
Quantum Algorithms 
for nonlinear partial 
differential equations

Shi Jin, Nana Liu

Shanghai Jiao Tong University



Looking beyond classical 
infrastructure…

Reaching classical bottlenecks in

a) Size of chips (Moore’s law) 
b) Communication (bandwidth) 
c) Energy cost 
d) Memory
e) Time

Also we have naturally occurring 
quantum data…



Simulate physics with computers

• Can a computer efficiently simulate 

quantum mechanics?

• Let the computer itself be built of 

quantum mechanical elements

Feynman’s conjecture: 

• Quantum systems can simulate other quantum systems

• Possibility of a “universal quantum simulator”

suggest array of spin ½ particles (now called “qubits”)



quantum computation survival kit





Computation is made up of three parts

Qubits

Bits

Qubits

Qubit

Quantum algorithm cost poly(n):    potential exponential speed up 



Quantum gates: unitary matrices

Pauli matrices

Hadamar gate

CNOT gate

Two-bits



Quantum circuits:

CNOT gate

Quantum phase 
estimation



measurement

• The quantum computer outputs a quantum state—a quantum 
subroutine; one needs measurement to get the physical observables 
which can be compared with the classical solution

• It measures the probability of certain outcome in the computational 
basis

• The cost of measurement can be much larger than the quantum 
subroutines



Hardware and software challenges 

1. Qubits are noise-prone

2. Error-correction is difficult

3. Loading classical data is 
difficult 

4. New software stack is 
needed

5. Debugging would be difficult: 
since cannot read-out 
intermediate parts of 
quantum computer 

6. Algorithm design is difficult

Hardware challenges 
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Linear algebra solvers

So far almost all the quantum algorithms have been designed for linear 
problems:

• Linear algebra:

. Harrow-Hassidim-Lloyd 09 (HHL): 

Childs-Kothari-Somma 17 (CKS):  

• Linear PDEs→ discretization→LA problem

usually condition number is O(N) or O(N^2)

quantum advantage for high dimensional problem: only for    

quantum subroutines (no measurement studied)

output         ,  not  
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Nonlinear ODEs and PDEs?



Nonlinear 
systems: 
challenges

Applications in fluid dynamics (Navier-
Stokes), gas dynamics, molecular dynamics, 
financial markets, machine learning…etc 

Appearance of discontinuities and shock 
solutions and singularities; curse of 
dimensionality

Often statistical methods are employed: to 
understand ensemble behaviour (e.g. 
statistical behaviour of fluids)





Are nonlinear 
problems 

suitable for 
quantum 

computation?

A computation is a physical 
process

Quantum computation is a 
quantum mechanical 

process

A quantum mechanical 
process is fundamentally 

linear 





Two routes:

1) Make the problem 
linear 

2) Don’t use 
fundamental
quantum mechanics
(which works at best for small and 
special nonlinearity (Abram-Lloyd))

A computation is a physical 
process

Quantum computation is a 
quantum mechanical 

process

A quantum mechanical 
process is fundamentally 

linear 



Basic roadmap:
Making nonlinear  problem linear

Leyton & Osborne, 2008; Lloyd et al, 2020; Joseph, 2020; Liu et al, 2021…etc 

1) Based on linearization (e.g. 
Carlemann) and truncation

2) Works only on weak or quadratic 
nonlinearity

3) Valid for short time



Basic roadmap:
Making nonlinear problem linear

Our approach

ODE:  Koppermann-von 
Neumann approach

(Joseph ’20, 
Dodin-Startsev ’21)

PDE: none 



Part A: Hamilton-Jacobi 
and hyperbolic PDEs



Level set 
mapping

Level set function lives in a space with twice the dimension

Jin-Osher, CMS ‘03

Liouville equation



Level set 
mapping

Quantum computer does not know how to find the zero level set!

M different initial data computed once!



Physical 
observables 

and 
ensemble 
average



Physical 
observables



Physical 
observables



Remarks

• The solutions we compute are multivalued solutions, not viscosity solutions!

• Multivalued solutions are the correct 

solutions for non-dissipative systems

(geometric optics, Hamiltonian systems, 

semi-classical limit of quantum dynamics, high

frequency limit of elastic, electromagnetic 

waves, Dirac equations, etc.

• Same ideas also work for scalar nonlinear hyperbolic equations, general nonlinear ODEs



Part B: quantum 
algorithms



Transform to a linear algebra problem
• Reducing linear PDEs to the basic matrix inversion problem through suitable 

discretisation that also obeys stability conditions, e.g., upwind scheme + 
CFL condition



quantum linear systems problem (QLSP)

• Quantum computers are good at performing matrix inversion:

`solving’ linear equations 

Caveats! [2] Aaronson, Nature, 2014 



Brief into to quantum linear systems problem 
(QLSP)



State preparation not enough: need to solve 
the system of linear equations problem (SLEP)



Simulation through oracle models



Our work: 
Computing 

physical 
observable



Computing 
physical 

observable



Computing 
physical 

observable

Sanders ‘22



Main theorems:



Main theorems:



Part B: General 
nonlinear PDEs



Allow viscosity 
solution







Final comments

• The physical world is fundamentally linear, at the quantum (and microscopic--
Newton’s level-via the Liouville equation)

• The macroscopic models are often nonlinear, due to taking mean-field limit (use 
of molecular chaos), moment closures, etc.   It reduces the dimension (good for 
classical computation: microscopic to macroscopic) but introduces nonlinearity 
(mathematical analysis more challenging)

• For quantum computation curse-of-dimensionality is less of a concern while 
nonlinearity is; so we move in backward direction：macroscopic to microscopic

• Dimension cannot be too high: 

d→2d OK (Hamilton-Jacobi, scalar nonlinear hyperbolic equations);

d→N^d not ok if one discretizes nonlinear PDE spatially by N mesh points   

and solve the resulting nonlinear ODEs (general nonlinear PDEs)



Claim: 

• first quantum nonlinear PDE solver based on linear representation—
exact formulation without error before numerical discretization

possible quantum advantage in      ,      , 

(before: only used linear approximation thus models are valid only for short time)

• these quantum advantages are achieved even by including the   

measurement of physical observables
(before: only provided quantum subroutines and no measurement step which could lose the 

quantum advantage)

Open：

general PDEs, viscosity solutions, high dimensional dynamical 

systems, …

Summary:


