

Analytical and Numerical Aspects of Corrosion Modeling

24.03.2025

• How does the metal degrade over time?

Full model

• System coupled PDEs on the domain $\boldsymbol{\Omega}$ corresponding to the liquid

$$\begin{cases} -\Delta\phi = F \sum_{i=1}^{N} z_i c_i \\ \frac{\partial c_i}{\partial t} - \nabla \cdot \left(D_i \nabla c_i - \frac{z_i D_i e}{k_B T} c_i \nabla \phi \right) = 0, \quad i = 1, \cdots, N \end{cases}$$

- \star c_i: concentration of species i
- $\star~\phi$: electric potential of the liquid
- Electroneutrality assumption:

$$\sum_{i=1}^N z_i c_i = 0$$

• System of PDEs with ϕ uncoupled from c_i :

$$\begin{cases} -\Delta\phi = 0\\ \frac{\partial c_i}{\partial t} - \nabla \cdot \left(D_i \nabla c_i - \frac{z_i D_i e}{k_B T} c_i \nabla \phi \right) = 0, \quad i = 1, \cdots, N \end{cases}$$

Simplified model - Electric potential

• Example domain Ω with boundary $\partial \Omega = \Gamma_c \cup \Gamma_a \cup \Gamma$

Boundary conditions for φ:

$$\begin{cases} -\Delta \phi = 0 \quad \text{in} \quad \Omega \\ \partial_{\nu} \phi = 0 \quad \text{on} \quad \Gamma \\ \partial_{\nu} \phi = -\frac{i_{c}(\phi)}{\kappa} \quad \text{on} \quad \Gamma_{c} \\ \partial_{\nu} \phi = -\frac{i_{a}(\phi)}{\kappa} \quad \text{on} \quad \Gamma_{a} \end{cases}$$

• Bottom BCs:

$$\begin{cases} i_{\mathfrak{s}}(\phi) &= A_1 \left(e^{C(B_1 + \phi)} - e^{-C(B_1 + \phi)} \right), \\ i_{\mathfrak{c}}(\phi) &= A_2 \left(e^{-C(B_2 - \phi)} - e^{C(B_2 - \phi)} \right), \end{cases}$$

• Variational formulation:

$$\min_{\phi \in H^1(\Omega)} \frac{1}{2} \int_{\Omega} |\nabla \phi|^2 \, dx + \int_{\Gamma_c} \frac{I_c(\phi(s))}{\kappa} \, ds + \int_{\Gamma_a} \frac{I_a(\phi(s))}{\kappa} \, ds$$

- * I_c, I_a primitives of i_c, i_a respectively
- $\star\,$ Existence and uniqueness by standard arguments of Calculus of Variations
- Regularity:

$$\phi \in H^{3/2}(\Omega)$$

* Argument by Trudinger's embedding [1] (critical case of Sobolev's embedding: $W^{1,p}$ with d = p = 2)

[1] Trudinger, N. S. (1967), "On imbeddings into Orlicz spaces and some applications", J. Math. Mech., 17: 473–483.

Full model

Time discretization: $\{t_i\}_{i=1}^N \subset [0, T]$.

1. Solve for $\phi(\cdot, t_i)$:

$$\begin{cases} -\Delta\phi(\cdot,t_i) = 0 & \text{in } \Omega(t_i), \\ \partial_{\nu}\phi(\cdot,t_i) = 0 & \text{on } \Gamma_1(t_i), \Gamma_2(t_i), \Gamma_3(t_i) \\ \partial_{\nu}\phi(\cdot,t_i) = -\frac{i_c(\phi(\cdot,t_i))}{\kappa} & \text{on } \Gamma_4(t_i), \\ \partial_{\nu}\phi(\cdot,t_i) = -\frac{i_s(\phi(\cdot,t_i))}{\kappa} & \text{on } \Gamma_5(t_i). \end{cases}$$

2. Solve for
$$u(\cdot, t_i)$$
:

$$\begin{cases} -\Delta u(\cdot, t_i) = 0 & \text{in } \Omega(t_i), \\ u(\cdot, t_i) = 0 & \text{on } \Gamma_1(t_i), \Gamma_2(t_i), \Gamma_3(t_i), \Gamma_4(t_i) \\ u(\cdot, t_i) = \frac{M_a}{z_a \rho F} i_a(\phi(\cdot, t_i)) \cdot \nu(\cdot, t_i) & \text{on } \Gamma_5(t_i). \end{cases}$$

3. Displace the old domain $\Omega(t_i)$ into the new domain $\Omega(t_{i+1})$:

$$\overline{\Omega}(t_{i+1}) = \overline{\Omega}(t_i) + u\left(\overline{\Omega}(t_i); t_i\right).$$

- Let $\phi \sim \sum_j \lambda_j \varphi_j^h$ where $\{\varphi_j^h\}$ is a basis of the FEM subspace $V_h \subset H^1(\Omega(t_i))$ and h is the maximum diameter of the mesh elements
- Minimization of convex energy functional through gradient descent:

$$\begin{split} \min_{\{\lambda_j\}_j \subset \mathbb{R}} \frac{1}{2} \int_{\Omega(t_i)} \left| \sum_j \lambda_j \nabla \varphi_j^h \right|^2 \, dx \\ &+ \int_{\Gamma_c(t_i)} \frac{I_c(\sum_j \lambda_j \varphi_j^h)}{\kappa} \, ds + \int_{\Gamma_a(t_i)} \frac{I_a(\sum_j \lambda_j \varphi_j^h)}{\kappa} \, ds \end{split}$$

 Regularity φ ∈ H^{3/2}(Ω) ⇒ Convergence of FEM in H¹(Ω) with convergence rate O(h^{1/2}) if Ω is smooth

FEM simulation of corrosion between Magnesium and Steel after 90 hours under salt water - mesh (left) and colour plot of ϕ (right)

- Convergence of FEM in non-smooth domains to $u \in H^{1/2-\epsilon}$
- More realistic boundary conditions on the electrolyte \Longrightarrow Thin-film modeling of the electrolyte
- Adaptive remeshing techniques near the intersection between cathode an anode

Thank you for your attention!