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Neural networks
for inverse problems

OK for small scale problems
Invert F (train on simulations) -- or bypass F (train on real data)



Neural networks
for inverse problems
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Auxiliary data extension task

More robust or favorable inversion
Bridge real vs synthetic divide



Context: seismic inversion

Credit: TU Muenchen

Initialization (velocity model building) by deep nets in Araya
et al (2018)



Overview

1. Bandwidth extension (w/ Hongyu Sun)

2. “Physics Swap” SymAE (w/ Pawan Bharadwaj
and Matt Li)



Direct vs inverse problem

Forward problem

Given f, w, and m, find u, r s.t.

Depth[km]

(A + wzm(x))uw,f(x) = f(x)

Then d,-7w7f = Uw,f(X,-).

Inverse problem

Given several f, several w, and
data samples viewed as

dr,w,f — Uw,f(Xr)a

find the rest of u, r, and m, s.t.

2 4 6 8
(A + wzm(x))uw,f(x) — f(x) Distance [km]

o dr w.f in the time domain



Running the forward model







Inverting for m, good initial guess

Data in [0.6, 20] Hz






Inverting for m, bad initial guess

Data in [0.6, 20] Hz
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Solving form
is hard!




Running the forward model (low freq)







Left — resulting data at the surface, high frequencies
Right — resulting data at the surface, low frequencies
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A deep net for frequency extrapolation
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Convolutional, wide filters, width ~ 100, depth 5



Training from 9 “fake Earths”
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True vs extrapolated LF
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True vs extrapolated LF
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In the frequency domain
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Inverting for m, bad initial guess

Data in [0.6, 20] Hz






Inverting for m, bad initial guess

Data in [0.6, 20] Hz with
extrapolation down to 0.3 Hz






Overview

1. Bandwidth extension (w/ Hongyu Sun)

2. “Physics Swap” SymAE (w/ Pawan Bharadwaj
and Matt Li)



Data

Black box predictor

What can a deep Simulations
HEt knOW? Black box model replicator



Data

Black box predictor

What can a deep
net know?

Disentangle explanatory
components

Simulations

Black box model replicator



>>> WHAT: Estimate Similarity or Coherency Among Instances

Sharp Image

— Coherent Component

which is coherent across all

the instances
— Known Linear Operation &

— Dissimilar Component

Instances which is dissimilar among

instances

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 12, JUNE 15, 2019

Focused Blind Deconvolution

[pawbz/SymAE]$ - Pawan Bharadwaj ", Laurent Demanet *”, and Aimé Fournier [3/13]




>>> WHAT: Estimate Similaritiy or Coherency Among Instances

3 | digit 3

Instances

[pawbz/SymiE] § _

— Coherent (&)
3; digit information is similar
in all images

— Dissimilar (Nuisance; W)
#; writing style and
orientation are dissimilar
among instances

[6/13]




Fig. 1: In the MNIST experiment, the SIMO system responds to the input digit information (here, 6 and 9) by
producing multiple dissimilar hand-written images as channel outputs. Here, six channel outputs are pl(:-ttcd.
The first three channels didn’t respond to 9, however SymAE produces their virtual outputs (dashed lines) that
have identical writing style as in the true outputs. Similarly, virtual channel outputs of the last three channels

are also plotted.



>>> WHAT: Estimate Similarity or Coherency Among Instances

- . Earth Model

— Coherent (G)

& N e,
T — medium effects are similar in

all passive shot gathers

— Dissimilar (Nuisance; W)
source mechanism, signature
and position are dissimilar
among instances

[pawbz/SymAE]$ _ [E/13]




Direct vs inverse problem

Forward problem

Given f, w, and m, find u, r s.t.

Depth[km]

(A + wzm(x))uw,f(x) = f(x)

Then d,-7w7f = Uw,f(X,-).

Inverse problem

Given several f, several w, and
data samples viewed as

dr,w,f — Uw,f(Xr)a

find the rest of u, r, and m, s.t.

2 4 6 8
(A + wzm(x))uw,f(x) — f(x) Distance [km]

o dr w.f in the time domain



>>> SymAE’s Latent-space Structure

[pawbz/SmiE]§ _
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>>> SymAE’s Latent-space Structure

coherent
G — medium effects
nuizance &A
W — passive sources
v1rtual recorded
gt
sonrce #1 |-~y lmmuuu I
I
|
recorded virtual

||||M||\m||uq
unmnwlm”'

source #2[|--

::”ﬂ:“ﬁiii

’t
[
f
Q"'

o B

[pavbz/SyniEl§ _ [9/12]




>>> WHY: Redatum To Produce Virtual Gathers!

Solutiorn:

[pawbz/SmiE]§ _
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>>> Autoencoder!

Encoder

fﬁ ::EHC(L%) \\\\N ’//,f

E)ECOdeT i » Enc —> H —>Dec— D
D ::Dec(fﬁ)

Training
Enc, Dec = argmin ) || D; — Dec(EIlC(Di))HQ

Enc, Dec ¢

‘Kramer, M. A., 1991, Nonlinear principal component analysis using autoassociative neural
networks, AIChE Journal.

[pavbz/SyniEl§ _ [10/12]




>>> HOW: SymAE’s Network Architecture

Symmetric Encoder
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Why deep nets...
and why not

New inversion/inference tools
when models are insufficient

What are we giving up?
— interpretability

— guarantees
(generalizablility)

— Science!
— ... still not automated



Why does this
work?

There is an underlying model of
the form

d;; = F(xi,y;)

Symmetric under permutations
“Latent rank-1”"

The network’s explanation is

di; = G(hy™ "))
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Outlook

Example of data misfit: Arts et al,

2007 (Sleipner CO2 injection field)
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Co-train from simulations and data

Explaining beyond modeling



Example: Deepwater statics

Measured Seawater Acoustic Vel
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900+
1000t

1480

1490

1500 1510 1520
Velocity (m/s)

1530

1540

120

Jan.

100

180 Dec.

+160

Nov.
140

20 Oct.

day

1550 .
Sep.

Depth (km)

0.0 F
01 F
0.2+
03

04} |

05 F |

06

0.7 r

08

09 r

10 f

11 F

12

Minimum velocity (-2%)
Hood's velocity
Maximum velocity (+2%)

1520
Velocity (m/s)

1540 1560




HHHH T
HH

bl

Redatuming

Instance 1 (+1.914% Velocity Pormrbntmnl Residual: Redatumed - Reference Residual: Instance - Reference
I'\ " HH ' ' \ H| \I\! 1 ”| T
2 ,/_\
|
‘ “ | I“ ‘ | 3 ,
)
'§ | ‘ |‘ 4 4
! B B |
[ ‘ ‘ 3 6
| , ,
. Il
] ]
_m \| \\ m
[ 0 © @ a0 100 L] 2 “© ] L] 100
-5. Residual: Redatumed - Reference Residual: Instance - Reference
I s i I ‘
- | 2 2
Wi ll_ ‘ ‘ " ,A
filf ‘ ‘ ‘. 4
: | \l
i i ' s/’_\
Il et Y
l & 6
\ I‘ \
\ | ' y
i w T ‘ ‘ it [ mm i
|H\|| I H AT \I H |!l
» o w0 [ 00 0 40 60 L] 100
i Residual: Redatumed - Reference Residual: Instance - Reference
H‘ |H|” . IH|| HH‘ ‘ H‘H HH |M| Hl\ \\”HH WH H
\ 4l |
N \ H \ - .
L —
g H \ | \ \ \ \ 1] '
7 ]
w I S ————
(HRTIITRITI, - - |
WD HH L nu il IHI HH wIHH uuw i

2 a0 L] 80 100 0 ) a0 © L] 100
Receiver numlm Rlclmr mnmmr Receiver number Receiver number

apnydwe uuojaaep

2PNY|AWE ULIOJSARM

apnyijdwe uLojaAeM



Standardized Waveform Amplitude

Standardized Waveform Amplitude
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