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The Diffusive Lotka-Volterra
Model



The Diffusive Lotka-Volterra Model

The Lotka-Volterra model reflects real ecological interactions where
species compete for limited resources, potentially leading to
coexistence, dominance of one species, or total extinction.

Comprehending the mechanisms governing these systems can yield
critical insights for developing strategies in ecological management

and biodiversity conservation.
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The Diffusive Lotka-Volterra Model

Our problem is described below
ut = d1uxx + u(1− u− k1v), (x, t) ∈ (0, L)× R+

vt = d2vxx + v(a− v− k2u), (x, t) ∈ (0, L)× R+

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (0, L)
(1)

where

• u and v are the population densities of the two species
competing in (0, L) and (u(x, t), v(x, t)) is the state to be
controlled;

• u0 ∈ L∞((0, L); [0, 1]) and v0 ∈ L∞((0, L); [0,a]) are the initial
conditions;

• d1,d2 > 0 are constants representing the diffusion rates;
• a > 0 is a constant representing the intrinsic growth rate of v;
• k1, k2 > 0 are constants representing the inter-specific
competition between u and v.
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Note that 1 and a are the carrying capacities of u and v, respectively,
and therefore it is natural to constrain the solutions by these values,
i.e.

0 ≤ u(x, t) ≤ 1 and 0 ≤ v(x, t) ≤ a for all (x, t) ∈ (0, L)× R+. (2)

Moreover, we assume
k1, k2 < 1

and this condition results in a weak competition system.

We suppose boundary controls constraints

cu(x, t), cv(x, t) ∈ L∞({0, L} × R+),{
u(x, t) = cu(x, t) (x, t) ∈ {0, L} × R+

v(x, t) = cv(x, t) (x, t) ∈ {0, L} × R+ (3)

satisfying
0 ≤ cu ≤ 1 and 0 ≤ cv ≤ a. (4)
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Definition 1
We say that (1) is controllable in infinite time towards (u(x), v(x)) if
for any initial condition (u0(x), v0(x)) (0 ≤ u0 ≤ 1, 0 ≤ v0 ≤ a), there
exist controls cu ∈ L∞({0, L} × R+; [0, 1]), cv ∈ L∞({0, L} × R+; [0,a])
such that

(u(x, t), v(x, t)) → (u(x), v(x))

uniformly in [0, L] as t→ ∞.

Definition 2
We say that (1) is controllable in finite time towards (u(x), v(x)) if for
any initial condition (u0(x), v0(x)) (0 ≤ u0 ≤ 1, 0 ≤ v0 ≤ a), there exist
T > 0 and controls cu ∈ L∞({0, L} × R+; [0, 1]),
cv ∈ L∞({0, L} × R+; [0,a]) such that

(u(x, T), v(x, T)) = (u(x), v(x)).
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The targets to be considered in this work are described below.

• a homogeneous state of species coexistence

(u∗, v∗) =
(
1− k1a
1− k1k2

,
a− k2
1− k1k2

)
, (5)

which only makes sense to us when k2 < a < 1/k1;
• the extinction of the species (0, 0);
• the survival of one of the species (1, 0) and (0,a);
• a heterogeneous state of species coexistence for the case
d1 = d2 = d and a = 1,

(u∗∗(x), v∗∗(x)) =
((

1− k1
1− k1k2

)
θ(x),

(
1− k2
1− k1k2

)
θ(x)

)
(6)

where θ(x) is a smooth function that satisfies
dθ′′(x) + θ(x)(1− θ(x)) = 0 x ∈ (0, L)
θ(0) = θ(L) = 0,
0 < θ(x) < 1, x ∈ (0, L).

(7)
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Main Results



Main Results

Theorem 1

If k2 < a <
1
k1
then (1) is controllable in infinite time towards (u∗, v∗)

defined in (5).

• The condition on the parameters a, k1, k2 is necessary for the
existence of a coexistence state (u∗, v∗) and sufficient for the
controllability towards it in the weak competition regime.

• Controllability towards the target (u∗, v∗) is independent of the
domain size L and of the parameters d1, d2.
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Theorem 2

(i) If L ≤
√
d2
a π or k2 > a then (1) is controllable in infinite time

towards (1, 0).

(ii) If L ≤
√
d1π or k1 >

1
a then (1) is controllable in infinite time

towards (0,a).

• This theorem illustrates the complex balance between diffusion,
competition, and domain size in determining species
dominance.

• A natural question arises regarding controllability towards (1, 0)
or (0,a) when none of these conditions hold. The answer is
provided in the following theorem.
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Theorem 3

If k2 < a < 1/k1 and

L > max


√

d1
1− ak1

π,

√
d2

a− k2
π

 (8)

then (1) is not controllable in infinite time towards either (1, 0) or
(0,a).

• Note that (8) contradicts all conditions present in Theorem 2.
Non-controllability is demonstrated through the construction of
barrier functions that prevent certain initial states from
approaching (1, 0) or (0,a).
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Theorem 4

(i) If L ≤ min

{√
d1π,

√
d2
a π

}
, then the system (1) is controllable in

infinite time towards (0, 0);

(ii) if a <
1
k1
and L >

√
d1

1− ak1
π or a > k2 and L >

√
d2

a− k2
π, then

the system (1) is not controllable in infinite time towards (0, 0).
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Figure 1: Barrier functions that prevent u and/or v from extinction.
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Theorem 5

If a = 1, d1 = d2 = d > 0 and L >
√
dπ, then (1) is controllable in

infinite time towards a specific heterogeneous coexistence state
(u∗∗, v∗∗) defined in (6).

Figure 2: The target (u∗∗, v∗∗).
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Numerical Simulations



Homogeneous Coexistence

In Figure 3, we have a simulation regarding the target

(u∗, v∗) =
(
1− k1a
1− k1k2

,
a− k2
1− k1k2

)
≈ (0.45, 0.68).
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Figure 3: Controls cu (green line) and cv (orange line) approach u∗ (dashed
green line) and v∗ (dashed orange line). Solutions u (blue line) and v (red
line) approach u∗ (dashed blue line) and v∗ (dashed red line). 12



The initial condition assumed was (u0, v0) = (0.2, 0.5), and we can
observe that, for each fixed t, the solutions arising from this strategy
are constant functions of x. This is not the case when we simulate
the optimal control of the problem with the same parameters.
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Figure 4: Optimal controls cu (green line) and cv (orange line) approach u∗

(dashed green line) and v∗ (dashed orange line). Solutions u (blue line) and
v (red line) approach u∗ (dashed blue line) and v∗ (dashed red line).
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Barrier Functions

Here, we assume a <
1
k1
and L >

√
d1

1− ak1
π, and then we will have

the formation of a barrier solution that prevents u from approaching
0. Figure 5 was generated with the parameters: k1 = 0.8, k2 = 0.7,
a = 1, d1 = 0.01, d2 = 4, and L = 1.
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Figure 5: Solutions u (blue line), v (red line) and the barrier solution (dashed
black line) (case

√
d1/(1− ak1)π < L <

√
d2/(a− k2)π).

Note that, in this simulated case, the barrier solution only prevents
the extinction of species u.
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Assuming

L > max{
√
d1/(1− ak1)π,

√
d2/(a− k2)π} (9)

we have the existence of barrier functions for u and v.
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Figure 6: Solutions u (blue line), v (red line) and the barrier solutions to u
and v (dashed black line and dashed gray line, respectively).
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Finite-Time Controllability

Theorem 6

If k2 < a <
1
k1
then (1) is controllable in finite time towards (u∗, v∗)

defined in (5).

• For this theorem, our result on asymptotic controllability
towards (u∗, v∗) is essential. Indeed, once the trajectory is
sufficiently close to target (u∗, v∗) (Theorem 1), local finite-time
controllability results can be employed to reach the target in
finite time.

• This is possible because, locally, the control can oscillate above
and below the target, allowing the trajectory to reach it in finite
time. For this reason, controllability in finite time is not
expected towards the targets (1, 0), (0,a), (0, 0) and (u∗∗, v∗∗), in
these cases, the local oscillation of the control is restricted by
the constraints.
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Concluding Remarks

• All results can be generalized to n-dimensional domains (n > 1).
Our choice of n = 1 was made to facilitate understanding.

The issues addressed here naturally lead us to envision new
possibilities. Small changes in problem (1) significantly alter the
model as well as its dynamics and results.

• Strong competition between the species (k1, k2 > 1).
• We can consider only one species with diffusion capacity,
assuming, for example, d1 > 0 and d2 = 0.

• other relationships between the species can be studied, such as
predator-prey, by assuming, for instance, that k1 > 0 and k2 < 0.

• It is certainly a great challenge to consider the case with 3 or
more interacting species.
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