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Extreme event probability estimation

F ∶ θ ∈ (X,µ) → R

▸ (X,µ) ⊂ Rn. . . random space of parameters θ with measure µ
▸ F . . . parameter-to-event map (involves PDE solve)

pdf of θ

F (θ)ÐÐ→

z

Target: Estimate the measure of extreme event set for z ≫ 0:

Ω(z) ∶= {θ ∶ F (θ) ≥ z}, i.e., compute P(F (θ) ≥ z).
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Why low probability events are difficult to estimate
We’re interested in

P(F (θ) ≥ z),

where z is “large”, i.e., the probability is small.

level sets of I(θ)
Ω(z)

▸ The more
extreme/rare the
event, the more
difficult it is to
characterize its
probability

▸ Even more so if
computing F (θ) is
expensive and θ is
high-dimensional
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Estimation of extreme/rare but important events

Examples:

▸ Material failure (e.g., bridge/tool/plane stress fractures)

▸ Extreme weather patterns (e.g., tornados, hurricanes, heat waves)

▸ Rogue waves, tsunamis, extreme turbulence behavior, earthquakes

▸ financial sector/bank/company collapse

Common to all these:

▸ Rare but high impact/cost/damage

▸ It makes a big difference if the probability of an event is p = 10−3 or
p = 10−7!

Main application involves tsunamis, but approach is generic.
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Probability Estimation and Optimization

▸ The maximum likelihood point of a density is usually statistically not
important

▸ Optimization typically feasible in high dimensions

▸ High-dimensional statistics suffers from curse of dimensionality

▸ When can optimization ideas be used in probability estimation?
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Main takeaways

▸ Methods for extreme/rare event estimation that are:

insensitive to extremeness,
work for high-dimensional parameters and
expensive parameter-to-event maps F

▸ Theoretical foundation: large-deviation theory to argue connection
between (PDE-constrained) optimization and extreme event estimation

▸ Nonlinear parameter-to-event map F where derivatives are available
(using adjoints); parameters θ Gaussian or non-Gaussian

▸ Illustration using tsunami problem, where F involves time-dependent
shallow water equation
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What causes tsunamis?

▸ tsunamis caused by sudden
up/downlift of the ocean floor
due to earthquake rupture
(change of bathymetry)

▸ resulting waves can travel
hundreds of km and lead to
severe flooding
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What causes tsunamis?

Sumatra 2004 earthquake up/downlift; Image courtesy by Chen Ji (Caltech)

▸ Bathymetry change is smooth but can be complicated
▸ . . . cannot be predicted, depends on slip at fault
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Tohoku earthquake/tsunami problem
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Modeling tsunamis: the shallow water equations
1-D, inviscit shallow water equations with bathymetry:

ht + vx = 0,

vt + (v
2

h
+ 1

2
gh2)

x

+ ghBx = 0,

h(x,0) = −B0(x), v(x,0) = 0,

+ bdry. cond.

h ∶ water height
u ∶ velocity
v ∶ momentum hu
g ∶ gravity constant
B0 ∶ reference bathymetry
B ∶ changed bathymetry
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Modeling tsunamis: the shallow water equations

Measure added water volume in interval [a, b] near shore, B is updated
bathymetry:

F (B) = F (B;h, v) = max
[0,T ]
⨏

d

c
(h +B0)dx.

or smoothed version with γ > 0:

Fγ(B) = Fγ(B;h, v) = γ log [ 1

T
∫

T

0
exp(1

γ
⨏

d

c
(h +B0)dx)dt] .
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Distribution for random parameter θ (or B)
Target: Realistic model of earthquake-induced ocean floor up/downlift

▸ Slip patterns (under ocean floor)
are unpredictable (modeled as
random iid Gaussian variable)

▸ Slip leads to floor up/downlift
(using Okada model); Gaussian
random field 170 180 190
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Extreme tsunami events

Extreme event probability for z ∈ R:

P (z) ∶= P(F (B) ≥ z), B ∼ N(B0,C), z ∈ R,

where h, v solve the shallow water equations and F (B) = F (B;h, v).

Large Deviation Theory (LDT)?

▸ probability theory that quantifies tail behavior of distributions [Cramer,
Varadhan, Dembo, Zeitouni, . . . ]

▸ Used in thermodynamics, statistical mechanics, recently in
physical/dynamical systems with random perturbations [Dematteis,
Farazmand, Grafke, Sapsis, . . . ]

Probability estimation in complex systems [Anitescu, Biros, Rao, Wahal, . . . ]
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LDT and optimization
Set of extreme events:

Ω(z) = {B ∶ F (B) ≥ z},

LDT connects the probability P (z) = P(F (B) ≥ z) and the minimizer
(≈instanton) of the rate function I(⋅) (which is a PDE-constrained
optimization problem):

B∗ = argmin
B∈Ω(z)

I(B)

with I(B) = 1

2
∥(B −B0)∥2

C−1 =
1

2
(B −B0)TC−1(B −B0).

LDT ⇒ asymptotic identical behavior of logarithms

−I(B∗)
log(P (z))

→ 1 as z →∞.

Thus, with a sub-exponential prefactor C0(z):

P (z) = C0(z) exp(−I(B∗(z)))
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LDT and optimization

∂
Ω
(z)

θ⋆(z)

n̂⋆(z)

level sets of F (θ)

Ω(z)
level sets of I(θ)

▸ LDT applies under
assumptions on F (⋅)
and the domain Ω(z)

▸ LDT informally says
that in the rare event
limit, the probability
of Ω(z) is dominated
by one point θ⋆(z).

▸ Minimizer typically
taken on boundary
∂Ω(z).
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LDT and optimization

Assumption for rigorous proof:

1. F differentiable

2. Probability measure has differentiable cumulant generating function.

3. Rate function has unique global minimizer θ∗ and I(θ∗) increases with
z.

4. Regularity on the extreme event set
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LDT and optimization

The minimizer of I(B) in Ω(z) (most likely point for Gaussians):

B∗(z) = argmin
B∈Ω(z)

I(B).

Relax this inequality-constrained optimization using penalty/Lagrangian
multiplier λ > 0, resulting in family of optimization problems:

min
B

J(B;h, v) ∶= I(B) − λF (B;h, v),

s.t. (B,h, v) satisfies shallow water eq.

Interpreting as PDE-constrained optim./optimal control:

▸ I(B). . . regularization

▸ F (B). . . objective
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Standard MC and LDT
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Standard MC and LDT
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Importance sampling

level sets of I(θ)

F
(θ)

=
z

Ω(z)

shift θ⋆

θ0

▸ Improves significantly
over standard MC
using optimization
solutions B∗ as
anchors

▸ Almost completely
removes growth of
variance as z →∞.

▸ Builds on underlying
probability to be
(multivariante)
Gaussian.
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Importance sampling

Relative root mean square error (RMSE) for N samples and estimator PN :

eN(z) ∶=

√
Vµ [PN(z)]

Eµ [PN(z)]

Standard MC:

eMC
N (z) ≈ 1√

N
[4πI(θ⋆(z))]

1
4 exp(1

2
I(θ⋆(z)))

Importance sampling:

eISN (z) ≈ 1√
N

[πI(θ⋆(z))]
1
4
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Importance sampling
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First/Second-order approximation of Ω(z)

level sets of I(θ)

F (θ) =
z

Ω(z)

θ⋆

n̂⋆
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First/Second-order approximation of Ω(z)

level sets of I(θ)

F (θ) =
z

first-order
approx. second-order

approx.

Ω(z)

θ⋆

n̂⋆
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Second-order approximation, Gaussian parameters
Improve rate estimates by quadratic approximation of F at B∗:

F (B) = F (B∗) + ∇BF (B∗)(B −B∗) + 1

2
(B −B∗)∇2

BF (B∗)(B −B∗) + . . .

The second-order approximation is just the first-order approximation
multiplied by correction term:

P (z) ≈ Φ(−∥θ∗∥)
n−1

∏
i=1

(1 + ∥θ∗∥ki)−1/2,

where ki are principle curvatures of the quadratic approximating F at B∗.

▸ Approximates extreme event set Ω(z) by paraboloid.

▸ Only need largest curvatues of Ω(z) important for distribution of B.

▸ Even better prefactor (but same log-asymptotic)

▸ In engineering, a variant of this is called second-order reliability method
(SORM).
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SORM approximation of Ω(z)
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Prefactor comparison
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Shallow water equation-constrained optimization

min
B∈B

J(B;h, v) ∶= I(B) − λF (B;h, v),

s.t. (B,h, v) satisfies shallow water eq.

▸ The optimization is over the Cameron-Martin space B.

▸ Gradients of the objective with respect to B, the bathymetry change
are needed to solve this optimization problem.
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Deriving adjoint shallow water equations

Shallow water equations (neglecting BCs):

ht + vx = 0,

vt + (v
2

h
+ 1

2
gh2)

x

+ ghBx = 0,

h(x,0) = −B0(x), v(x,0) = 0.

h ∶ water height
u ∶ velocity
v ∶ momentum hu
g ∶ gravity constant
B0 ∶ reference bathymetry
B ∶ bathymetry change

Adjoint shallow water equation (neglecting BCs):

pt + (gh − v
2

h2
)µx − (gBx)µ + λF,h =0,

µt + px +
2v

h
µx =0,

p(x,T ) = 0, µ(x,T ) =0

µ ∶ adj. water height
p ∶ adj. velocity
F,h ∶ deriv. of F w.r. to h
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Deriving gradients

1. Solve state equation initial value problem for (v, h).

2. Solve adjoint equations final value problem for (p,µ).

3. Compute the gradient in direction B̂:

G(B)(B̂) = (B −B0, B̂)C−1 + ∫
T

0
∫

b

a
gµhB̂x dxdt.

4. Use the covariance-preconditioned gradient CG(B) as descent direction
in minimization.
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Precond. gradient descent iterations

λ z ∶= Fγ(B⋆(λ)) PSO(z) # iter

12 0.263 4.80e-02 23
16 0.364 9.55e-03 31
20 0.468 1.24e-03 24
24 0.574 1.04e-04 31
28 0.682 5.45e-06 27
32 0.792 1.77e-07 33
36 0.905 3.54e-09 29
40 1.018 4.27e-11 32
44 1.134 3.09e-13 30
48 1.250 1.36e-15 37

Number of optimization iterations for different λ’s to achieve 5 orders of
magnitude gradient norm reduction.
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Hessian-applies
Since B is a function/long vector, we use adjoints for that.

▸ SORM, which is based on the second-order approximation of the
boundary of Ω(z) requires Hessian information.

▸ Only need dominating curvature directions of Ω(z) that are important
for the probability of θ.

▸ Use finite differences of gradients; that’s sufficient as we only need
Hessian-applies

▸ Use randomized SVD

0 5 10
10−7

10−4

10−1

eigenvalue #

λ
⋅λ
i
(p

re
co

n
.

H
es

s.
)

λ = 12

λ = 24

λ = 36

λ = 48

Shown on the left are
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Numerical analysis challenges

▸ The shallow water equations are hyperbolic can can have shocks, in
which case adjoint-based gradients can be challenging: We use artificial
viscosity by introducing an extra variable in the formulation.

▸ Spatial/temporal discretization, and optimized-then-discretize (OTD)
vs. discretize-then-optimize (DTO): We DG in space, and SSP RK in
time. Artificial viscosity results in convergence of adjoint-based
gradients (theory for FD by Giles, S. Ulbrich . . . )

▸ Challenges for PDE-constrained optimization: Time-optimal control;
existence/uniquiness of solutions; second-order conditions; Hessians;
low-rank approximations for SORM using randSVD
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Distribution modeling: Log-normal sum for slips
Use a sum of log-normal distributions for slips:

▸ Distribution is a sum of
log-normals with different means

▸ distribution fits
Gutenberg-Richter law for
moment magnitudes 7–9
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LDT-optimization results

▸ optimizers develop shocks close to observation region

▸ seems to be the mechanism to avoid energy dissipation
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Probabilities and role of nonlinearity

▸ probability has concave trend

▸ nonlinearity in SWE plays significant role
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Main takeaways
▸ Methods for extreme/rare event estimation that are:

insensitive to extremeness,
work for high-dimensional parameters and
expensive parameter-to-event maps F

▸ Theoretical foundation: large-deviation theory to argue connection
between (PDE-constrained) optimization and extreme event estimation

▸ Nonlinear parameter-to-event map F where derivatives are available
(using adjoints); parameters θ Gaussian or non-Gaussian

▸ Illustration using tsunami problem, where F involves time-dependent
shallow water equation; new class of PDE-constrained optimization

▸ Current work: Subspace important sampling based on second-order set
approx.

▸ Extensions: 2D SWE, control/mitigation of extreme events

https://arxiv.org/abs/2007.13930

https://arxiv.org/abs/2111.14325

https://arxiv.org/abs/2007.13930
https://arxiv.org/abs/2111.14325


“Extreme Events in Complex PDE Systems” by Georg Stadler

Summary

▸ Connection between PDE-constrained optimization and extreme event
probability estimation, applied to 1D shallow water equations

Some literature:

▸ Wahal, Biros: BIMC: The Bayesian Inverse Monte Carlo method for goal-oriented
uncertainty quantification. Part I, arXiv:1911.00619, (2019).

▸ Dematteis, Grafke, Vanden-Eijnden: Extreme event quantification in dynamical systems with
random components, SIUQ, (2019).

▸ Farazmand, Sapsis, Physics-based probing and prediction of extreme events, SIAM News,
(2018).

▸ LeVeque, George: High-resolution finite volume methods for the shallow water equations
with bathymetry and dry states, (2008).

▸ Hajian, Hintermüller, Ulbrich: Total variation diminishing schemes in optimal control of
scalar conservation laws, IMA J. Num. Anal., (2017).

▸ Giles, Ulbrich: Convergence of linearized and adjoint approximations for discontinuous
solutions of conservation laws. Part 1 & 2, SINUM (2010).

▸ Gassner, Winters, Kopriva, A well balanced and entropy conservative discontinuous Galerkin
spectral element method for the shallow water equations, Appl. Math. Comput. (2016).

▸ Wilcox, Stadler, Bui-Thanh, Ghattas, Discretely exact derivatives for hyperbolic
PDE-constrained optimization prob. discretized by the dG method, JSC, (2015).
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