
PART I

Numerical algorithms as a tool

that unites scientific disciplines

Jerzy Respondek

It should be emphasized here that in many cases

mathematical models of the phenomena have been known

for centuries (e.g. the mentioned Newton's principles of dynamics).

However, earlier the scope of applications of mathematical

methods in other fields of knowledge was relatively small due to the

limited possibilities of available tools, and in particular

the lack of sufficiently fast computers.

The idea of computer simulation

They rely on computer simulation of the basic

laws of physics* - in the form of mathematical models - to predict

„in the computer" the development of various pchysical phenomena

or behaviour of technical constructions.

Example 1 - missile range

Without the use of computers, "on formulas", it is possible

to calculate the range of missile range without taking into account

air resistance. Proper formula:

However, this formula is far too inaccurate for missile flights.
(i.e. gives results that are too different from reality)

2
0 sin(2)V

L
g




• The mathematical model, taking into account the air resistance,

gives the next slide.

• We build it on the same physical basis, i.e. the Newton's

second law.

Example 1 - missile range cont.

X

y

mg


m
qkv

air force, proportional to the q-th power of speed

earth gravity force

General form of 2nd Newton's dynamics principle: F ma
 

After taking into account the acting forces, and the fact that acceleration
is the so-called derivative of speed:

q v dv
mg kv m

v dt
  

 


- For q=1 (air resistance force proportional to speed)

this equation can still be solved without the help of a computer.

Example 1 - missile range cont.

q v dv
mg kv m

v dt
 

 


- However, the reality is closer to the model of air resistance

assuming that the resistance increases proportionally to the square

of speed, i.e. q=2.

- However, for q=2, the solution to this equation requires

the so-called numerical methods - using computers.

Thus, this typical example allows us to observe the general rule:

 The laws of physics helpful, among others in predicting the range

of missile flight, were formulated by Newton as early as in 17th century,

 however, computer science have significantly expanded the real range

of applying these rights.

In the case of free movement of bodies in a vacuum (e.g. stars),

with the help of Newton's equation, their motion can be predicted

for at most 2 bodies (!) without the use of computers.

• In the case where the number of bodies N >= 3, the problem can

be solved only using a computer and approximate methods.

F F

1F

1F
2F

2F

Example 2 - N body problem

In place of Newton's principles of dynamics, in the "microworld"

the behavior of particles is governed by the laws of quantum

mechanics, in particular the Schrödinger equation (1940s).

However, at the time of its formulation, it could only be used for

the simplest compounds, e.g. a hydrogen atom, due to its unique

complexity.

This is a very limited application, since the laws of quantum

mechanics "govern" the behavior of all chemical and biological

compounds.

CHEMISTRY TEXTBOOKS OFTEN - TRADITIONALLY -

TEACH "THE DIFFERENCES BETWEEN PHYSICAL PHENOMENA

AND CHEMICAL TRANSFORMATION".

Simulation at the molecular level

Other applications: COMPUTER GAMES

 Until quite recently, the realism of computer games was

associated only with the quality of graphics.

 Modern games are characterized not only by high-quality graphics,

but also by the artificial intelligence of computer opponents.

 Currently, more and more games go further, include the so-called

"game physics".

 Thanks to this, e.g. sound waves and water behave as real,

reacting to players' actions on an ongoing basis, and cars

realistically deform in the event of collisions.

PART II

Synthesis methods of the fast

matrix multiplication algorithms

Jerzy Respondek

The general aims of this lecture is:

• To present how the matrix multiplication algorithms
domain evolved, creating a separate branch of so-called

Fast Matrix Multiplication

• The naive, definition-based implementation gives O(n3) complexity:

1

1,..., , 1,...,
n

ij ik kj
k

C AB c a b i m j l


   

• For rectangular matrices we have m x l elements, for each element n

multiplications are performed inside the sum, thus we need (m x l x n)

• For square matrices m = l = n, thus n3 multiplications are needed

(in case of multiplying by the mathematical definition)

The first attempt to make the matrix multiplication faster

• The first step in this direction was made no by Strassen.

• Winograd (1968) proposed a modified algorithm for
calculation the inner product of vectors, but
simultaneously showed how to apply that new algorithm to
matrix multiplication decreasing the number of scalar
multiplications to be performed.

• For two vectors x and y he proposed to calculate the inner
products in two steps. In the first step we calculate
auxiliary numbers:

/2 /2

2 1 2 2 1 2
1 1

,
n n

i i i i
i i

x x y y 
      

 
 

  

Next, in the second step, with the use of previously
calculated auxiliary numbers, the inner product is given by

• By aggregating the products by pairs, he decreased the
number of scalar multiplications roughly by half.

/2

2 1 2 2 2 1
1

()() ,

,

n
T

T even even i i i i
i

T
even even n n

x y x y x y for evenn
x y

x y x y for odd n

 
  

 


  
          



Winograd decreased the number of multiplications to
multiply matrices, but he did not changed the asymtotic
complexity, which is still O(n3) for both the definition based
algorithm as well as its Winograd modification

The (very) famous Strassen result

• Strassen proposed to divide matrices into 4 sub-matrices:

• Next we calculate 7 auxiliary products:

11 12 11 12 11 12

21 22 21 22 21 22

,
C A B

C C A A B B
C AB

C C A A B B

     
       

     

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

()()

()

()

()

m A A B B

m A A B

m A B B

m A B B

  
 
 
 

5 11 12 22

6 21 11 11 12

7 12 22 21 22

()

()()

()()

m A A B

m A A B B

m A A B B

 
  
  

• The result C=AB is:

11 12 1 4 5 7 3 5

21 22 2 4 1 3 2 6
C

C C m m m m m m

C C m m m m m m

      
         

We apply this method recurvively.

• Time complexity:

Is this result the best possible for 2x2 matrix size ?

• Hopcroft and Kerr (1969) proved that at least just 7 multiplications are
necessary to multiply 2x2 matrices in any non-commutative*
algorithm.

• Winograd (1971) proved that even with use of commutativity* of the
matrix entries the minimal multiplication number still is 7 for 2x2
problem.

2

() 7 18
2 2

n n
T n T

       
   

   2log 7 2.807O n O n

(*) About that property later.
(**) For scheme with 7 multiplications;

definitional-based algorithm requires obviously merely 4.

• But Probert (1976) showed that at least 15 additions are necessary**.

• While the Strassen’s scheme utilizes 18 additions/subtractions.

Optimal scheme with 15 +/- :
Winograd (1973) modification of Strassen scheme

• 3 series of auxiliary term

• Important is the order of (and in) the 3 series

The final product C= AB have the form:

1 21 22, 1 2 6 1 1 2

2 11 112 1 11 2 1 4

3 12 213 11 21 3 1 5

4 3 74 12 2

5 1 55 12 11

6 4 226 22 5

7 22 87 22 12

8 6 21

,
,,
,,

,,
,,

,,
,,

S A A M S S T M M
M A BS S A T T M
M A BS A A T T M
M S SS A S
M S SS B B
M S BS B S
M A SS B B

S S B

    
   
   
 
 
 
 

 

2 3 3 6

2 7 2 5

M M T M
C

T M T M

  
    

Observation:
This scheme for 2x2 in 7 multiplications is less convenient for the parallelization.

Commutativity

• The fast matrix multiplication algorithms domain
distinguishes two main classes of algorithms,
i.e. commutative and non-commutative.

• The first commutative class requires the elements of the
matrices belong to a commutative field with respect to
multiplication (e.g. real numbers).

• It causes that the commutative matrix multiplication
algorithms cannot be applied recursively.

• That follows from the fact, that during the recursion we
come to scalars at the last recursion level, but on the
previous levels we encounter just matrices.

• As we know for matrices in general AB<>BA.

The 3x3 case

• After Strassen discovery there was a pursue to make the matrix
multiplication even faster

• One of the most promissing „base” size is 3x3, even up to now (!).

• Definition gives 33=27 scalar multilications.

• The Winograd inner product gives 24 *, but requires commutativity

• Gastinel (1970) proposed a generalized Strassen formula for any size,
which for 3x3 gives non-commutative algorithm with 25 multiplications.

• Musinski (1973) reduced this number to 24.

• Brocket and Dobkin proposed a commutative algorithm with 23
multiplications, but it required additional * and / by 2.

• Ladermann (1975) proposed a non-commutative algorithm
with 23 multiplications.

• It is up to now (!) best possible algorithm for the 3x3 size.

The 3x3 case - Ladermann (1976) construction – non-commutative case

• The 23 aggregated product have the form:

• Linearly combined as follows:

1 11 12 13 21 22 32 33 22

2 11 21 12 22

3 22 11 12 21 22 23 31 33

4 11 21 22 11 12 22

5 21 22 11 12

6 11 11

7 11 31 32 11 13 23

8 11 31 1

()

()()

()

()()

()()

()()

()(

m a a a a a a a b

m a a b b

m a b b b b b b b

m a a a b b b

m a a b b

m a b

m a a a b b b

m a a b

      
   
       

     
   


     
   3 23

9 31 32 11 13

10 11 12 13 22 23 31 32 23

11 32 11 13 21 22 23 31 32

12 13 32 33 22 31 32

)

()()

()

()

()()

b

m a a b b

m a a a a a a a b

m a b b b b b b b

m a a a b b b












 


   
       
        
      

13 13 33 22 32

14 13 31

15 32 33 31 32

16 13 22 23 23 31 33

17 13 23 23 33

18 22 23 31 33

19 12 21

20 23 32

21 21 13

22 31 12

23 33 33

()()

()()

()()

()()

()()

m a a b b

m a b

m a a b b

m a a a b b b

m a a b b

m a a b b

m a b

m a b

m a b

m a b

m a b

   
 
   


      
  
    
 

 



 

11 6 14 19

12 1 4 5 6 12 14 15

13 6 7 9 10 14 16 18

21 2 3 4 6 14 16 17

22 2 4 5 6 20

c m m m

c m m m m m m m

c m m m m m m m

c m m m m m m m

c m m m m m

  
              
       
     

23 14 16 17 18 21

31 6 7 8 11 12 13 14

32 12 13 14 15 22

33 6 7 8 9 23

c m m m m m

c m m m m m m m

c m m m m m

c m m m m m

     
       
     
     

Brent diophantine equation

Brent in his report (19705) proposed to define aggregated products in
the general form:

• Most desired are those constructions, which requires that all those
coefficients are from the set {-1,0,1} , like the Strassen construction is.

• Some valuable constructions for 3x3 case, e.g. Brockett and Dobkin
(1976, 1978), requires also multiplying or division by 2, though.

1 2 1 2 1 2 1 2

1 2 1 2

() ()

1 1 1 1

, 1,...,
m n n l

p p
p i i i i j j j j

i i j j

m a b p T 
   

   
   
   
 

where a*, b*. are elements of the matrices to be multiplied

1 2 1 2

()

1

T
p

k k k k p
p

c m




The result of the sum must adhere to definitional

(where we deliberately emphasized “1” coefficient)
 

1 2 1 2
1k k k k kk

k

c a b 

The 3x3 case: Brent diophantine equation (cont.)

This equation explains also Strassen construction, but – unfortunately –
very quickly leads to galactic size problems:

- for 2x2 we have 64 equations with 84 unknowns

- for 3x3 we obtain 729 equations and 621 unknowns:

23

1
, , , , , , 1,2,3ijp ijp mnp mi jk lnt

i j k m n p     


 
• Laderman claims that solved this equations with no computer usage,

but did not disclosed how he did that.

• But the results is correct, with 23 auxiliary mi terms

• Up to now the Laderman’s result is not beaten for 3x3.

• Blaser (2003) showed that at least 19 *-s are necessary for 3x3 size.

• Since log27~log321.8 to improve Strassen result we need algorithm with
at most 21 multiplications.

• The solution obained by other approach on next slides.

Brent diophantine equation solution for Strassen’s algorithm

Let us remind the Strassen’s scheme of:

- aggregated products m*: - linear combinations: S*m*;  in {-1,0,1}

11 12 1 4 5 7 3 5

21 22 2 4 1 3 2 6
C

C C m m m m m m

C C m m m m m m

      
         

1 11 22 11 22

2 21 22 11

3 11 12 22

4 22 21 11

5 11 12 22

6 21 11 11 12

7 12 22 21 22

()()

()

()

()

()

()()

()()

m A A B B

m A A B

m A B B

m A B B

m A A B

m A A B B

m A A B B

  
  
  
  
  

  
   

• The Strassen algorithm can be represented in form of 3 series,

• Each consisting of of seven 2x2 matrices:

()
1 7

1 0 0 0 1 0 0 0 1 1 1 0 0 1
, , , , , ,

0 1 1 1 0 0 0 1 0 0 1 0 0 1
p
pA  

              
                             

()
1 7

1 0 1 0 0 1 1 0 0 0 1 1 0 0
, , , , , ,

0 1 0 0 0 1 1 0 0 1 0 0 1 1
p
pB  

              
                             

()
1 7

1 0 0 0 0 1 1 0 1 1 0 0 1 0
, , , , , ,

0 1 1 1 0 1 1 0 0 0 0 1 0 0
p
p 

              
                              

Arbitrary precision algorithms (APA)

• Intelligible will be to present this notion by the example, for 3x3.

• Schonhage (1980) proposed the following 21 auxiliary products:

And the entries of D=AB matrix are given by:

2 2 2
1 2 1 2 1 2 2 1

2 2
1 3 3 1 3 3 1

1 2 3

()(), ()() ()
() , ()() ()

()

ii i i i i ij i j i i

ii i i i ij i j i i

i i i i

u a a b b u a a b b i j
v a a b v a a b b i j
w a b b

   
  

      
     
 

2

1 1
() ()ij ij ij i ji jjd u v w v v

 
    

where  is an real, scalar, additional arbitrary parameter.

Arbitrary precision algorithms (APA) (cont.)

Now one can easy check:

D AB R 
So for 0 the result D tends to the exact value od the desired product AB.

2

1 1
() ()ij ij ij i ji jjd u v w v v

 
    

Unfortunately, considering formula:

it is impossible, to simple state =0.

So we obtain so-called arbitrary precision algorithms:

- the result is arbitrary close to the exact value, with decreasing  ,
but never is exact.

- In favour we multiply 3x3 matrix by 21 multiplications, giving
exponent log321~2.771, better than Strassen’s 2.807.

What if we still need exact algorithm (EC) ?

With help comes the method Bini (1979) how to construct the exact
algorithm (EC) on the base of arbitrary precision algorithm (APA):

- We find the highest degree of , let’s say d

- Calculate the desired matrix product D=AB (d+1) times, for different 
parameter values (but now they do not need be small (!))

- Find the desired product D as an linear combinations of (d+1) matrices,
but with its coefficients (i) parameters choosen in a way, which removes
positive powers of  :

1

1 2 1 2

1 2 1 1

1 1 1 1

0

0

d

d d d
d d


   

   



 

     
     
     
     
     

    




     


Its another application of Vandermonde matrix and its inversion algorithms.

Relation between exact (EC) and
Arbitraty Precision Matrix Multiplication (APA)

What about time efficiency?

- It can be prooved Romani (1979) that if the APA algorithm is of the
class:

(()) ()O APA n O n

- So the corresponding exact algorithm builded by the Vandermonde
composition posesses class:

(()) (log)O EC n O n n 

We rearrange the above sum with respect to the consecutive powers of * :

Methods of algorithm construction for not-square matrices:

What is going on ?

We explain it by the example:

- Let us assume that we have a fast formula to multiply matrix
of the size (6x4) by (4x2)*

(*) Mathematically, the inner dimensions must be compatiple

This way we tacke with the source problem by corresponding one:

- We want o yield from that fast algorithm, to multiply matrices of the
size (2x4) by (4x6).

- The solution is given by the matrix equality

(transposition time is neeglegible - quadratic)

()T T TAB B A

(2 4) (4 6) (6 4) (4 2)      

Methods for not-square matrices: (cont.)

Let us denote the matrix dimensions by:

() () (, ,)a b b c a b c   
There is available fully elegant universal method by Hopcroft, Musinski
(1973) how on the base of fast algorithm for a given one series of
dimensions, with < T > multiplications:

(, ,)a b c

construct algorithms with the same < T > number of scalar multiplications,

for all the possible permutations of the dimensions, i.e.(*):

(, ,)
(, ,)
(, ,)
(, ,)
(, ,)

a c b
b a c
b c a
c a b
c b a

Hopcroft, Musinski (1973) Duality applied to matrix
multiplication, SIAM J on Computing, Vol.2 (3) pp. 159-173.

(*) So-called permutation rule, or duality of matrix
multiplication

Bini’s results for 12x12 matrices – the partial matrix multiplication notion

• We use: APA algorithms, permutation rule and multiplicative rule.

• For an exact algorithm, the following, so-called, partial matrix
multiplication, for matrices of the form:

requires 6 scalar multiplications.

• Bini et al. (1979) showed, how to do that in 5 scalar multiplications,
but in an arbitrary-precision way (APA).

The 5 aggregated products proposed by Bini have the following form:

Result for 12x12 matrices – the partial matrix multiplication notion (cont).

• We linearly combine them as follows:

as result we obtain the approximating formula with d=1 degree
correction terms:

By the symmetry we can really easy obtain the corresponding formulas
for the product of the form:

Result for 12x12 matrices – the partial matrix multiplication notion (cont).

• Now we can combine the two symmetric versions:

Thus, by combining two symmetric versions of the same partial matrix

multiplication of the size (2x2)x(2x2), with zero one entry, we obtained

non-partial algorithm for the problem by 10 multiplications, with gain

equal 2 multiplication over the definitional 12 multiplications.

like in the diagram:

Bini’s results for 12x12 matrices (cont.)

• By the permutation rule we obtain from (3,2,2) algorithm
for (2,3,2) and (2,2,3) (Hopcroft, Musinski (1973)).

• Next we use the multiplication rule, obtaining problem:

(3*2*2, 2*3*2, 2*2*3) = (12,12,12)

The cost is 10x10x10=1000, so the complexity exponent:

12log 1000 2.7799

Results for rectangular matrices

• Hopcroft & Kerr (1971) generalized Strassen’s result to (px2)x(2xn)
product in – roughly – 75% scalar products amount.

• On that basis Probert (1974) presented algorithm for (4x2)x(2x4) in 26
multiplications, instead of „definitional-based” 32 (81%).

• Hopcroft & Musinski (1973) considered case (3x2)x(2x3) in 15
multiplications (83% of 3*2*3=18)

Pursue for other dimensions

• For n=3 since the Laderman result (1976) (23 *-s) for exact and
Schonhage (1980) (21 *-s) for approximate no progress is
(for above 40 years), despite many endeavours.

• For n=4 the best solution is to use the Strassen result twice recusively,
in 7*7=49 scalar multiplications.

A good insight into the effords made in the pursue gives 5x5 case:

• Fidducia (1972) – 115 multiplications (definition: 53=125)

• Fisher (1974) – 110

• Sykora (1977) – 109

• Sykora (1977) – 105

• Schachtel (1978) – 103

• Makarov (1986) – 102

• Makarov (1987) – 100

• Sedoglavic (2017) – 99 (after above 30 years!)

• Sedoglavic (2019) – 98

Pursue for other dimensions

• We have also general methods, for arbitrary dimension nxn matrices:

• Gastinel (1971) – n3-(n-1) multiplications (definition: n3)

• Sykora (1977) – n3-(n-1)2 multiplications

• Sykora’s algorithm as one of the main tool uses Latin squares

• Laderman’s algorithm for 3x3 matrix in 23 multiplications is a special
case of Sykora’s algorithm.

• Winograd’s algorithm multiplying 2x2 matrix in 7 multiplications and 15
additions/subtractions also is a special case of Sykora’s algorithm.

• Strassen’s algorithm is a special case of Gastinel’s algorithm.

Actual state

[] Coppersmith D., Winograd S. (1990) „Matrix multiplication via arithmetic
progressions”, Journal of Symbolic Computations

But there works are of less practical meaning,
due to large constants in complexity.

 2.375477O n

[] Stothers Andrew (2010) „On the Complexity of Matrix Multiplication”.  2.373O n
[] Le Gall François (2014) „Powers of tensors and fast
matrix multiplication”.  2.3728O n

PART III

Applications of fast matrix

multiplication algorithms

Jerzy Respondek

Proof :(A is symmetrical & positive)

Let us – temporarily - assume that the A matrix, which we want to invert, is:

• dim A= nxn, where n=2q

• 1) symmetrical 2) positively defined

Next we define the A’s Schur residual with respect to the B matrix:

 TB CA C D

The algorithm sketch:

we divide the given A nxn matrix to
four (n/2)x(n/2) sub-matrices:

1 TS D CB C 

EXAMPLE OF APPLICATION

Matrix inverting can be implemented in no worse time than multiplication

We distinguished by the respective colors the common sub-terms

1 11 1

1 1
1

1

1 1T TB C B CB S CB
S

SA
SCB

 



 




 


     

So we need to obtain four matrix terms:

1

1 1

1 1

1

1

()
1.
2.
3. ()

()(4.)

T

T
S C

CB
C

B
S C

C

B

B

BC

 









1 TCBS D C 

So nxn matrix inverting may be performed by:

- four (n/2)x(n/2) multiplication

- two (n/2)x(n/2) inverting of the matrices B and S.

So the matrix inverting algorithm can be implemented in a recusive way by

inverting the respective two matrices of the half size in time:

2() 2 (/ 2) 4 () ()I n I n M n O n   where I(n) is the inverting complexity, and

M(n) is the multiplication time complexity

Finally: () (())I n O M n Q.E.D.

The inversion we construct by known block matrix algebra rules:

What if the A matrix is does not fulfill the assumptions of:

1. symmetricity

2. positive definition

?

Known property:

We utylize the known matrix equality:

1 1()T TA A A A 

For any non-singular A matrix, the matrix :

ATA
is:
• non-singular,
• positive defined,
• symmetric

Another example: LU decomposition in no worse time,
than the available matrix multiplication algorithm

• We use the following recursive algorithm:

Step 1: divide A matrix into (m/2)xn sub matrices B and C

Step 2: call FACTOR(B, m/2, n)

• We obtain:

Let E and F be the matrices built of the leading m/2 columns of the U1

and D matrices, respectively

Step 3: G:=D-FE-1U1

Step 4: call FACTOR(G’, m/2, n-m/2) (G’ is the right part of G)

Bunch J., Hopcroft J.: Triangular factorization and inversion by fast matrix
multiplication. Mathematics of Computation, Vol. 28 (125), pp. 231÷236, 1974.

LU decomposition is now ready with time complexity equal to utilized
matrix multiplication (e.g. 2.807 for Strassen).

Solving the system of linear equations Ax=b

There are two methods:

A)
- invert a matrix
- calculate A-1X

B)
- Decompose to LU
- Solve the LUx=b systems in two steps, in each of the triangular

case.

A survey of applications

Determinant calculation

- Decompose given matrix to LU
- Next use the property, usable especially in triangular case,

in linear time:

det[] det[] det[] det[]A L U P  

Polynomial calculations:

• Borodin (1975) shows how to evaluate a polynomial at a large number of
points at once by matrix multiplication in the same time

Rank of the matrix and related problems:

• Ibarra et. al. (1982) proposed a generalized LUP decomposition, here called the
SQP decomposition, applicable also to matrices without the full row rank.

• The results of the article can be also used to calculate the rank of a matrix
together with the respective non-singular minor in matrix multiplication time.

Characteristic polynomial of a matrix:

Keller-Gehrig (1985) proposed three algorithms to calculate the matrix
characteristic polynomial coefficients, with different generality and efficiency:

• Alg. 1 works in O(logn*M(n)) time, but is applicable only in special cases of the
input matrix.

• Alg. 2 is the fastest, achieving O(M(n)) time, i.e. the same as the used matrix
multiplication algorithm, but is not fully general, either.

• Alg. 3 works in O(logn*M(n)) time, but works for any square input matrix.

Problems related to Krylov matrix:

• Dumas (2005) proposes an O(logn*M(n)) time algorithm to find a minimal
polynomial of a Krylov matrix.

• Bini (1994) showed how to calculate the Krylov matrix in O(logn*M(n)) time.

Formal grammar problems

• Valiant (1975) applies matrix black-boxed paradigm to achieve M(n) time in
the problem of context-free recognition.

Compiler construction

• For the efficient memory management it is important which of the compiled
program functions are recursive.

• That can be detected by calculating the so-called transitive closure
of a graph, which is expressed as a certain matrix polynomial.

• Munro (1971) shows how to utilize in this problem the matrix multiplication
in a recursive way, obtaining an O(M(n)) time algorithm.

Graph paths problems:

• Seidel (1992) computes the shortest distances between all pairs of vertices
of an undirected, unweighted graph in O(logn*M(n)) time.

• Alon et. al. (1991) generalizes these results to the case when the weights are
between 0 and B with O(B2*logn*M(n)) time.

In the scientists community working on the matrix

multiplication algorithm there is a popular hypothesis

that it is possible to multiply the matrices in O(n2+)

time, for any (!) positive .

A

C

BD

0

0

 
 
  


I

Dependency graph of the

black-boxed matrix multiplication algorithms

Other issues connected with the application of fast matrix
multiplication

• In practice, the importance of surveyed in this lecture applications of the
FMM algorithms are even higher.

The following architectures:

• ARM v9

• x86 – so-called AMX commands

are introducing just the matrix multiplication operation on the hardware level.

Thus it is important to have algorithms, which can yield from the MM in other
operations, or even branches of computer science.

Other issues connected with the application of fast matrix
multiplication

• In practice, the implementation of any fast matrix multiplication algorithm is

definitely a non-trivial task.

• It must consider the hardware capabilities of a given computer system,

especially parallelization and vectorization issues, cache and memory

management.

• Nonetheless, the quite recent work from 2016 on Strassen’s algorithm:

Proved that fast matrix multiplication algorithms can be efficiently implemented:

• even for small matrices,

• not quite square

• for multi-core architecture.

[] Huang J., Smith T.M., Henry G.M., Geijn R.A.: Strassen's Algorithm Reloaded.
Proc. Int. Conf. for High Performance Computing, Networking, Storage and
Analysis, Salt Lake City, USA, 2016.

The generic matrix algorithms on the matrix multiplication

REMARK

• As we can see, involving both mathematical and algorithm construction
methods often enables to improve the asympthotical class of the algorithm

• The above mentioned, well-known algorithms operate on an arbitrary form
matrices

• The square matrix contains of N2 elements, so the theoretical efficiency limit is
O(N2), though such an effectiveness is impossible to achieve for the arbitrary
form matrices.*

SOLUTION

• Better efficiency is attainable by designing the special algorithms for a
selected classes of matrices.

• The following can be seen as the desired future research directions:

• Construction of the parallel algorithm for inverting the confluent

Vandermonde matrices.

• Adaptation of the algorithm to the vector-oriented hardware units, like

Intel AVX.

• Combination of both above.

• CUDA implementation.

Remark: The N-body problem already has followed all this directions!

[] Pedro Alonso, Miguel O. Bernabéu, Victor M. García, Antonio M. Vidal, Implementation
and tuning of a parallel symmetric Toeplitz eigensolver, Journal of Parallel and
Distributed Computing, 71 (3) (2011), pp. 485-494.

In the special matrices currently there are emerging first works, e.g.:

Very thanks for Your attention!

