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The isothermal Euler equations

ρt + qx = 0,

qt + (p + q2

ρ )x = −1
2θ

q|q|
ρ − ρgslope .

(1)

slope := sin(φ), θ := λfric
D , g the gravitational constant

ρ > 0 the gas density

p > 0 the pressure

q the cross-sectional mass flow rate.

p = Z (p)Re
s T

eρ, (2)

where

Z (p) = 1 + αp. (3)
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The isothermal Euler equations
Riemann InvariantsÇ
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å
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1
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√
Re
s T

e |R+−R−|(R+−R−)+
1√
Re
s T

e
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Re
s is the gas constant and T e is the temperature.

λ− =
√

Re
s T

e

ï
R+−R−
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Ä
R++R−
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(5)
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2021, Gugat, M. etc.[1]Ç
R+

R−

å
t

+ diag(c ,−c)

Ç
R+

R−

å
x

= F̃ (R+,R−), (6)

with

F̃ (R+,R−) =

ï
−1

4
θc

∣∣∣∣R+ + R−
R+ − R−

∣∣∣∣(R++R−)−
1

c
gslope

R+ − R−
2

òÇ
1

1

å
.

This paper studies the existence of continuous solutions of the

semilinear model subject to

• bounds on the pressure,

• bounds on the Mach number,

and also the constrained exact boundary controllability of

the system with the same constraints on the pressure and Mach

number.
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2018, Gugat, M.& Ulbrich, S [2]

This paper investigates the existence of semi-global Lipschitz

continuous solutions of the initial boundary value problem of the

quasilinear Euler equation on networks but with horizontal

pipes. Its basic method is the fixed point iteration. It studies

the exact controllability without constraint.
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Preliminaries
Evaluation on the eigenvalues

Assumptions:

(R+(t, x),R−(t, x)) ∈ M1(umax),

M1(umax) := {(R+,R−) : |R+| ≤ umax , |R−| ≤ umax}

Result:

max
{
|λ+(R+,R−)|, |λ−(R+,R−)|

}
≤ Λ(umax),

λ+(R+,R−) ≥ Λ(umax), λ−(R+,R−) ≤ −Λ(umax),
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Preliminaries
Evaluation on the source term

Assumptions:

• (R+(t, x),R−(t, x)) ∈ M1(umax).

• |R+(t, x)− R−(t, x)| are bounded by 2κ.

• R±(t, x) are Lipschitz continuous with respect to x with

the Lipschitz constant KM .

Result:

|σ(R+,R−)− σ(S+,S−)| ≤ Kσ(κ)(|R+ − R−|+ |S+ − S−|),

|σ(R+,R−)| ≤ σmax(κ).
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Preliminaries
The existence and the continuity of characteristic curves

Assumptions:

• (R+,R−) ∈ C ([0,T ]× [0, L])2 is Lipschitz continuous with

respect to x with the Lipschitz-constant Lr .

• (R+,R−) ∈ M1(umax).
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Preliminaries
The existence and the continuity of characteristic curves

Characteristic Curves:

ξR±(s, x , t) = x +

∫ s

t
λ±(R+,R−)(τ, ξ

R
±(τ, x , t))dτ. (7)

Important time variable tR±(x , t) :(Example:tR+(x , t))

• If ξR+(0, x , t) ∈ [0, L], tR+(x , t) = 0.

• If ξR+(0, x , t) < 0, let tR+(x , t) ∈ [0,T ] be defined as the

uniquely determined time with

ξR+(t
R
+(x , t), x , t) = 0.
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Preliminaries
The existence and the continuity of characteristic curves

L

t

x
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R
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(t2, x2)
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ääÄ
tR−(x2, t2), ξ

R
−
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tR−(x2, t2), x2, t2

ää
ξR−(s, x2, t2)

ξR+(s, x2, t2)

ξR+(s, x1, t1)

ξR−(s, x1, t1)

Figure 1: ξR± (s, x , t) and tR±(x , t)
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Preliminaries
The Lipschitz Constant

Approach: Picard-Lindelöf Theorem

Result:

• ξR± (s, x , t)

◦ With regard to s: Ls
◦ With regard to x : Lx
◦ With regard to R = (R+,R−): Hξ

• tR±(t, x)

◦ With regard to x : KB

◦ With regard to R = (R+,R−): HB
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Constants



Ls = Λ(umax),

Lx = exp
(
2KMTΛ(umax)

)
,

KB = 1
Λ(umax )

exp
(
2KMTΛ(umax)

)
,

Hξ = TΛ(umax) exp(KMTΛ(umax)),

HB = 1
Λ(umax )

TΛ(umax) exp(KMTΛ(umax)),

Λ1 = Λ(umax),

Λ2 =
1

Λ(umax )
.

(8)
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The Existing Theorem about the existence of the solution

Theorem

Consider a pipe with physical parameters L > 0, θ ≥ 0 and slope ,

α, g , Re
s , T

e . Define the number

umax ∈
(
0,min{1

2
,− ln(2|α|)}

)
.

Let T > 0 be given, define the sets

Γ+ = {0} × [0, L] ∪ [0,T ]× {0},

Γ− = {0} × [0, L] ∪ [0,T ]× {L}.
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With the given values of R+ on Γ+ and R− on Γ−that prescribe

initial conditions at t = 0 and boundary conditions at x = 0 and

x = L, and assume that the C 0− compatibility conditions are

satisfied for R+(t, x) on Γ+ and for R−(t, x) on Γ−. Let

Lipschitz continuous states R+ on Γ+ and R− on Γ− be given.

Let KR denote a common Lipschitz constant for R+ on Γ+ and

R− on Γ−, which means that for (t1, x1), (t2, x2) ∈ Γ±, we have

|R±(t1, x1)− R±(t2, x2)| ≤ KR

(
|t2 − t1|+ |x2 − x1|

)
. (9)

Define the numbers:

B± = sup
(t,x)∈Γ±

{|R±(t, x)|},B = max{B+,B−}.
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Assume that there exists a number κ > 0 satisfies:

B +
1

2
Tθ

√
Re
s T

eκ2 +
1√
Re
s T

e
g |slope |T ≤ min{umax , κ}, (10)

and that KM ≥ KR satisfied these two following inequalities:

Lx

(
KR

(
1 + Λ1Λ2 + Λ2

)
+ Kσ(κ)

(
2KMT + Λ2

))
≤ KM , (11)

LxKRT
(
Λ1 + Λ1Λ2 + Λ2

1Λ2

)
+Kσ(κ)T

(
2 + LxΛ1Λ2 + 2LxKMTΛ1

)
< 1

(12)

with the notation before.
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Then the system (4) has a unique solution on [0,T ] that solves

the initial boundary value problem in the sense of characteristics.

Moreover we have (R+(t, x),R−(t, x)) ∈ M2(KM) for

(t, x) ∈ [0,T ]× [0, L] with the set M2(KM) defined as follows

M2(KM) = {(R+,R−) ∈ M1(umax) : |R+(t, x)− R−(t, x)| ≤ 2κ, and

R+ and R− are continuous on [0,T ]× [0, L] and Lipschitz

continuous with respect to x with the Lipschitz constant KM}.
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Sketch of Proof- Banach’s fixed point theorem

Define the operator P(t, x) = (P+,P−), with

P±(R+,R−)(t, x)

=R±(t±(x , t), ξ
R
±(t±(x , t), x , t))∓

∫ t

t±(x ,t)
σ(R+,R−)(τ, ξ

R
±(τ, x , t))dτ.

• The fixed point iteration is well-defined.

( From equation (10))

• Uniform boundedness of the Lipschitz constants.

( From equation (11))

(R+,R−) ∈ M2(KM), then

(P+(R+,R−),P−(R+,R−)) ∈ M2(KM).
• Contractivity. ( From equation (12))

|P±(R+,R−)− P±(S+,S−)| < Kct∥R − S∥C0 (Kct < 1).
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Some Details

For (S+,S−), (R+,R−) ∈ M2(KM), S+ = R+ on Γ+ and

S− = R− on Γ−, we set

|P±(R+,R−)(t, x)− P±(S+,S−)(t, x)| ≤ I1 + I2,

with

I1 = |R±(t
R
±(x , t), ξ

R
±(t

R
±(x , t), x , t))−S±(t

S
±(x , t), ξ

S
±(t

S
±(x , t), x , t))|,

I2 =|
∫ t

tR±(x ,t)
σ(R+,R−)(τ, ξ

R
±(τ, x , t))dτ

−
∫ t

tS±(x ,t)
σ(S+,S−)(τ, ξ

S
±(τ, x , t))dτ |.
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Some Details

I1 =
∣∣R±

(
tR±(x , t), ξ

R
±(t

R
±(x , t), x , t)

)
− S±

(
tS±(x , t), ξ

S
±(t

S
±(x , t), x , t)

)∣∣
≤
∣∣R±

(
tR±(x , t), ξ

R
±(t

R
±(x , t), x , t)

)
− R±

(
tS±(x , t), ξ

S
±(t

S
±(x , t), x , t)

)∣∣
+
∣∣R±

(
tS±(x , t), ξ

S
±(t

S
±(x , t), x , t)

)
− S±

(
tS±(x , t), ξ

S
±(t

S
±(x , t), x , t)

)∣∣
≤KR

(∣∣ξR±(tR±(x , t), x , t)− ξS±(t
S
±(x , t), x , t)

∣∣+ ∣∣tR±(x , t)− tS±(x , t)
∣∣)

≤KR

∣∣ξR±(tR±(x , t), x , t)− ξS±(t
R
±(x , t), x , t)

∣∣
+ KR

∣∣ξS±(tR±(x , t), x , t)− ξS±(t
S
±(x , t), x , t)

∣∣
+ KR

∣∣tR±(x , t)− tS±(x , t)
∣∣

≤KR∥ξR± − ξS±∥C0 + KR(Ls + 1)|tR±(x , t)− tS±(x , t)|.
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Some Details

I2 =

∣∣∣∣ ∫ t

tS±(x ,t)
σ(R+,R−)(τ, ξ

R
±(τ, x , t))− σ(S+,S−)(τ, ξ

S
±(τ, x , t))dτ

∣∣∣∣
+

∣∣∣∣ ∫ tS±(x ,t)

tR±(x ,t)
σ(S+,S−)(τ, ξ

S
±(τ, x , t)dτ

∣∣∣∣
≤
∫ t

tS±(x ,t)

∣∣∣σ(R+,R−)
(
τ, ξR±(τ, x , t)

)
− σ(S+,S−)

(
τ, ξR±(τ, x , t)

)∣∣∣dτ+∫ t

tS±(x ,t)

∣∣∣σ(S+,S−)(τ, ξR±(τ, x , t))− σ(S+, S−)
(
τ, ξS±(τ, x , t)

)∣∣∣dτ
+ Kσ(κ)|tR±(x , t)− tS±(x , t)|

≤2TKσ(κ)∥R − S∥C0 + 2TKσ(κ)KM∥ξR± − ξS±∥C0

+ Kσ(κ)|tR±(x , t)− tS±(x , t)|.
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Semi-global Solution

If we assume that T > L
Λ(umax )

, we can find a value

Tin ∈ [ L
Λ(umax )

,T ] where the conditions (10)-(12) hold for

T = Tin. The reason for being able to substitute Tin for T in all

the estimates provided in the proof is that for any

(t, x) ∈ [0,T ]× [0, L], we have:

|t − t±(x , t)| <
L

Λ(umax)
< Tin.

This implies that the estimates still hold for Tin. Therefore,

based on the assumption, we establish the sufficient condition

(10)-(12) with T = Tin, ensuring the existence of a solution to

the system. Consequently, for T > L
Λ(umax )

, it is sufficient to

demonstrate the conditions (10)-(12) for some

T = Tin ∈ [ L
Λ(umax )

,T ].
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Constrained Exact Controllability
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Box Constraint

• Pressure constraint

p ≤ p ≤ p,

which can be expressed in terms of the Riemann invariants

as:

2 ln
(
p
)
≤ R+ + R− ≤ 2 ln(p). (13)

• Velocity constraint

|v | ≤ λ0. (14)

Expressing v as v =

√
Re
s T

e(R+−R−)

2λ0
, we can rephrase

condition (14) in terms of the Riemann invariants as:

− 2λ0√
Re
s T

e
≤ R+ − R− ≤ 2λ0√

Re
s T

e
. (15)
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Range

DI DII

RIII

RIV

Imid

T

L

t

x

0

DI := {(t, x)|t ∈ (0, tI ), x ∈ [ξ+(t, 0, 0), ξ−(t, L, 0)]},

DII := {(t, x)|t ∈ (tII ,T ), x ∈ [ξ+(t, 0, 0), ξ−(t, L, 0)]}.

kI =
ξ+(tII , 0,T )− ξ+(tI , 0, 0)

tII − tI
.

Then the segment is defined as

Imid =

ßÅ
t, ξ+(tI , 0, 0) + kI (t − tI )

ã∣∣∣∣t ∈ [tI , tII ]

™
.
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Constrained Exact Controllability

DI DII

RIII

RIV

Imid

Γ+III

Γ−IIIΓ+IIIΓ−III

T

L

t

x

0

we define the following sets:

Γ = {0} × [0, L] ∪ Imid ∪ {T0} × [0, L], (16)

ΓIII
+ := Imid∪{(t, ξ−(t, 0,T ))|t ∈ [tII ,T0]}, ΓIII

− := Imid∪{(t, ξ+(t, 0, 0))|t ∈ [0, tI ]},

ΓIV
+ := Imid∪{(t, ξ−(t, L, 0))|t ∈ [0, tI ]}, ΓIV

− := Imid∪{(t, ξ+(t, L,T ))|t ∈ [tII ,T0]},
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Boundary Control

The control input, denoted as u±(t), is derived from the

boundary trace of the constructed state R = (R+,R−).u+(t) = R+(0, t),

u−(t) = R−(L, t), t ∈ [0,T0].
(17)
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Lipschitz Constants



L̃s := Λ(umax),

Lx := exp
(
2KMTΛ(umid)

)
,

L̃x := exp
(
2KMTΛ(umax)

)
,

KA := 2TKσ(κ)KMLx + σmax(κ) + KRLx ,

KB := 1
Λ(umax )

exp
(
2KMTΛ(umax)

)
,

Kσ(s) :=
1
2θ
√

Re
s T

es + 1√
Re
s T

e
gslope ,‹KB := 1

Λ(umax )−kI
exp

(
LrTΛ(umax)

)
,

Hξ(s) = TΛ(umax) exp(sTΛ(umax)),‹HB(s) :=
TΛ(umax ) exp(sTΛ(umax ))

Λ(umax )−kI
.

(18)
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The exact constrained controllability

Consider a pipe with physical parameters L > 0, θ ≥ 0 and slope ,

α, g , Re
s , T

e . Define the number

umax ∈
(
0,min

{
1
2 ,− ln(2|α|)

})
. Choose the control time

T0 >
L

Λ(umax )
and an intermediate time

T1 ∈ [
L

Λ(umax)
,T0].

Let kI ∈ (−∞,Λ(umax)). Let the stationary initial state R±(0)

and the desired stationary terminal state R±(T0) be given.

Assume that R±(0) and R±(T0) are Lipschitz continuous with

the Lipschitz constant KR and satisfy the conditions included in

the following estimate (19). We construct the boundary controls

u±(t) defined in (17) that steer the system from the initial state

to the terminal state under the following assumption (19)-(24).
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Let KR denote a common Lipschitz constant for R± on Γ

defined in (16), which means for (t1, x1), (t2, x2) ∈ Γ,

|R±(t1, x1)− R±(t2, x2)| ≤ KR

(
|t2 − t1|+ |x2 − x1|

)
. (19)

Define the numbers:

B = sup
(t,x)∈Γ

{R+(t, x),R−(t, x)}, A = inf
(t,x)∈Γ

{R+(t, x),R−(t, x)}.

Assume that there exists numbers κ > 0, umid ∈ (0, umax) that

satisfy:
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
B + T1Kσ(κ) ∈ (−umid , umid),

A− T1Kσ(κ) ∈ (−umid , umid),

B − A+ 2T1Kσ(κ) ≤ κ,

(20)

and that there exists a number κ̃ > κ that satisfies:
B + T1Kσ(κ) + T1Kσ(κ̃) ∈ (−umax , umax),

A− T1Kσ(κ)− T1Kσ(κ̃) ∈ (−umax , umax),

B − A+ 2T1Kσ(κ) + 2T1Kσ(κ̃) ≤ κ̃.

(21)

Moreover, κ, κ̃ also satisfy
B + T1Kσ(κ) + T1Kσ(κ̃) ∈ (−umax , umax),

A− T1Kσ(κ)− T1Kσ(κ̃) ∈ (−umax , umax),

B − A+ 2T1Kσ(κ) + 2T1Kσ(κ̃) ≤ κ̃.

(22)

with the notation before.
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Assume that KM ≥ KR satisfies the two following inequalities:

Lx

Å
KR

(
(Λ3 + Λ3kI ) + L̃x(1 + 2Λ1Λ3 + Λ3kI )

)
+Kσ(κ)

(
Λ3 + 2L̃xT1KM(1 + Λ3 + Λ1Λ3 + Λ3kI )

)
+Kσ(κ̃)(2T1KM + Λ3)

ã
≤ KM .

(23)

and

LxKRT1Λ1Λ3

(
(Λ3 + Λ3kI ) + L̃x(1 + 2Λ1Λ3 + Λ3kI )

)
+Kσ(κ̃)T1

(
2 + 2LxKMT1Λ1 + LxΛ1Λ3

)
+LxKσ(κ)T1Λ1Λ3

(
Λ3 + 2L̃xT1KM(1 + Λ3 + Λ1Λ3 + Λ3kI )

)
< 1.

(24)
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Define the set

M3(KM) = {(R+,R−) ∈ M1(umax) : |R+(t, x)− R−(t, x)| ≤ 2κ̃,

R+ and R− are continuous on[0,T0]× [0, L] and Lipschitz

continuous with respect to x with the Lipschitz constant KM}.

Then the system (4) has a unique solution on [0,T0] under the

corresponding controls u±(t) from (17). Moreover we have that

(R+,R−) ∈ M3(KM) satisfies the box constraints (13) and (15)

on [0,T0]× [0, L].
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Idea of Proof

By imposing suitable assumptions on the value of Imid , we

establish the unique existence of the solution in each part and

ensure its satisfaction of the constraint. Consequently, we obtain

a solution on [0,T ]× [0, L] that satisfies the initial state and the

desired terminal state. The uniqueness of the solution implies

the unique determination of the control input, leading to the

achievement of constrained exact controllability.
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Constrained Exact Controllability

DI DII

RIII

RIV

Imid

Γ+III

Γ−IIIΓ+IIIΓ−III

T

L

t

x

0

Figure 2. Domain and boundaries for the exact controllability

boundary analysis
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Constrained Exact Controllability
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Figure 3. t±(x , t) in RIII

Xu HUANG On the constrained exact boundary controllability of a quasilinear model for pipeline gas flow 37/40



Perspectives

• Streamline and simplify the existing conditions in order to

facilitate the verification process.

• Extend our research to investigate the constrained

controllability between arbitrary stationary states for the

Saint-Venant system, building upon the controllability

established by Gugat and Leugering in their work [3].
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Thank you for listening!
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