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Introduction
Resnets and neural odes

▶ Resnets are a special architecture of neural networks (NNs):{
xk+1 = xk +

∑p
i=1w

i
kσ

(
aikxk + bik

)
, k ∈ {0, . . . , Nlayers − 1}

x0 = x ∈ Rd.
(1)

Nlayers is the depth of the NN; p is the width of the NN;
wi

k,a
i
k ∈ Rd, bik ∈ R are optimizable weights; xk ∈ Rd are the unknowns.

▶ They are the discretization of neural odes (nodes):{
ẋ(t) =

∑p
i=1wi(t)σ(ai(t) · x(t) + bi(t))

x(0) = x0 ∈ Rd,
(2)

where (wi,ai, bi) ∈ L∞ (
(0, T );Rd × Rd × R

)
are control variables.

▶ We assume that the controls are piecewise-constant with M time discontinuities and take the
ReLU activation function σ(z) = max{z, 0},∀z ∈ R.
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Introduction
Goals

▶ Two antipodal cases can be reached:
• Tight neural odes are obtained when p = 1

ẋ(t) = w(t)σ(a(t) · x(t) + b(t)). (3)
• Deep neural odes are obtained when p ≥ 2 and M ≥ 1

ẋ(t) =

p∑
i=1

wi(t)σ(ai(t) · x(t) + bi(t))

• Shallow neural odes are obtained when M = 0:

ẋ(t) =

p∑
i=1

wiσ(ai · x(t) + bi). (4)

▶ Goal: To build a constructive theory encompassing and linking the tight, deep and shallow
models.

From left to right: tight, deep and shallow ResNet
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Interpolation/Simultaneous control
Setting

▶ Consider a dataset
S = {(xn,yn)} ⊂ Rd × Rd.

We want to know if neural odes can interpolate S, i.e, if there exist controls
(wi,ai, bi)

p
i=1 ⊂ L∞ (

(0, T );Rd × Rd × R
)
such that

ϕT (xn;W,A,b) = yn, ∀n = 1, · · · , N,

where ϕT (·;W,A,b) : Rd → Rd is the flow associated to (2), taking


W = (w1, ...,wp),

A = (a1, ...,ap),

b = (b1, ..., bp).

x(k)−axis

x(k) = c

~0~0

(a) Dilatation

x(k)−axis

x(k) = c

~0~0

(b) Translation

x(k)−axis

x(k) = c

~0~0

(c) Compression

Basic operations allowed by one neuron (wi,ai, bi), extracted from [Ruiz-Balet and Zuazua 2021]
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Interpolation/Simultaneous control
From tight to deep neural odes

Theorem 1 (Simultaneous control with p neurons)

Consider the neural ode (2) with d ≥ 2 and the dataset S ⊂ Rd × Rd with yn ̸= ym, for all n ̸= m.
Let T > 0 be fixed. There exist controls, (wi,ai, bi)

p
i=1 ⊂ L∞ (

(0, T );Rd × Rd × R
)p, such that the

flow ϕT (·;W,A,b) generated by the neural ODE satisfies:

ϕT (xn;W,A,b) = yn, ∀n = 1, ..., N

Moreover, the controls are piecewise constant and the number of time switches is

M = 2

⌊
N

p

⌋
+ 1.

(a) Step 1 of the steering (b) Step 2 of the steering (c) Step 1 in d = 3
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Interpolation/Simultaneous control
From tight to deep neural odes

Corollary 1 (Approximate control with p neurons)

Consider the neural ode (2) with d ≥ 2 and any dataset S ⊂ Rd × Rd.
Let T > 0 be fixed. For any ϵ > 0, there exist controls, (wi,ai, bi)

p
i=1 ⊂ L∞ (

(0, T );Rd × Rd × R
)p,

such that the flow generated by the neural ODE satisfies

|ϕT (xn;W,A,b)− yn| < ϵ, ∀n = 1, · · · , N

Moreover, the controls are piecewise constant and the number of time switches is

M = 2

⌊
N

p

⌋
+ 1.

Remark: As the number of neurons p increases, the required number of time switches M decreases
proportionally. In terms of neural networks, this is interpreted as the exchangeability between width
and depth because they play the same role in the steering.
When p > N , the selected controls exhibit a single discontinuity, indicating a transition to a 2-hidden
layer neural network, instead of the shallow neural ode (4).

How can we reach the autonomous ansatz?
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Interpolation/Simultaneous control
The shallow case

Lemma 1 (Exact controllability with Lipschitz fields)

Consider any dataset S ⊂ Rd × Rd for d ≥ 2, and let T > 0 be fixed. There exists a vector field
V ∈ Lip(Rd;Rd) such that the flow ψT of the equation ẋ = V(x) interpolates the dataset S.

Theorem 2 (Approximate controllability with shallow nodes)

Consider any dataset S ⊂ Rd × Rd for d ≥ 2, and let T > 0 be fixed. For any interpolating field
V ∈ Lip(Rd;Rd) with Lipschitz constant LV , there exist constant controls W,A ∈ Rp×d, b ∈ Rp such
that the flow ϕT generated by the shallow neural ode (4) satisfies

|yn − ϕT (xn;W,A,b)| ≤ Cd,LV

log2m

m1/d
T exp

{
min{LV , LNN}T

}
, ∀n = 1, . . . , N, (5)

where m = (d2 + 2d)p is the total number of parameters in the network field and LNN denotes its
Lipschitz constant.

Sketch of the construction of an interpolating field V
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Interpolation/Simultaneous control
The shallow case

Corollary 2 (Case d > N)

Consider a dataset S ⊂ Rd × Rd with distinct targets and let T > 0. Suppose that d > N .
Then, there exist piecewise constant controls such that the flow ϕT generated by the neural ode (2)
satisfies

ϕT (xn;W,A,b) = yn, ∀n = 1, · · · , N,
Moreover, the number of time discontinuities is

M =

⌊
N

p

⌋
.
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Interpolation/Simultaneous control
The shallow case

Assumption 1

Given the dataset S, there exists a vector a ∈ Sd−1, a permutation τ of N elements and a sequence
−∞ < bN+1 < bN < · · · < b1 <∞ such that

−bn < a · xτ(n) < −bn+1 and − bn < a · yτ(n) < −bn+1, for all n = 1, · · · , N − 1.

Theorem 3 (Exact controllability with shallow nodes)

Consider any dataset S ⊂ Rd × Rd for d ≥ 2, under Assumption 1 and take p = N . For any fixed
time horizon T > 0, there exist constant controls, (wi,ai, bi)

N
i=1 ∈ (Rd × Rd × R)N , such that the flow

ϕT associated to (4) interpolates S.
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Interpolation/Simultaneous control
The shallow case

Proposition 1

Let ρ be an absolutely continuous probability measure defined on the hypercube [−L,L]d for some
L > 0 such that all the marginal measures ρi : [−L,L] → R≥0 for each coordinate are independent
and identically distributed. If every point xn and yn of the dataset S is sampled from ρ, the
probability P that Assumption 1 is fulfilled is bounded as

1−
[
1− 1√

2

( e

2N

)N
]d

≤ P ≤ 1.

Remark: The uniform probability measure in [−L,L]d or any isotropic Gaussian distribution centered
in the origin fulfills the hypothesis of Proposition 1.
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Neural transport equation
Mathematical setting

▶ Consider that the input for the neural ODE is a probability measure ρ0 ∈ P(Rd) instead of a
dataset. Now the question is whether or not the system is able to transform ρ0 into any given
target probability measure ρ∗. More precisely, we want to construct controls W,A,b such that
the flow ϕT generated by the neural ODE satisfies

ϕT (·,W,A,b)#ρ0 ≈ ρ∗(·).
▶ The curve in the space of measures defined by ρ(t)(·) = ϕt(·;W,A,b)#ρ0 solves the equation{

∂tρ+ divx (
∑p

i=1wi σ(ai · x+ bi)) = 0

ρ(0) = ρ0,
(6)

▶ To compute the difference between two measures, we consider:
1. The space of probability measures

Pc
ac(Rd) =

{
µ : B(Rd) → [0, 1] : supp(µ) is compact, µ << Ld

}
.

2. The Wasserstein-1 distance, defined for µ, ν ∈ Pc
ac(Rd) as

W1(µ, ν) = inf
γ∈Π(µ,ν)

{ˆ
Rd×Rd

|x− y|dγ(dx, dy)
}
,

where Π(µ, ν) denotes the set of measures γ on Rd × Rd s.t. projx(γ) = µ and projy(γ) = ν.
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Neural transport equation
Main result

Theorem 4
Let d, p ∈ N∗, and let ρ0 ∈ Pc

ac(Rd), ρ̃ be the uniform probability over [0, 1]d and T > 0 be fixed.
Consider the neural transport equation.
For any ϵ > 0, there exist piece-wise constant controls (wi,ai, bi)

p
i=1 ∈ L∞ (

(0, T );Rd × Rd × R
)p,

such that the solution of the transport equation with initial condition ρ0, ρ(T ), satisfies:

W1(ρ(T ), ρ∗) ≤ ϵ

Moreover, the number of discontinuities of the controls is: M ∼d,ρ0
1

p ϵd

(a) Step 1: partition (b) Step 2: control 11 / 14



Neural transport equation
Explicit computation of the number of discontinuities

There exists a constant C = Cd,ρ0
> 0 such that, for any n ∈ N∗, there exist controls, (wi,ai, bi)

p
i=1 ∈

L∞ (
(0, T );Rd × Rd × R

)p, such that the associated solution of the neural transport equation satisfies

W1(ρ(T ), ρ∗) ≤ C
1

n
.

Moreover, the number M of values taken by the controls is:

▶ In the case p = 1:

M = (2d− 1) +
(
n+ · · ·+ nd

)
= (2d− 1) +

nd+1 − n

n− 1
.

▶ In the case p ≥ 1:

M =

[
2d

p

]
+

([
n

p

]
+ 1 + · · ·+

[
nd

p

]
+ 1

)
▶ In the case p = p1 + ...+ pd, we can simultaneously put pi velocities on the ith coordinate and we have:

M =

[
2d

p

]
+max

{[
n

p1

]
+ 1, ...,

[
nd

pd

]
+ 1

}
.
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Open problems

▶ Better algorithm for the general case: the question of approaching the autonomous regime
as p→ +∞, in the general case or with less restrictive hypothesis, remains open.

▶ Universal approximation: We proved that we can interpolate any function in any finite set of
points. The natural question after this is, how can we now approximate function on the whole
space Rd? and, what regularity hypothesis must make on the target function?

▶ Control of the transport equation: The question of controlling the neural transport
equation to any target probability, and what hypothesis has to be made on it, remains open.

▶ Optimal Lipschitz constant: The question of finding the optimal Lipschitz constant for the
autonomous field that achieves the simultaneous control, is an interesting question that may help
us with the other open questions.

▶ Switching dimensions: The equation describing a resnet imposes that the dimension stays the
same as we go from one layer to the other. It is interesting to think what we can gain from
allowing the dimension to switch at strategic times, both shrinking the dynamics to reduce
complexity or augmenting the dimensionality of the states to create space. How to carry out the
projections or produce new coordinates (maybe through nonlinear functions applied on the
data?) are interesting questions to work on.
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