBO algorithm

X i
(t+1) = X i

t + γ(X̄ i,∗
t − X i

t ) + diag(ηi,1t , . . . , ηi,dt )(X̄ i,∗
t − X i

t ),

we assume X̄ i,∗
t is an arbitrary convex combination among X j

t .

Theorem (K.–Ha–Jin–Kim 2022)

For sufficiently small Var(ηi,lt ), l = 1, . . . ,N,
(1) for some positive random variable ε,

Emax
i,j
‖X i

t − X j
t ‖ = O(e−εt), t →∞.

(2) the following holds almost surely: for some positive random ε,

max
i,j
‖X i

t − X j
t ‖ = O(e−εt), t →∞.

8 / 32



Introduction RBM on CBO Previous works on kinetics Analysis on random network Summary

Numerical simulations; case 1

A common way to set the target point X̄ i,∗
t of the i-th particle is to

set the best point among the whole particles:

X̄ i,∗
t := argminx∈{X j

t }
L(x), i.e., L(X i,∗

t ) = min
j=1,...,N

L(X j
t ).

The simulation (N = 100, γ = 0.01, ζ = 0.5) on Rastrigin
functions suggests the following probabilities to find the minimum:
In 2D and 3D, nearly 100%, however, not exceeding 50% for high
dimensional problems.

Figure: The landscape of Rastrigin function in d=2 (2D).
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Random Batch Method (RBM)

Suggestion on raising success rate: consider complex interaction
structure, such as RBM (in [Carrillo–Jin–Li–Zhu 2021]).

Random Batch Method [Jin–Li–Liu, 2020] suggests a random sampling
on the interactions at each time-step.

Figure: Random pairing from 10 particles (P = 2) from 10 × 9/2 interactions
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Network structure of RBM

From RBM, we the interaction network becomes sparse:
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Figure: Color representation of the adjacency matrix.
(Left two) Examples of random networks from RBM (P = 2,N = 36).
(Right) An average of independent 400 matrices.

Convergence theorem [Jin–Li–Liu, 2020]

Following the law of large numbers, the solution of RBM converges to
the original (all-to-all) dynamics as the time-discretization goes zero.
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Numerical simulations; case RBM

The simulation result shows that if P gets smaller,
then the success rate grows but the cost of computation also grows.

Figure: Success rates from 1000 simulations.
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Numerical simulations; case RBM

The accuracy of algorithm directly depends on the computation time.
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Figure: Average number of steps until stopping criterion holds.

The stopping criterion is made with the change of positions,

N∑
i=1

|x in+1 − x in|2 < 10−3.
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consensus-based optimization (CBO)

Algorithm [K.–Ha–Jin–Kim 2022] based on [Carrillo–Jin–Li–Zhu 2021]

X i
(t+1) = X i

t + γ(X̄ i,∗
t − X i

t ) + diag(ηi,1t , . . . , ηi,dt )(X̄ i,∗
t − X i

t ),

γ > 0, ηi,`t ∼ N (0,
√
ζ) for each i , `, t and

X̄ i,∗
t := argminx∈{X j

t |j∈Ni (t)} L(x), Ni (t) determined by RBM.

It corresponds to a continuous SDE:

dX i
t = λ(X̄ i,∗

t − X i
t )dt + σ diag(X̄ i,∗

t − X i
t )dW i

t .

Here X̄ i,∗
t is the minimum guess from the batch of the i-th particle.

Objectives: here we want to guarantee the termination of the algorithm
by showing convergence of the particles: X i

t → X∞ as t →∞.
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Previous works

Proposal of algorithms & Analysis of the convergence

• [Askari-Sichani–Jalili 2013]: suggestion of the first CBO
• [Pinnau–Totzeck–Tse–Martin 2017]: suggestion of CBO with noise

• [Carrillo–Choi–Totzeck–Tse 2018]: convergence of the kinetic CBO
• [Ha–Jin–Kim 2020,2021]: convergence of a simple case
• [Carrillo–Jin–Li–Zhu 2021]: suggestion of CBO with RBM
• [Fornasier—Klock—Riedl 2021]: optimality of kinetic CBO

• [K.–Ha–Jin–Kim 2022]; current talk.
• [Byeon–Ha–Won 2024 arXiv]; further study on convergence

condition
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Two examples in Literature

The exploration of CBO algorithm has two parts of randomness.

Algorithm with interaction network [Askari-Sichani–Jalili 2013]

xi (t + 1) = xi (t) + γ(x̄∗i (t)− xi (t)), x̄∗i (t) = argminxk (t):k∈Ni (t) L(·)

Algorithm for noisy trajectory [Pinnau–Totzeck–Tse–Martin 2017]

dX i
t = λ(X̄ ∗t − X i

t )dt + σ|X̄ ∗t − X i
t |dW i

t ,

with

X̄ ∗t :=
1∑N

j=1 e
−βL(X j

t )

N∑
j=1

e−βL(X
j
t )X j

t .

The second X̄ ∗t is from the Laplace principle, which converges to the
argument minimum as β →∞. This is an observable in F-P dynamics.
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Algorithm in [Pinnau–Totzeck–Tse–Martin 2017]

Algorithm [Pinnau–Totzeck–Tse–Martin 2017]

dX i
t = λ(X̄ ∗t − X i

t )dt + σ|X̄ ∗t − X i
t |dW i

t ,

with

X̄ ∗t :=
1∑N

j=1 e
−βL(X j

t )

N∑
j=1

e−βL(X
j
t )X j

t .

We can formally send N →∞ to get

X̄ ∗t →
1∫

Rd e−βL(x)dρt

∫
Rd

e−βL(x)xdρt , ρt : prob. measure of X i
t .

If L has a unique minimizer x∗ in the support of ρt , then

m[ρt ] :=
1∫

Rd e−βL(x)dρt

∫
Rd

e−βL(x)xdρt→ x∗ as β →∞.
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Mean-field limit to the kinetic dynamics

From the mean-field limit process, the dynamics of

dX i
t = λ(X̄ ∗t − X i

t )dt + σ|X̄ ∗t − X i
t |dW i

t

becomes dynamics of the density ρt ∈ P(Rd) as a Fokker-Planck
equation:

∂tρt = λ∇ · ((x −m[ρt ])ρt) +
σ2

2
∆(|x −m[ρt ]|2ρt).

Theorem (Convergence) [Pinnau–Totzeck–Tse–Martin 2017]

If λ is large enough (compared to d , σ2, and e−β), then E(ρt) converges
and

Var(ρt) = O(e−ct), t →∞.

Idea:
d

dt
Var(ρt) = −2λVar(ρt) + (dσ2/2)

∫
(x −m[ρt ])

2dρt .
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Limitations of kinetic approach

CBO with RBM converges to the kinetic equation as τ → 0 and
N →∞. However, kinetic equation limit has two significant limitation.

1 Dynamics ignores network structure:
Interactions are always all-to-all.

2 Sample space covers the whole space:
We already know the whole data; including global minimum.
[Fornasier–Klock–Riedl, 2021]

We should get back to the discrete-time dynamics in order to analyze the
performance of algorithms.
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Main result: Consensus of a general CBO algorithm

For the CBO algorithm

X i
(t+1) = X i

t + γ(X̄ i,∗
t − X i

t ) + diag(ηi,1t , . . . , ηi,dt )(X̄ i,∗
t − X i

t ),

we assume X̄ i,∗
t is in the convex hull among X i

t .

Theorem (K.–Ha–Jin–Kim 2022)

For sufficiently small (not depending on d) ζ := Var(ηi,lt ),
(1) for some positive random variable ε,

Emax
i,j
‖X i

t − X j
t ‖ = O(e−εt), t →∞.

(2) the following holds almost surely: for some positive random ε,

max
i,j
‖X i

t − X j
t ‖ = O(e−εt), t →∞.
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Algorithm in [Askari-Sichani–Jalili 2013]

We may rewrite the dynamics without noise in [Askari-Sichani–Jalili
2013],

xi (t + 1) = xi (t) + γ(x̄∗i (t)− xi (t)), x̄∗i (t) = argminxk (t):k∈Ni (t) L(·),

as in the matrix form:

X (t + 1) = A(t)X (t).

For example, if there are 4 particles and the third is the x̄∗i (t) for all i :

A(t) =


1− γ 0 γ 0
0 1− γ γ 0
0 0 1 0
0 0 γ 1− γ

 .
In this case, we have

|xi (t + 1)− xj(t + 1)| ≤ (1− γ)|xi (t)− xj(t)|.
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Ergodicity coefficient

Question: How can we prove the consensus?
Answer: Analysis on the diameter as the variance in the kinetic equation.

D(x) := max
i,j
|xi − xj |.

For a stochastic matrix, define ergodicity coefficient as

α(A) := min
i,j

∑
k

min{aik , ajk} ∈ [0, 1].

Note: α(A) = 1 ⇔ all rows of A are identical.

Proposition [Askari-Sichani–Jalili 2013] from [Markov 1906]

D(Ax) ≤ (1− α(A))D(x).
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Problem 1; the case of ergodicity zero

For example, the stochastic matrix may look like

A =


1− γ γ 0 0
0 1− γ γ 0
0 0 1− γ γ
0 0 0 1

 such as A =


0.9 0.1 0 0
0 0.9 0.1 0
0 0 0.9 0.1
0 0 0 1

 .
Since this is a block matrix, the ergodicity constant should be zero:

α(A) := min
i,j

∑
k

min{aik , ajk} = 0. (i = 1, j = 3)

However, the network is connected; if we consider A2 and A3,

A2 =


0.81 0.18 0.01 0
0 0.81 0.18 0.01
0 0 0.81 0.19
0 0 0 1

 , A3 =


0.729 0.243 0.027 0.001
0 0.729 0.243 0.028
0 0 0.729 0.271
0 0 0 1

 .
Therefore, α(A3) 6= 0 since i = 1 and j = 4 has length 3 connectivity.
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Analytical result in [Askari-Sichani–Jalili 2013]

Therefore, if the network is connect so that

lim
n→∞

α(An) = 1,

then D(Anx) ≤ (1− α(An))D(x)→ 0.
It is convenient to check the convergence to 1 as follows. Define

A((t, s]) := A(t − 1)A(t − 2) . . .A(s) (t > s).

Proposition [Askari-Sichani–Jalili 2013]

Assume that there exists 0 = t0 < t1 < t2 < . . . satisfying

∞∑
i=1

α(A((ti , ti−1])) =∞.

Then lim
n→∞

α(An) = 1 and D(X (t))→ 0 as t →∞.
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Problem 2; connectivity of RBM

The problem occurs when x̄∗i 6= x̄∗j .

For example, the stochastic matrix may look like

A(t) =


1− γ γ 0 0
0 1 0 0
0 0 1− γ γ
0 0 0 1

 .
Since this is a block matrix, the ergodicity constant should be zero:

α(A) := min
i,j

∑
k

min{aik , ajk} = 0. (i = 1, j = 3)

Therefore, the random network needs connectivity.

Lemma: positive ergodicity of a network

Assume that for any i and j , suppose that the information of i at time t
is observed by j at time t + m. Then, α(A((s + m, s])) ≥ γ(1− γ)m.
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Consensus with RBM

Now we may prove that the diameter decays almost surely.

First, from ergodicity argument, we have

D(X (tkm)) ≤ exp
(
− γ(1− γ)m

k∑
s=1

Gs,m
)
D(X (0)),

where Gs,m is 1 if all particles are connected by length m, and 0
otherwise. (This is a random variable with positive probability to be 1)

Note that

lim
k→∞

1
k

k∑
s=1

Gs,m = E[Gs,m] = pm > 0.

Therefore, we conclude the decay of the diameter

D(X (tkm)) ≤ exp(−Λ(m, k)k)D(X (0)),

lim
k→∞

Λ(m, k) = γ(1− γ)mpm.

In other words, the algorithm satisfy consensus.
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Ergodicity with noise?

Now we consider noise;

X i
(t+1) = X i

t + γ(X̄ i,∗
t − X i

t ) + diag(ηi,1t , . . . , ηi,dt )(X̄ i,∗
t − X i

t ),

Then, the network structure

A(t) =


1− γ γ 0 0
0 1 0 0
0 0 1− γ γ
0 0 0 1


becomes

Aε(t) =


1− γ+ε γ−ε 0 0

0 1 0 0
0 0 1− γ+ε γ−ε
0 0 0 1

 .
Then, A is stochastic but can have negative ergodicity.
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Summary and remaining questions

Remarks

1 The convergence of CBO holds with random batch method.

2 This is the first result on the convergence of CBO with
individual random motion on particles.

3 No performance result yet on the global minimizer.

Thank you very much
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