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Bastin, G.& Coron, J-M

In [1, Page 197], Bastin and Coron mention that for some

systems of balance laws, there is an intrinsic limit of stabilization

under local boundary control. It is proved that the following

system
∂ty1 + ∂xy1 + y2 = 0, (t, x) ∈ (0,+∞)× (0, L),

∂ty2 − ∂xy2 + y1 = 0, (t, x) ∈ (0,+∞)× (0, L),

y2(t, L) = y1(t, L), t ∈ (0,+∞),

y1(t, 0) = ky2(t, 0), t ∈ (0,+∞).

(1)

cannot be stabilized for any k ∈ R if L ∈ (πc ,+∞). On the

other hand, the system (1) is stabilizable if L ∈ (0, π
2c ) from [2].
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Martin, G. & Stephan, G.[3]

Figure 2: A star-shaped network.
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A network with a circle

L1 L2 = L30 0

Boundary Feedback control at L1,

u1x = −K1u
1
t

Arc 1

Arc 2

Arc 3

Arc 4

L4

Figure 1: A network with a circle in 4 edges.
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Model

For k ∈ {1, 2, 3, 4}, let real numbers ck > 0, εk ≥ 0 be given.

We consider the following system:

uktt = ukxx − 2εku
k
t − (ε2k − c2k )u

k ,

u1(t, 0) = u2(t, 0) = u3(t, 0),

u2(t, L2) = u3(t, L3) = u4(t, L4),

Σk=1,2,3u
k
x (t, 0) = 0,

Σk=2,3,4u
k
x (t, Lk) = 0,

u4(t, 0) = 0,

u1x (t, L1) = −K1u
1
t (t, L1).

(2)

t ∈ (0,+∞), x ∈ [0, Lk ], k ∈ {1, 2, 3, 4}.
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Model

The real number K1 is the control gain. Besides, the initial state

is given:U(0, x) = (u10(x), ..., u
4
0(x)) = (u1(0, x), ..., u4(0, x)),

V (0, x) = (v10 (x), ..., v
4
0 (x)) = (u1t (0, x), ..., u

4
t (0, x)).
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Stabilizability

Definition

System (2) is stabilizable if there exists a control gain K1 ∈ R,

such that for all U(0, ·) ∈
4∏

k=1

H1(0, Lk) and all

V (0, ·) ∈
4∏

k=1

L2(0, Lk), we have

lim
t→+∞

∥U(t, ·)∥H1 = 0.
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Preliminaries
Preliminaries

• Well Posedness: By employing classical methods such as

the method of characteristics or the theory of strongly

continuous one-parameter semigroups of linear operators

(see [4]), we can establish the well-posedness of the

solution to the system.

• Sturm Liouville: Building upon the findings in [5] and [6],

we identify that the eigenvalue problem of the system (2)

corresponds to a Sturm-Liouville eigenvalue problem on the

network.
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Main Theorem

Theorem

Assume that ck = c1 = c , εk = ε1 = ε, Lk = L1 = L, that is the

length of the arcs in the network and the parameters are the

same for all arcs.

• If L < Lmin =
arctan

»
2
7√

c2−ε2
, the system (2) is stabilizable (with

|K1| sufficiently small).

• If L > Lmax = π
2
√
c2−ε2

, the system (2) is not stabilizable.
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Sketch of Proof- Spectral Analysis

For the stability analysis, we employ spectral analysis. For

L < Lmin =
arctan

»
2
7√

c2−ε2
with K1 = 0 and Lk = L (k = 1, 2, 3, 4),

we first establish the characteristic equation. All the eigenvalues

of the system (2) lie in the left half-plane, indicating that the

system (2) is L2−exponentially stable. With the perturbation on

the control parameter and the length, the eigenvalue still lies in

the left half-plane.
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Perturbation of the arcs Lk

Theorem

If K1 = 0, L < Lmin, we consider a small perturbation according

to Lk (k = 1, 2, 3, 4), that is:
L̃1 = L+ d1r ,

L̃2 = L̃3 = L+ d2r ,

L̃4 = L+ d4r .

(3)

Here d1, d2, d4, r are real constants. The system 2 with

ck = c1 = c , εk = ε1 = ε, Lk = L̃k is exponentially stable if |r | is
sufficiently small.
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Perturbation of control parameter K1

Theorem

The following system is exponentially stable if L < Lmin and |K1|
is sufficiently small.

uktt = ukxx − 2εukt − (ε2 − c2)uk ,

u1(t, 0) = u2(t, 0) = u3(t, 0),

u2(t, L) = u3(t, L) = u4(t, L),

Σk=1,2,3u
k
x (t, 0) = 0,

Σk=2,3,4u
k
x (t, L) = 0,

u4(t, 0) = 0,

u1x (t, L) = K1u
1
t (t, L).

(4)

t ∈ (0,+∞), x ∈ [0, L], k ∈ {1, 2, 3, 4},
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Example 1

For the given initial value (5), we can calculate the characteristic

function of the system (2). The numerical result generated with

MATLAB using the upwind implicit scheme for the system (2),

along with the numerical result obtained from the eigenfunctions

calculated before, will be shown in the following Figure 1. We

take the initial value:
u1(0, x) = −4 sin

(
π
2 x

)
,

ui (0, x) = 2 sin
(
π
2 x

)
, i ∈ {2, 3, 4},

ukt (0, x) = 0, k ∈ {1, 2, 3, 4}.

(5)
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The time evolution of the network

Figure 1 : The time evolution of the network with the initial

value (5)
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Example 1

ε = π, c =
√
1.01π, L = 1

Green Line: Numerical simulation Result Red Line: Exact Solution

From the figure we can observe that the simulation result of the

scheme is quite good.
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Example 2

We normalize the initial L2 energy as 1. Taking

ε = π, c =
√
1.01π, so Theorem 2 gives us

Lmin = 1.5625, Lmax = 5. The time evolution of the log of

L2-energy of the networks with different length of the arcs can

be shown in Figure 6.2.1, Figure 6.2.2, and Figure 6.2.3 for

K1 = 0, 1, 20. We take the initial value:
u1(0, x) = sin

(
πx
L

)
+ π

Lx ,

u2(0, x) = u3(0, x) = − sin
(
πx
L

)
,

u4(0, x) = −2π
L x ,

ukt (0, x) = 0, k ∈ {1, 2, 3, 4}.

(6)
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Example 2

0 50 100 150 200 250 300

-40

-35

-30

-25

-20

-15

-10

-5

0

K=0

K=1

K=20

0 50 100 150 200 250 300 350 400 450 500

-10

-8

-6

-4

-2

0

2

4

6

8

10

K=0

K=1

K=20

L1 = 1 < Lmin L2 = 3 ∈ (Lmin, Lmax)

0 50 100 150 200 250 300 350 400 450 500

-2

0

2

4

6

8

10

12

K=0

K=1

K=20

L3 = 6 > Lmax
Xu HUANG Limits of the stabilization of a networked hyperbolic system with a circle 18/24



Example 2

From the numerical results, we conclude that if there exists a

critical length Lc of the arc that divides the stabilization of the

system, Lc has a higher probability to be equal to Lmin.
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Example 3

We take ε = 4 and c = 5, while L = 1
2 > Lmin, only if

K1 ∈ (0.8, 5.0) can the system possibly be stable. We try to

simulate the values of K1 ∈ 0.9, 1, 2, 3, 4, 4.5 using the initial

value (6). However, because the five lines of the time evolution

of L2-energy of the networks are very close and increasing, we

are only presenting the log of energy for K1 = 3 in Figure 6.3.1.
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Figure 6.3.1: c = 5, ε = 4, L = 1
2 , K1 = 3
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Example 3

The numerical results show that the system is not exponentially

stable even if we cannot theoretically prove there exists an

eigenvalue in the right part of the plane.
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Perspectives

• The existence of the critical length to precisely separate the

domains of stability and instability.

• More complicated system.
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Thank you for listening!

Xu Huang
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