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Looking beyond classical
infrastructure...

Reaching classical bottlenecks in

a) Size of chips (Moore’s l[aw)
b) Communication (bandwidth)
c) Energy cost

d) Memory

e) Time

Also we have naturally occurring
guantum data...




Simulate physics with computers

 (Can a computer efficiently simulate HEROES OF QUANTUM COMPUTING:
quantum meChanICS? * 1981 -Richard Feynman
. . determines that it is
* Let the computer itself be built of ool to effciently
. simulate an evolution of
guantum mechanical elements a quantum system on a

classical computer.

Feynman’s conjecture:

Gt mampuon g Fundaments | Concapisi-Sendath Pengambam  glafacy

* Quantum systems can simulate other quantum systems
* Possibility of a “universal quantum simulator”
suggest array of spin % particles (now called “qubits”)
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Computation is made up of three parts

Quantum algorithm cost . potential speed up




Quantum gates: unitary matrices
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Quantum circuits:
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measurement

* The guantum computer outputs a quantum state—a quantum
subroutine; one needs measurement to get the physical observables
which can be compared with the classical solution

* It measures the probability of certain outcome in the computational
basis

* The cost of measurement can be much larger than the quantum
subroutines



Hardware and software challenges

1. Qubits are noise-prone

2. Error-correction is difficult

3. Loading classical data is
difficult
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Hardware and software challenges

Software challenges

1. New software stack is needed

2. Debugging would be difficult:
since cannot read-out

intermediate parts of quantum

8 ¢
“ q
&\
L

~
g |0

V|

3. Algorithm design is difficult



Linear algebra solvers

So far almost all the quantum algorithms have been designed for linear
problems:

* Linear algebra:
. Harrow-Hassidim-Lloyd 09 (HHL): O((552|| M| /1) polylog (55| Ml man /7))
Childs-Kothari-Somma 17 (CKS): O(st:| Ml polylog (55 M s /7))
* Linear PDEs—> discretization—=> LA problem
usually condition number is O(N) or O(N”2)
guantum advantage for high dimensional problem: only for
quantum subroutines (no measurement studied)
output |x), not x



Tab. 1: Summary of the time complexities of classical and quantum difference methods

Equation Classical difference methods Quantum difference methods
Forward Euler C-N Explicit C-N
ODE oN?) o) Chelbyshev Q’: (Nf4 ) (?i(]\? |
VTAA O(Ny) O(Ny)
Explicit C-N Explicit C-N
Heat equation HHL ?(dﬁlj\rg) q(d4j\r§)
O(d*NI+2) O(d’> N1y | Chebyshev — O(d*N2) O(d*N?2)
VTAA O(d2NZ2) O(d>N,)
; Chebyshev VTAA
Hyperbolic equation O(d?Nd+1) ) - ~ .
O(d'N2log*®(d>N,/5))  O(d>N,)
Chebyshev VTAA
IMEX (7 ~ h?) O(N3) O(Nog*?(N2/6)) O(N2)
Multiscale telegraph | Relaxation (7 ~ h?) O(N2) O(N41og*®(N2/5)) O(N2)
equation Penalized (7 ~ h?)  O(N21log(1/4)) O(NH) log*"(N2/5) O(N?)
Penalized (7 ~ h) O(N2"log(1/4)) O(N2)log"?(N,./5) O(N,)

Explicit (7 = ¢h) O(N2/e)

> O(log?(yZ/6) log(N,) /) > O(1/y/7)

) O means some logarithmic terms are ignored.

b)

0 is the desired error bound of the quantum linear solver.

©) ¢ is the relaxation time or the scaling parameter.
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Nonlinear ODEs and PDEs?

D ODEs (d+ 1)-dim PDEs
Wl
dXE(” _F(xMey),  xWer? | g+ Fl, Vel Vi) =0
X[k](o)zng]’ k=1,--- M ulkl € R4 k=1,...,.M

Nonlinear F' Nonlinear F'



Applications in fluid dynamics (Navier-
Stokes), gas dynamics, molecular dynamics,
financial markets, machine learning...etc

Nelalllal=Fls
Appearance of discontinuities and shock
SySte m S solutions and singularities; curse of
dimensionality
challenges

Often statistical methods are employed: to
understand ensemble behaviour (e.g.
statistical behaviour of fluids)

Parameters: d, D, e, I', M




(d + 1)-dimensional nonlinear PDE
with M initial conditions

General:

OulFl
ot

+ F® vul® v2u*l ..y =0, teRY,zeRLuM eREE=1,.... M

Here ¢t > 0 is time, x is the spatial variable, while F' is a nonlinear function or
functional.

Hamilton-Jacobi: Hyperbolic:

0pS™ + H(VSW, 1)=0, teRT,n¢e RY, S (t.x) €R, O™ + F(u™) - V,oult + Q. u™) =0, teRT,

S¥0.0) = Se), k=10 u(0.0) = (@) k=100



Are nonlinear
problems
suitable for

com

guantum

outation?

A computation is a physical
process

pr —

Quantum computation is a
guantum mechanical
process

A
-

A quantum mechanical
process is fundamentally
linear

-
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berg models of nonlinear quantum mechanics. Finally, we
would like to note that we believe that quantum mechanics
1s 1n all likelihood exactly linear. and that the above con-
clusions might be viewed most profitably as further evi-
dence that this 1s indeed the case. Nevertheless, the theo-
retical implications and practical applications that would
result from a discovery to the contrary may warrant fur-
ther investigation mto the matter.



Two routes:

1) Make the problem
lnear

2) Don’t use
fundamental
guantum mechanics

(which works at best for small and
special nonlinearity (Abram-Lloyd))

A computation is a physical
process

pr —

Quantum computation is a
guantum mechanical
process

A
r .
A quantum mechanical

process is fundamentally
linear

-




Basic roadmap:

Based on (e.g.
Carlemann) and truncation
Works only on weak or quadratic
nonlinearity

Valid for

Leyton & Osborne, 2008; Lloyd et al, 2020; Joseph, 2020; Liu et al, 2021...etc



Basic roadmap:

Making nonlinear problem linear

l Our approach

ODE: Koppermann-von
EX&Ct Neumann approach
mapping (Joseph '20,

Approximations Dodin-Startsev '21)




Part A: Hamilton-Jacobi
and hyperbolic PDEs




Level set
mapping

Jin-Osher, CMS ‘03

0,5 + H(VSH 2y =0, teR" zeR? SM(t2)eR,
S0, 2) = S (2), k=1....M

Define ul*l = VS ¢ R4,
The level set function qb?ﬂ (t,xz,p) can be defined by

sM(t, z,p = ulFl(t, z)) = 0

Then ¢ = (¢! .., ¢} solves the linear PDE
8;¢" + V,H -V, ¢H -V, H-V,¢" =0.

qb[k](O,:}:,p) = p; —ugk}((),:c), i=1---.d.

i

Liouville equation




Instead solve for

¥(t,z,p) M25 (6"(t,z,p)).

Level set

MRl Op + Vo H - Vgt — Vo H - Vyp = 0

Y(0,z,p) = ZH T)).

initial data computed !




Given any function G : R — R

(Gtz) = | GEw(tz,p)dp= 1 Z )8(¢(t, =, p))dp

Rd
Physical Y acts like the Wigner function
observables for nonlinear HJE in WKB approx
and
ensemble Example:
average 2 o
1ho U = ——A\I! + V(x)¥ U(0,z) = Ap(x)e'

S satisfies HJ PDE with nonlinear H = (1/2)|VS|? + V(x)



Given any function G : R — R

Gt.a) = | Gwyw(tzp)dp MZ 5(8¥(t, 7, p))dp

R2

Y acts like the Wigner function

Physical for nonlinear HJE in WKB approx

observables

Example: W > Y

Ooiw+ V,H -Vyw—-V,H -Vyw=0

w(0,z,p) = |Ao(2)[*3(p — VSo())



Given any function G : R — R

(Gtz) = | GEw(tz,p)dp= 1 Z )8(¢(t, =, p))dp

R2

Y acts like the Wigner function

Physical for nonlinear HJE in WKB approx

observables

Example: G@)=1,p,|pf

p(t, x) :/wdp, p(t, x)u(t, x) :/p'wdp, %p(t,x)uz(t,x) :/%'wdp

First 3 moments give classical limits to
density, momentum and kinetic energy

U2, Alm(UVW), (k2 /2)|VT|?



Remarks

* The solutions we compute are multivalued solutions, not viscosity solutions!

e Multivalued solutions are the correct

solutions for non-dissipative systems WS
(geometric optics, Hamiltonian systems,

. . . . . . Eikonal equation
semi-classical limit of quantum dynamics, high " .
frequency limit of elastic, electromagnetic
waves, Dirac equations, etc.

Burgers equation

 Same ideas also work for scalar nonlinear hyperbolic equations, general nonlinear ODEs



Part B: guantum
algorithms




Transform to a linear algebra problem

* Reducing linear PDEs to the basic matrix inversion problem through suitable
discretisation that also obeys stability conditions, e.g., upwind scheme +
CFL condition

a(b(tmq) _ (I)n+1,.’i - Qnaj
ot At

(Fi(q)®(tn,q)) — % [(Fy (Gig1/2) Ty ®n)j — (Fy (Gim1y2) Ty @njj + [(F (¢j31/2) — Fy (gj-1/2))®nlj]
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guantum linear systems problem (QLSP)

* Quantum computers are good at performing matrix inversion:

linear equations Mz =y

2 % 2™ matrix

Classical algorithm Quantum algorithm

O((2™)?) O(log(2™))

Caveats! [2] Aaronson, Nature, 2014



Brief into to guantum linear systems problem

(QLSP)

Problem 1. (QLSP) Let M be a 2™ x 2™ Hermitian matriz such that |M| < 1. Assume vectors x and y with
elements {z;}, {yi} that satisfy Mz =y. One can then define the following m-qubit quantum states |z) = ) . x;/Ny|i),

ly) = >..vi/Ny|t) where Ny = /> . |xil%2, Ny = /D, |[yi|?> are normalisation constants. The aim of any QLSP

algorithm is, when given access to M and unitary Uinitia (where Uinitia1|0) = |y) ), to prepare the quantum state |x’)
that is n-close to |x), i.e., |||z') — |z)|| < 7.

Me=y  mmmp Miz)=y) w—p |z)=M""|y)

M accessed through oracles | How many tlm?s
is the oracle queried?

Not the solution of the original classical problem!



State preparation not enough: need to solve
the system of linear equations problem (SLEP)

Problem 2. (SLEP) Given a Hermitian matrix G, which is of the same size as M, access to M and U;pitial, the
aim of SLEP is to compute the ezpectation value (M~1y)TG(M~1y) = 21'Gx to precision € .

Mz =y ) ! Gr o< (z|G|x)

M accessed through oracles How many times

G accessed through oracles are the oracles queried?



Simulation through oracle models

Simulating approximation to M ™! through sparse access:

Sparse access to a Hermitian matriz M is a 4-tuple (s, || M||maz; Orm, Or) and the (i, 5)™ entry of M
is denoted M,;;. Here s is the sparsity of M and | M||maez = max; ;(|M,;|) s the maz-norm of M. Opr and OF are
unitary black boxes which can access the matriz elements M,; such that

Owml|i)|k)|z) = 15)|k)|z ® M)
Or|i)|l) = [DIF3:1)

where the function F takes the row indez j and a number! = 1,2, ..., s and outputs the column indez of the [*" non-zero
elements in row j.

me) O)y =) mm) (Op =)



Discretising ¢ and the delta function

M d
1 .
V0= 22 0[] fullih — ull(n = 0,hg)).

k—1i=1
0 )\ _ 1 %o
: "pn,j,l 0
Computing
physical
observable Given any function G : R =+ R
= k
(G(t,2)) = | Go)P(t,z,p)dp= — Z )8(6¥ (¢, z, p))dp

Rd.

(G(t,x)) ~ (G%; Zcmw




Estimate with a quantum algorithm:

1 N
- Nd Z Gin,j1-
l

Main players:

1 " .
%0) = N Y o ald)l)n = 0)
C I ¢o ‘N
omputing o I
physical G ) = 1 G*I1)4 G =G i) (G

M sparse oracle access

N
1 1
EN_Z G, = Ni!)oNGlV |_n¢onG|V T,

Y = (tho| (M) TGM o)

To design quantum algorithm for this...




To design quantum algorithm for this...

Y = (tho|(MH)TGM ™ o)

Block access to M

Step 1

Computing Step 2

. Step 5
p hyS ICa | Input (Step 0) | Sparse access to M
@) bse rva b | e Block access to M1
Step 3
Input (Step 0) Unitary L(n, /) Block access to G Amplitude
estimation of T
Step 4 to error €
Block access to G’
Sanders 22 Input (Step 0)

Unitary Uinitial




Main theorems:

A quantum algorithm that takes sparse access (s = O(d),||M||maz = O(1),0p,0F) to M, where
M| = O(1), and access to the unitaries L(t,,j/N), where L(t,,3/N)|0) = |Gy ;) and Uinitial, where Uinitia1|0) =
[9o), is able to estimate the ensemble average (G(T,x)) at time T = t,, with M initial data, to precision € with an
upper bound on the query complexity Q

nfpo d'T3 n?po d4T?
S Rl

and the same order of additional 2-qubit gates, where we suppress all O(1) terms except T = O(1) and ny, > O(1).



Main theorems:

Comparison to classical algorithm C = O(MT dd+4(1 / e)d+1)

Let C be the cost to compute an observable from a (d + 1)-dimensional Hamilton-Jacobi equation
with purely classical methods and Q be the cost of our quantum algorithm. We say there is a quantum advantage
in estimating the observables when Q@ = o(C). To attain a quantum advantage it is then sufficient for the following

condition to hold
Mdi=4 1\ &
- —0O(1
o(m (1)) -0

where O suppresses all logarithmic terms in d,1/e,T.

Similar results for scalar hyperbolic PDEs



Part B: General
nonlinear PDEs




(d + 1)-dimensional nonlinear PDE with M initial conditions

Allow viscosity
Part B

D=d/e D = (d/e)’

A=D+1 .
System of D nonlinear ODEs

with M initial conditions

Quantum algorithm: outputs observables to precision e
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C (M ., (1)
C\ _A(M . (1\"
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Nonlinear equations

(M initial conditions)

ri

o b range Quantum

(initial condition- advantage

dependent) (possible)

(d + 1)-dimensional d—4-b d—9-3b bel0,2-3) M, d, e
Hamilton-Jacobi PDE

(d + 1)-dimensional d—5-b d—9-3b be[0,%-3) M,d, e

hyperbolic PDE

System of D ODEs -5 -9 b=20

(d + 1)-dimensional —7 —13 b=0
general PDE (vortex)

(d + 1)-dimensional —4d —9 —4d b=0 Large M

general PDE (discretisation)




(d + 1)-dimensional nonlinear PDE with M initial data

Hamilton-Jacobi PDEs General nonlinear PDEs

Level set formalism

Lagrangian Eulerian
A =2d+1 Scalar hyperbolic PDEs discretisation discretisation
D — d2 D — d € d
A=d+2 /e (d/€)
A-dimensional A=D-+1

System of D nonlinear ODEs

li t t PDE
mear transpor with M initial data

with a single initial datum

Quantum algorithm: outputs observables to precision €



Final comments

* The physical world is fundamentally linear, at the quantum (and microscopic--
Newton’s level-via the Liouville equation)

* The macroscopic models are often nonlinear, due to taking mean-field limit (use
of molecular chaos), moment closures, etc. It reduces the dimension (good for
classical computation: microscopic to macroscopic) but introduces nonlinearity
(mathematical analysis more challenging)

* For quantum computation curse-of-dimensionality is less of a concern while
nonlinearity is; so we move in backward direction. macroscopic to microscopic

* Dimension cannot be too high:
d—>2d OK (Hamilton-Jacobi, scalar nonlinear hyperbolic equations);
d—=>NA2d not ok if one discretizes nonlinear PDE spatially by N mesh points
and solve the resulting nonlinear ODEs (general nonlinear PDEs)



summary:

Claim:

* first qguantum nonlinear PDE solver based on linear representation—
exact formulation without error before numerical discretization

possible quantum advantage in M, d, €
(before: only used linear approximation thus models are valid only for )
* these quantum advantages are achieved even by including the
measurement of physical observables

(before: only provided quantum subroutines and step which could lose the
quantum advantage)

Open:
general PDEs, viscosity solutions, high dimensional dynamical
systemes, ...



