Observations on turnpike \& optimal actuator design

Borjan Geshkovski
DCN Seminar

May 112022

Massachusetts Institute of Technology

1. A method for proving nonlinear 2. Hardships of optimal actuator turnpike design

2. A method for proving nonlinear turnpike

Why solve

$$
\begin{align*}
& \min _{u \in L^{2}((0, T) \times \omega)} \int_{0}^{T} \int_{\omega_{o}}\left(y(t, x)-y_{d}(x)\right)^{2}+\int_{0}^{T} \int_{\omega} u(t, x)^{2} \tag{1}\\
& \text { s.t. } \begin{cases}\partial_{t} y-\Delta y=u 1_{\omega} & (0, T) \times \Omega \\
y=0 & (0, T) \times \partial \Omega \\
\left.y\right|_{t=0}=y^{0} & \Omega,\end{cases}
\end{align*}
$$

when you can solve

$$
\min _{u \in L^{2}(\omega)} \int_{\omega_{\circ}}\left(y-y_{d}\right)^{2}+\int_{\omega} u^{2} \quad \text { s.t. } \begin{cases}-\Delta y=u 1_{\omega} & \text { in } \Omega \tag{2}\\ y=0 & \text { on } \partial \Omega\end{cases}
$$

The turnpike property

- Given $y_{d}=y_{d}(x), \omega, \omega_{\circ}, y^{0}$, there exist $C, \lambda>0$ independent of T such that for T large enough,

$$
\begin{aligned}
\| y_{T}(t) & -\bar{y}\left\|_{L^{2}(\Omega)}+\right\| u(t)-\bar{u} \|_{L^{2}(\omega)} \\
& \leqslant C\left(e^{-\lambda t}+e^{-\lambda(T-t)}\right)
\end{aligned}
$$

for all $t \in[0, T]$.

- Here $\left(u_{T}, y_{T}\right)$ solution to (1) and (\bar{u}, \bar{y}) to (2)

The turnpike property

- Given $y_{d}=y_{d}(x), \omega, \omega_{\circ}, y^{0}$, there exist $C, \lambda>0$ independent of T such that for T large enough,

$$
\begin{gathered}
\left\|y_{T}(t)-\bar{y}\right\|_{L^{2}(\Omega)}+\|u(t)-\bar{u}\|_{L^{2}(\omega)} \\
\leqslant C\left(e^{-\lambda t}+e^{-\lambda(T-t)}\right)
\end{gathered}
$$

for all $t \in[0, T]$.

- Here $\left(u_{T}, y_{T}\right)$ solution to (1) and (\bar{u}, \bar{y}) to (2)

Shameless advertising

Turnpike in optimal control of PDEs, ResNets, and beyond

Borjan Geshkovski*
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
E-mail: borjan@mit.edu
Enrique Zuazua
Chair in Dynamics, Control, and Numerics, Alexander von Humboldt-Professorship, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 11, 91052 Erlangen, Germany, Chair of Computational Mathematics, Fundación Deusto, Av. de las Universidades 24, 48007 Bilbao, Basque Country, Spain, and Departamento de Matemáticas, Universidad Autónoma de Madrid,
28049 Madrid, Spain
E-mail: enrique.zuazua@fau.de

Dedicated to the memory of Roland Glowinski

Linear theory

Theorem ${ }^{1}$

Let $y^{0} \in L^{2}(\Omega)$ and $y_{d} \in L^{2}\left(\omega_{\circ}\right)$ be fixed; $\omega, \omega_{\circ} \subset \Omega$ open, non-void. There exist $C, \lambda>0$, independent of y^{0} and y_{d}, such that for large enough $T>0$,

$$
\begin{aligned}
& \left\|y_{T}(t)-\bar{y}\right\|_{L^{2}(\Omega)}+\left\|u_{T}(t)-\bar{u}\right\|_{L^{2}(\omega)} \\
& \quad \leqslant C\left(\left\|y^{0}-\bar{y}\right\|_{L^{2}(\Omega)} e^{-\lambda t}+\|\bar{p}\|_{L^{2}(\Omega)} e^{-\lambda(T-t)}\right)
\end{aligned}
$$

holds for $t \in[0, T]$.
How does one prove such a result?

Linear theory

Necessary and sufficient conditions for optimality: $\left(u_{T}=p_{T} 1_{\omega}\right.$, $\bar{u}=\bar{p} 1_{\omega}$)

Transient

$$
\left\{\begin{array}{l}
\partial_{t} y_{T}-\Delta y_{T}=p_{T} 1_{\omega} \tag{4}\\
\partial_{t} p_{T}+\Delta p_{T}=\left(y_{T}-y_{d}\right) 1_{\omega_{\circ}} \\
y_{\left.\right|_{t=0}}=y^{0} \\
p_{\left.\right|_{t=T}}=0
\end{array}\right.
$$

Steady

$$
\left\{\begin{array}{l}
-\Delta \bar{y}=\bar{p} 1_{\omega} \\
-\Delta \bar{p}=-\left(\bar{y}-y_{d}\right) 1_{\omega_{\circ}}
\end{array}\right.
$$

At least 2 (transparent) ways to proceed:

- Riccati ${ }^{2}$
- Diagonalization ${ }^{3}$

Both uncouple the optimality system by a feedback operator, and use stabilizability to get decay in phase space $\left(y_{T}, p_{T}\right)$.

[^0]
Wave equation and others

Theory applies more generally to

1. abstract first-order systems $\dot{y}=A y+B u$ (principal part of A symmetric on \mathcal{H}) and cost

$$
\phi(y(T))+\int_{0}^{T}\left\|M y(t)-y_{d}\right\|_{\mathscr{H}}^{2}+\int_{0}^{T}\|u(t)\|_{\mathcal{U}}^{2}
$$

as long as (A, B) and $\left(A^{*}, M^{*}\right)$ stabilizable;
2. second-order systems like the wave equation $\partial_{t}^{2} y-\Delta y=u 1_{\omega}$ and cost like

$$
\phi\left(y(T), \partial_{t} y(T)\right)+\int_{0}^{T}\left\|y(t)-y_{d}\right\|_{H_{0}^{1}(\Omega)}^{2}+\int_{0}^{T} \int_{\omega} u(t)^{2}
$$

Stabilizability translates to ω, Ω satisfying GCC.

Caution

$$
\begin{array}{r}
\min _{u \in L^{2}((0, T) \times \omega)} \int_{\omega_{o}}\left(y(T, x)-y_{d}(x)\right)^{2}+\int_{0}^{T} \int_{\omega} u(t, x)^{2} \\
\text { s.t. } \quad \begin{cases}\partial_{t} y-\Delta y=u 1_{\omega} & (0, T) \times \Omega, \\
y=0 & (0, T) \times \partial \Omega, \\
\left.y\right|_{t=0}=y^{0} & \Omega,\end{cases}
\end{array}
$$

Turnpike doesn't hold!

Critical elements for turnpike: 1). stabilizability for (A, B) and detectability for $\left(A^{*}, M^{*}\right)$, and 2). state-tracking term.

Nonlinear theory

$$
\begin{aligned}
& \min _{u \in L^{2}((0, T) \times \omega)} \int_{0}^{T} \int_{\Omega}\left|y(t)-y_{d}\right|^{2}+\int_{0}^{T} \int_{\omega}|u(t)|^{2} \\
& \text { s.t. } \begin{cases}\partial_{t} y-\Delta y+y^{3}=u 1_{\omega} & (0, T) \times \Omega \\
y=0 & (0, T) \times \partial \Omega \\
\left.y\right|_{t=0}=y^{0} & \Omega\end{cases}
\end{aligned}
$$

- Write and linearize optimality system for perturbation variables $(\delta y, \delta p)$:

$$
\left\{\begin{array}{l}
\partial_{t} \delta y-\Delta \delta y+f^{\prime}(\bar{y}) \delta y=\delta p 1_{\omega} \tag{5}\\
\partial_{t} \delta p+\Delta p-f^{\prime}(\bar{y}) \delta p=\delta y+f^{\prime \prime}(\bar{y}) \bar{p} \delta y
\end{array}\right.
$$

Nonlinear theory

- Clue: (5) is the optimality system for

$$
\begin{aligned}
& \min _{v} \int_{0}^{T} \int_{\Omega} \rho(x) \zeta^{2}(t, x)+\int_{0}^{T} \int_{\omega} v(t, x)^{2} \\
& \text { s.t. } \begin{cases}\partial_{t} \zeta-\Delta \zeta+f^{\prime}(\bar{y}) \zeta=v 1_{\omega} & (0, T) \times \Omega \\
y=0 & (0, T) \times \partial \Omega \\
\left.\zeta\right|_{t=0}=\delta y^{0} & \Omega,\end{cases}
\end{aligned}
$$

where $\rho(x)=1-f^{\prime \prime}(\bar{y}(x)) \bar{p}(x)$.

- Turnpike holds for this LQ whenever $\inf _{\Omega} \rho(x)>0$. This can be ensured when $\left\|y_{d}\right\|_{L^{2}(\Omega)} \ll 1$!

Bottleneck

Question

Can we have y_{d} large?
A: Lack of uniqueness of minimizers for the steady problem! ${ }^{4}$

Question

Can we avoid $f \in C^{2}$? The theory doesn't even apply for Lipschitz-only f !

Our setup

$$
\begin{gathered}
\min _{u \in L^{2}((0, T) \times \omega)} \phi\left(\left(\zeta, \partial_{t} \zeta\right)(T)\right)+\int_{0}^{T}\left\|\left(\zeta(t), \partial_{t} \zeta(t)\right)-(\bar{\zeta}, 0)\right\|_{H_{0}^{1} \times L^{2}(\Omega)}^{2} \\
\quad+\int_{0}^{T} \quad \int_{\omega} u(t, x)^{2} \\
\text { s.t. } \quad \begin{cases}\partial_{t}^{2} \zeta-\Delta \zeta+f(\zeta)=u 1_{\omega} & (0, T) \times \Omega, \\
\left.\left(\zeta, \partial_{t} \zeta\right)\right|_{t=0}=\left(\zeta^{0}, \zeta^{1}\right) .\end{cases}
\end{gathered}
$$

Key assumptions:

- $f \in \operatorname{Lip}(\mathbb{R})$
- $\bar{\zeta}$ is a steady state: $-\Delta \bar{\zeta}+f(\bar{\zeta})=0$ in Ω.
- ω chosen so that exact-controllability holds (multiplier condition)

Set $y=\left(\zeta, \partial_{t} \zeta\right)$ and $\bar{y}=(\bar{\zeta}, 0)$:

$$
\begin{gathered}
\min _{u \in L^{2}((0, T) \times \omega)} \phi(y(T))+\int_{0}^{T}|y(t)-\bar{y}|_{\mathcal{H}}^{2}+\int_{0}^{T} \int_{\omega} u(t, x)^{2} \\
\text { s.t. } \quad\left\{\begin{array}{l}
\partial_{t} y-A y=\mathfrak{f}(y)+B u \quad(0, T), \\
\left.y\right|_{t=0}=y^{0}
\end{array}\right.
\end{gathered}
$$

Set $y=\left(\zeta, \partial_{t} \zeta\right)$ and $\bar{y}=(\bar{\zeta}, 0)$:

$$
\begin{gathered}
\min _{u \in L^{2}((0, T) \times \omega)} \phi(y(T))+\int_{0}^{T}|y(t)-\bar{y}|_{\mathcal{H}}^{2}+\int_{0}^{T} \int_{\omega} u(t, x)^{2} \\
\text { s.t. } \quad\left\{\begin{array}{l}
\partial_{t} y-A y=\mathfrak{f}(y)+B u \quad(0, T), \\
\left.y\right|_{t=0}=y^{0}
\end{array}\right.
\end{gathered}
$$

Theorem ${ }^{5}$

Suppose $f(0)=0$. For any $y^{0} \in \mathcal{H}$, there exists $T^{*}>0$ and constants $C, \lambda>0$ such that for all $T \geqslant T^{*}$, any minimizer $\left(u_{T}, y_{T}\right)$ satisfies

$$
\left\|u_{T}\right\|_{L^{2}((0, T) \times \omega)} \leqslant C
$$

and

$$
\left\|y_{T}(t)-\bar{y}\right\|_{\mathcal{H}} \leqslant C\left(e^{-\lambda t}+e^{-\lambda(T-t)}\right)
$$

holds for all $t \in[0, T]$.
${ }^{5}$ [Esteve-Yagüe, Geshkovski, Pighin, Zuazua. Nonlinearity '22]

Tool \#1

Assumption (satisfied by wave eq):

(a) There exists a time $T_{0}>0$ such that (10.4) is exactly controllable at time T_{0}. Namely, for any data $\left(y^{0}, y^{1}\right) \in \mathscr{H} \times \mathscr{H}$, there exists a control $u \in$ $L^{2}\left(\left(0, T_{0}\right) \times \omega\right)$ such that the unique solution y to (10.4) set on $\left(0, T_{0}\right)$ satisfies $y(0)=y^{0}$ and $y\left(T_{0}\right)=y^{1}$.
(b) There exists some $r>0$ and some constant $C\left(T_{0}\right)>0$ such that

$$
\inf _{u \in L^{2}\left(\left(0, T_{0}\right) \times \omega\right)}^{y(0)=y^{0}} \begin{align*}
& y\left(T_{0}\right)=\bar{y} \tag{10.9}
\end{align*}\|u\|_{L^{2}\left(\left(0, T_{0}\right) \times(\omega)\right.}^{2} \leq C\left(T_{0}\right)\left\|y^{0}-\bar{y}\right\|_{\mathscr{H}}^{2}
$$

and

$$
\begin{equation*}
\inf _{\substack{u \in L^{2}\left(\left(0, T_{0}\right) \times \omega\right) \\ y(0)=\bar{y} \\ y\left(T_{0}\right)=y^{1}}}\|u\|_{L^{2}\left(\left(0, T_{0}\right) \times \omega\right)}^{2} \leq C\left(T_{0}\right)\left\|y^{1}-\bar{y}\right\|_{\mathscr{H}}^{2} \tag{10.10}
\end{equation*}
$$

for every $y^{0}, y^{1} \in \mathfrak{B}_{r}(\bar{y})$, where

$$
\mathfrak{B}_{r}(\bar{y}):=\left\{z \in \mathscr{H} \mid\|z-\bar{y}\|_{\mathscr{H}} \leq r\right\}
$$

Tool \#2

Lemma ("Lipschitz interpolation")

There exists $C_{1}>0$ such that for any $(!) u \in L^{2}((0, T) \times \omega)$, and any $T>0$, for any u, it holds

$$
\sup _{t \in[0, T]}\|y(t)-\bar{y}\|_{\mathcal{H}} \leqslant C_{1}\left(\|y(0)-\bar{y}\|_{\mathcal{H}}+\|y-\bar{y}\|_{L^{2}(0, T ; \mathcal{H})}+\|u\|_{L^{2}}\right)
$$

Tool \#2

Lemma ("Lipschitz interpolation")

There exists $C_{1}>0$ such that for any $(!) u \in L^{2}((0, T) \times \omega)$, and any $T>0$, for any u, it holds

$$
\sup _{t \in[0, T]}\|y(t)-\bar{y}\|_{\mathcal{H}} \leqslant C_{1}\left(\|y(0)-\bar{y}\|_{\mathcal{H}}+\|y-\bar{y}\|_{L^{2}(0, T ; \mathcal{H})}+\|u\|_{L^{2}}\right)
$$

Comment

- Not aware how to extend it to non-globally Lipschitz f.
- Possibly milder form of a quantitative "input-to-state" stability (ISS) ${ }^{6}$

Step 1: Global estimate

Lemma

Exists $C_{2}>0$ such that $g_{T}\left(u_{T}\right) \leqslant C_{2}$ for all $T \geqslant T_{0}$.

Step 1: Global estimate

Lemma

Exists $C_{2}>0$ such that $I_{T}\left(u_{T}\right) \leqslant C_{2}$ for all $T \geqslant T_{0}$.
Proof. Quasi-turnpike principle:

1. Controllability yields u_{1} such that $y_{1}\left(T_{0}\right)=\bar{y}$;
2. Consider $u_{2}=u_{1} 1_{\left[0, T_{0}\right]}$ on $[0, T]$. Then

$$
\mathcal{I}\left(u_{T}\right) \leqslant \mathcal{I}\left(u_{2}\right)=: C_{2} .
$$

Step 1: Global estimate

1. Used in conjunction with Lipschitz interpolation:

$$
\begin{equation*}
\sup _{t \in[0, T]}\|y(t)-\bar{y}\|_{\mathcal{H}}^{2}+g_{T}\left(u_{T}\right) \leqslant C_{3}^{2} \tag{6}
\end{equation*}
$$

for $C_{3}>0$ independent of T.

Step 1: Global estimate

1. Used in conjunction with Lipschitz interpolation:

$$
\begin{equation*}
\sup _{t \in[0, T]}\|y(t)-\bar{y}\|_{\mathcal{H}}^{2}+g_{T}\left(u_{T}\right) \leqslant C_{3}^{2} \tag{6}
\end{equation*}
$$

for $C_{3}>0$ independent of T.
2. Consequently, turnpike holds on intervals whose length is independent of T ! For $t \in\left[0, \tau+T_{0}\right]$,

$$
\left\|y_{T}(t)-\bar{y}\right\|_{\mathscr{H}} \leqslant C_{3} e^{\lambda t} e^{-\lambda t}
$$

Step 1: Global estimate

1. Used in conjunction with Lipschitz interpolation:

$$
\begin{equation*}
\sup _{t \in[0, T]}\|y(t)-\bar{y}\|_{\mathcal{H}}^{2}+g_{T}\left(u_{T}\right) \leqslant C_{3}^{2} \tag{6}
\end{equation*}
$$

for $C_{3}>0$ independent of T.
2. Consequently, turnpike holds on intervals whose length is independent of T ! For $t \in\left[0, \tau+T_{0}\right]$,

$$
\left\|y_{T}(t)-\bar{y}\right\|_{\mathcal{H}} \leqslant C_{3} e^{\lambda t} e^{-\lambda t} \leqslant C_{3} e^{\lambda\left(\tau+T_{0}\right)}\left(e^{-\lambda t}+e^{-\lambda(T-t)}\right)
$$

Step 1: Global estimate

1. Used in conjunction with Lipschitz interpolation:

$$
\begin{equation*}
\sup _{t \in[0, T]}\|y(t)-\bar{y}\|_{\mathcal{H}}^{2}+g_{T}\left(u_{T}\right) \leqslant C_{3}^{2} \tag{6}
\end{equation*}
$$

for $C_{3}>0$ independent of T.
2. Consequently, turnpike holds on intervals whose length is independent of T ! For $t \in\left[0, \tau+T_{0}\right]$,

$$
\left\|y_{T}(t)-\bar{y}\right\|_{\mathcal{H}} \leqslant C_{3} e^{\lambda t} e^{-\lambda t} \leqslant C_{3} e^{\lambda\left(\tau+T_{0}\right)}\left(e^{-\lambda t}+e^{-\lambda(T-t)}\right)
$$

Same for $t \in\left[T-\left(\tau+T_{0}\right), T\right]$.

Step 2: Localization

Localize study to $\left[\tau+T_{0}, T-\left(\tau+T_{0}\right)\right]$. $\tau>0$ is a degree of freedom independent of T, and T will be chosen sufficiently large.

Step 2: Localization

Localize study to $\left[\tau+T_{0}, T-\left(\tau+T_{0}\right)\right]$. $\tau>0$ is a degree of freedom independent of T, and T will be chosen sufficiently large.

1. There must exist $\tau_{1} \in[0, \tau)$ and $\tau_{2} \in(T-\tau, T]$ s.t.

$$
\left\|y_{T}\left(\tau_{j}\right)-\bar{y}\right\|_{\mathcal{H}} \leqslant \frac{\left\|y_{T}-\bar{y}\right\|_{L^{2}(0, T ; \mathcal{H})}}{\sqrt{\tau}}
$$

Step 2: Localization

Localize study to $\left[\tau+T_{0}, T-\left(\tau+T_{0}\right)\right]$. $\tau>0$ is a degree of freedom independent of T, and T will be chosen sufficiently large.

1. There must exist $\tau_{1} \in[0, \tau)$ and $\tau_{2} \in(T-\tau, T]$ s.t.

$$
\begin{equation*}
\left\|y_{T}\left(\tau_{j}\right)-\bar{y}\right\|_{\mathcal{H}} \leqslant \frac{\left\|y_{T}-\bar{y}\right\|_{L^{2}(0, T ; \mathcal{H})}}{\sqrt{\tau}} \leqslant \frac{C_{3}}{\sqrt{\tau}} \tag{7}
\end{equation*}
$$

Step 2: Localization

Localize study to $\left[\tau+T_{0}, T-\left(\tau+T_{0}\right)\right]$. $\tau>0$ is a degree of freedom independent of T, and T will be chosen sufficiently large.

1. There must exist $\tau_{1} \in[0, \tau)$ and $\tau_{2} \in(T-\tau, T]$ s.t.

$$
\begin{equation*}
\left\|y_{T}\left(\tau_{j}\right)-\bar{y}\right\|_{\mathcal{H}} \leqslant \frac{\left\|y_{T}-\bar{y}\right\|_{L^{2}(0, T ; \mathcal{H})}}{\sqrt{\tau}} \leqslant \frac{C_{3}}{\sqrt{\tau}} \tag{7}
\end{equation*}
$$

2. Restrict u_{T} to $\left[\tau_{1}, \tau_{2}\right]$: it solves

$$
\min _{\substack{\left.u \\ y_{t}=A y+f(y)+B u \text { in } \\ y\left(\tau_{1}\right)=y_{T}\left(\tau_{1}\right), \tau_{2}\right) \\ y\left(\tau_{2}\right)=y_{T}\left(\tau_{2}\right)}} \int_{\tau_{1}}^{\tau_{2}}\|y(t)-\bar{y}\|_{\mathcal{H}}^{2} d t+\int_{\tau_{1}}^{\tau_{2}}\|u(t)\|_{L^{2}}^{2}
$$

Step 2: Localization

Localize study to $\left[\tau+T_{0}, T-\left(\tau+T_{0}\right)\right]$. $\tau>0$ is a degree of freedom independent of T, and T will be chosen sufficiently large.

1. There must exist $\tau_{1} \in[0, \tau)$ and $\tau_{2} \in(T-\tau, T]$ s.t.

$$
\begin{equation*}
\left\|y_{T}\left(\tau_{j}\right)-\bar{y}\right\|_{\mathcal{H}} \leqslant \frac{\left\|y_{T}-\bar{y}\right\|_{L^{2}(0, T ; \mathcal{H})}}{\sqrt{\tau}} \leqslant \frac{C_{3}}{\sqrt{\tau}} \tag{7}
\end{equation*}
$$

2. Restrict u_{T} to $\left[\tau_{1}, \tau_{2}\right]$: it solves

$$
\min _{\substack{\left.u \\ y_{t}=A y+f(y)+B u \text { in } \\ y\left(\tau_{1}\right)=y_{T}\left(\tau_{1}\right) \\ y\left(\tau_{2}\right)=y_{T}\right)}} \int_{\tau_{1}}^{\tau_{2}}\|y(t)-\bar{y}\|_{\mathcal{H}_{2}}^{2} d t+\int_{\tau_{1}}^{\tau_{2}}\|u(t)\|_{L^{2}}^{2}
$$

3. Quasi-turnpike again! Controllability 2 times (from τ_{1} to $\tau_{1}+T_{0}$ and then $\tau_{2}-T_{0}$ to τ_{2}) yields

$$
\begin{equation*}
\sup _{t \in\left[\tau_{1}, \tau_{2}\right]}\left\|y_{T}(t)-\bar{y}\right\|_{H} \leqslant C_{\bullet}\left(\left\|y_{T}\left(\tau_{1}\right)-\bar{y}\right\|_{\mathcal{H}}+\left\|y_{T}\left(\tau_{2}\right)-\bar{y}\right\|_{\mathcal{H}}\right) \tag{8}
\end{equation*}
$$

for some $C_{\bullet}>0$ independent of $T, \tau, \tau_{1}, \tau_{2}$.

Step 2: Localization

4. Combining (8) and (7):

$$
\left\|y_{T}(t)-\bar{y}\right\| \leqslant \frac{2 C_{\bullet} C_{3}}{\sqrt{\tau}} \leqslant \frac{2 C_{\bullet}^{2}}{\sqrt{\tau}},
$$

for all $t \in\left[\tau_{1}, \tau_{2}\right]$, hence also for all $t \in[\tau, T-\tau]$.

Step 2: Localization

4. Combining (8) and (7):

$$
\left\|y_{T}(t)-\bar{y}\right\| \leqslant \frac{2 C_{\bullet} C_{3}}{\sqrt{\tau}} \leqslant \frac{2 C_{\bullet}^{2}}{\sqrt{\tau}},
$$

for all $t \in\left[\tau_{1}, \tau_{2}\right]$, hence also for all $t \in[\tau, T-\tau]$.

1. Pick $\tau>16 C_{\bullet}^{4}$, then this is a contraction!

Step 2: Localization

4. Combining (8) and (7):

$$
\left\|y_{T}(t)-\bar{y}\right\| \leqslant \frac{2 C_{\bullet} C_{3}}{\sqrt{\tau}} \leqslant \frac{2 C_{\bullet}^{2}}{\sqrt{\tau}},
$$

for all $t \in\left[\tau_{1}, \tau_{2}\right]$, hence also for all $t \in[\tau, T-\tau]$.

1. Pick $\tau>16 C_{\bullet}^{4}$, then this is a contraction!
2. By induction, for $n \geqslant 1$ s.t. $T-2 n \tau \geqslant 2 T_{0}$:

$$
\begin{equation*}
\sup _{t \in[n \tau, T-n \tau]}\left\|y_{T}(t)-\bar{y}\right\| \leqslant \frac{1}{2}\left(\frac{4 C_{0}^{2}}{\sqrt{\tau}}\right)^{n} . \tag{9}
\end{equation*}
$$

Step 2: Localization

4. Combining (8) and (7):

$$
\left\|y_{T}(t)-\bar{y}\right\| \leqslant \frac{2 C_{\bullet} C_{3}}{\sqrt{\tau}} \leqslant \frac{2 C_{\bullet}^{2}}{\sqrt{\tau}},
$$

for all $t \in\left[\tau_{1}, \tau_{2}\right]$, hence also for all $t \in[\tau, T-\tau]$.

1. Pick $\tau>16 C_{\bullet}^{4}$, then this is a contraction!
2. By induction, for $n \geqslant 1$ s.t. $T-2 n \tau \geqslant 2 T_{0}$:

$$
\begin{equation*}
\sup _{t \in[n \tau, T-n \tau]}\left\|y_{T}(t)-\bar{y}\right\| \leqslant \frac{1}{2}\left(\frac{4 C_{0}^{2}}{\sqrt{\tau}}\right)^{n} . \tag{9}
\end{equation*}
$$

3. A judicious choice of n will yield the desired estimate.

Iterative quasi-turnpike.

Discussion and outlook

1. Proof is "modular": to generalize to other examples, need to improve individual steps. For instance, "Lipschitz interpolation" inequality to more general nonlinearities. What matters is that RHS in "Lipschitz interpolation" is roughly the cost functional!

Discussion and outlook

1. Proof is "modular": to generalize to other examples, need to improve individual steps. For instance, "Lipschitz interpolation" inequality to more general nonlinearities. What matters is that RHS in "Lipschitz interpolation" is roughly the cost functional!
2. If $\phi(\bar{y})=0$, there is no final arc and we get exponential decay.

Discussion and outlook

1. Proof is "modular": to generalize to other examples, need to improve individual steps. For instance, "Lipschitz interpolation" inequality to more general nonlinearities. What matters is that RHS in "Lipschitz interpolation" is roughly the cost functional!
2. If $\phi(\bar{y})=0$, there is no final arc and we get exponential decay.
3. \bar{y} can be a controlled steady state also, if said control is added in the control penalty. The assumption we should look to relax is \bar{y} being a steady state.

Discussion and outlook

1. Proof is "modular": to generalize to other examples, need to improve individual steps. For instance, "Lipschitz interpolation" inequality to more general nonlinearities. What matters is that RHS in "Lipschitz interpolation" is roughly the cost functional!
2. If $\phi(\bar{y})=0$, there is no final arc and we get exponential decay.
3. \bar{y} can be a controlled steady state also, if said control is added in the control penalty. The assumption we should look to relax is \bar{y} being a steady state.

Morale: Choose the cost functional adapted to the assumptions.

Discussion and outlook

1. Proof is "modular": to generalize to other examples, need to improve individual steps. For instance, "Lipschitz interpolation" inequality to more general nonlinearities. What matters is that RHS in "Lipschitz interpolation" is roughly the cost functional!
2. If $\phi(\bar{y})=0$, there is no final arc and we get exponential decay.
3. \bar{y} can be a controlled steady state also, if said control is added in the control penalty. The assumption we should look to relax is \bar{y} being a steady state.

Morale: Choose the cost functional adapted to the assumptions.
4. Finite-dimensional case with Lagrangian $\|P(y-\bar{y})\|^{2}+\|u\|^{2}$; $y \in \mathbb{R}^{d}$ and $P: \mathbb{R}^{d} \rightarrow \mathbb{R}^{m}$. Can expect turnpike estimate for $\left\|P\left(y_{T}-\bar{y}\right)\right\|$, but "Lipschitz interpolation" is difficult to get for this term! Loyasewicz's inequality can be useful here (en cours).
2. Hardships of optimal actuator design

Optimal actuators, optimal sensors

- The heat equation $\left(\partial_{t}-\Delta\right) y=0$ is observable from any open $\omega \subset \Omega$ in any time $T>0$: there exists $C_{T}(\omega)>0$ such that

$$
C_{T}(\omega)\|y(T, \cdot)\|_{L^{2}(\Omega)}^{2} \leqslant \int_{0}^{T} \int_{\omega}|y(t, x)|^{2}
$$

holds for all solutions y.

Optimal actuators, optimal sensors

- The heat equation $\left(\partial_{t}-\Delta\right) y=0$ is observable from any open $\omega \subset \Omega$ in any time $T>0$: there exists $C_{T}(\omega)>0$ such that

$$
C_{T}(\omega)\|y(T, \cdot)\|_{L^{2}(\Omega)}^{2} \leqslant \int_{0}^{T} \int_{\omega}|y(t, x)|^{2}
$$

holds for all solutions y.

$$
C_{T}^{*}(\omega):=\inf _{y^{0} \in L^{2}(\Omega) \backslash\{0\}} \frac{\int_{0}^{T} \int_{\omega}|y(t, x)|^{2}}{\|y(T, \cdot)\|_{L^{2}(\Omega)}^{2}}
$$

Optimal actuators, optimal sensors

- The heat equation $\left(\partial_{t}-\Delta\right) y=0$ is observable from any open $\omega \subset \Omega$ in any time $T>0$: there exists $C_{T}(\omega)>0$ such that

$$
C_{T}(\omega)\|y(T, \cdot)\|_{L^{2}(\Omega)}^{2} \leqslant \int_{0}^{T} \int_{\omega}|y(t, x)|^{2}
$$

holds for all solutions y.

$$
C_{T}^{*}(\omega):=\inf _{y^{0} \in L^{2}(\Omega) \backslash\{0\}} \frac{\int_{0}^{T} \int_{\omega}|y(t, x)|^{2}}{\|y(T, \cdot)\|_{L^{2}(\Omega)}^{2}}
$$

Question ${ }^{7}$

Given $L \in(0,1)$, what is ω of fixed volume meas $(\omega)=L$ meas (Ω), which maximizes sensing/observation per $C_{T}^{*}(\omega)$?

Bottleneck

- Fourier is our friend: $b_{j}=a_{j} e^{-\lambda_{j} T}$,

$$
C_{T}^{*}(\omega)=\inf _{\sum_{j=1}^{\infty}\left|b_{j}\right|^{2}=1} \int_{0}^{T} \int_{\omega}\left|\sum_{j=1}^{\infty} b_{j} e^{\lambda_{j} t} \phi_{j}(x)\right|^{2}
$$

Bottleneck

- Fourier is our friend: $b_{j}=a_{j} e^{-\lambda_{j} T}$,

$$
C_{T}^{*}(\omega)=\inf _{\sum_{j=1}^{\infty}\left|b_{j}\right|^{2}=1} \int_{0}^{T} \int_{\omega}\left|\sum_{j=1}^{\infty} b_{j} e^{\lambda_{j} t} \phi_{j}(x)\right|^{2}
$$

- Expanding the square,

$$
=\inf \sigma\left(\frac{e^{\lambda_{k}+\lambda_{j}}-1}{\lambda_{k}+\lambda_{j}} \int_{\omega} \phi_{j}(x) \phi_{k}(x) d x\right)_{j, k \geqslant 1} .
$$

Quite opaque. Gramian is (still) not very well understood (at least, not by the speaker).

Bottleneck

- Fourier is our friend: $b_{j}=a_{j} e^{-\lambda_{j} T}$,

$$
C_{T}^{*}(\omega)=\inf _{\sum_{j=1}^{\infty}\left|b_{j}\right|^{2}=1} \int_{0}^{T} \int_{\omega}\left|\sum_{j=1}^{\infty} b_{j} e^{\lambda_{j} t} \phi_{j}(x)\right|^{2}
$$

- Expanding the square,

$$
=\inf \sigma\left(\frac{e^{\lambda_{k}+\lambda_{j}}-1}{\lambda_{k}+\lambda_{j}} \int_{\omega} \phi_{j}(x) \phi_{k}(x) d x\right)_{j, k \geqslant 1} .
$$

Quite opaque. Gramian is (still) not very well understood (at least, not by the speaker).

- So, "worst-case scenario" problem is too hard.

Randomization

- Randomize the Fourier coefficients of the initial data: $a_{j}^{v}=\beta_{j}^{v} a_{j}$ for every j, where β_{j}^{v} are independent Bernoulli r.v.

$$
C_{T, \text { rand }}^{*}(\omega):=\inf _{\sum_{j=1}^{\infty}\left|b_{j}\right|^{2}=1} \mathbb{E} \int_{0}^{T} \int_{\omega}\left|\sum_{j=1}^{\infty} \beta_{j}^{\vee} b_{j} e^{\lambda_{j} t} \phi_{j}(x)\right|^{2}
$$

Randomization

- Randomize the Fourier coefficients of the initial data: $a_{j}^{v}=\beta_{j}^{v} a_{j}$ for every j, where β_{j}^{v} are independent Bernoulli r.v.

$$
C_{T, \text { rand }}^{*}(\omega):=\inf _{\sum_{j=1}^{\infty}\left|b_{j}\right|^{2}=1} \mathbb{E} \int_{0}^{T} \int_{\omega}\left|\sum_{j=1}^{\infty} \beta_{j}^{\vee} b_{j} e^{\lambda_{j} t} \phi_{j}(x)\right|^{2}
$$

- We have $0 \leqslant C_{T}^{*}(\omega) \leqslant C_{T, \text { rand }}^{*}(\omega)$; inequalities can be (and are often) strict; furthermore

$$
C_{T, \text { rand }}^{*}(\omega)=\inf _{j \geqslant 1} \frac{e^{2 \lambda_{j} T}-1}{2 \lambda_{j}} \int_{\omega}\left|\phi_{j}(x)\right|^{2} d x
$$

Similar ideas for wave, Schrödinger (different optimal shapes).

Wave (spillover phenomenon):

Heat $\left(N^{*}(T) \phi_{j}\right.$ suffice):

Fig. 2. On this figure, $\Omega=(0, \pi)^{2}, L=0.2, T=0.05$, and $A_{0}=-\Delta$ is the NeumannLaplacian defined on the domain $D\left(A_{0}\right)=\left\{y \in H^{2}(\Omega, \mathbb{C}) \mid \int_{\Omega} y=0\right.$ and $\frac{\partial y}{\partial n}=0$ on $\left.\partial \Omega\right\}$. Row 1, from left to right: optimal domain ω^{N} (in green) for $N=1,2,3$. Row 2, from left to right: optimal domain ω^{N} (in green) for $N=4,5,6$ (color figure online)

Fig. 3. $\Omega=(0, \pi)^{2}$, with Dirichlet boundary conditions. Row 1: $L=0.2$; row 2: $L=0.4$; row 3: $L=0.6$. From left to right: $N=2$ (4 eigenmodes), $N=5$ (25 eigenmodes), $N=10$ (100 eigenmodes), $N=20$ (400 eigenmodes). The optimal domain is in green.

The picture for the randomized problem is relatively clear ${ }^{89}$. But we still know almost nothing about the deterministic problem.

${ }^{8}$ [Privat, Trélat, Zuazua; ARMA 2015]
${ }^{9}$ [Privat, Trélat, Zuazua; JEMS 2016]

The "simplest" case

Consider ${ }^{10}$

$$
\left\{\begin{array}{l}
\dot{y}(t)-A y(t)=b u(t) \quad(0, T) \\
y_{\left.\right|_{t=0}}=y^{0}
\end{array}\right.
$$

where $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$, so $u(t) \in \mathbb{R}$.

- Kalman rank condition: $\operatorname{rank}\left[\begin{array}{llll}b & A b & \cdots & A^{n-1} b\end{array}\right]=n$. Minimal L^{2}-norm control satisfies $\|u\|_{L^{2}(0, T)} \leqslant C_{T}(b)\left\|y^{0}\right\|$ for all y^{0}.
- Define $C_{T}^{*}(b)$ as the smallest such constant.

The "simplest" case

Consider ${ }^{10}$

$$
\left\{\begin{array}{l}
\dot{y}(t)-A y(t)=b u(t) \quad(0, T) \\
y_{t=0}=y^{0}
\end{array}\right.
$$

where $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}$, so $u(t) \in \mathbb{R}$.

- Kalman rank condition: $\operatorname{rank}\left[\begin{array}{llll}b & A b & \cdots & A^{n-1} b\end{array}\right]=n$. Minimal L^{2}-norm control satisfies $\|u\|_{L^{2}(0, T)} \leqslant C_{T}(b)\left\|y^{0}\right\|$ for all y^{0}.
- Define $C_{T}^{*}(b)$ as the smallest such constant.

Optimal actuator design

$$
\begin{equation*}
\min _{b \in \mathbb{S}^{n-1}} C_{T}^{*}(b) \tag{10}
\end{equation*}
$$

Linear algebra

Let $A \in \mathbb{R}^{n \times n}$.

1. The companion matrix \mathfrak{A} to A is given by

$$
\mathfrak{A}:=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & & \vdots \\
\vdots & & \ddots & \ddots & 0 \\
0 & \ldots & 0 & 0 & 1 \\
-a_{n} & \ldots & \ldots & \ldots & -a_{1}
\end{array}\right]
$$

where $\left\{a_{1}, \ldots, a_{n}\right\}$ are the coefficients of the characteristic polynomial of A.
2. We say that A is similar to \mathfrak{A} if there exists an invertible $P \in \mathbb{R}^{n \times n}$ such that $A=P \mathfrak{A} P^{-1}$.

Brunovsky's normal form

Lemma (Brunovsky normal form)

Let $A \in \mathbb{R}^{n \times n}, n \geqslant 2$. For any $b \in \mathbb{R}^{n}$ such that (A, b) satisfies the Kalman rank condition, there exists an invertible matrix $P=P(b) \in \mathbb{R}^{n \times n}$ such that

$$
\begin{equation*}
A=P \mathfrak{A}\left(P^{-1} \quad \text { and } \quad b=P \mathbf{e}_{n} .\right. \tag{11}
\end{equation*}
$$

Moreover, the matrix $P(b)$ ensuring (11) is unique, and its columns are given by

$$
f_{k}=\left\{\begin{array}{ll}
b & k=n \\
\left(A^{n-k}+\sum_{j=1}^{n-k} a_{j} A^{n-k-j}\right) b & 1 \leqslant k \leqslant n-1
\end{array}:=p_{k}(A) b\right.
$$

Rewriting the cost

Lemma

We have

$$
\begin{equation*}
C_{T}(b)=\left\|P^{-1}(b)\right\| \kappa(T) \tag{12}
\end{equation*}
$$

where $\kappa(T)$ is the controllability cost for $\left(\mathfrak{A}, \mathbf{e}_{n}\right)$.

- Proof: The system $\dot{z}(t)-\mathfrak{A z}(t)=\mathbf{e}_{n} u(t)$ is equivalent to $\dot{y}(t)-A y(t)=b u(t)$ via $y=P(b) z \quad \square$.

Rewriting the cost

Lemma

We have

$$
\begin{equation*}
C_{T}(b)=\left\|P^{-1}(b)\right\| \kappa(T), \tag{12}
\end{equation*}
$$

where $\kappa(T)$ is the controllability cost for $\left(\mathfrak{A}, \mathbf{e}_{n}\right)$.

- Proof: The system $\dot{z}(t)-\mathfrak{A z}(t)=\mathbf{e}_{n} u(t)$ is equivalent to

$$
\dot{y}(t)-A y(t)=b u(t) \text { via } y=P(b) z \quad \square .
$$

- Hence, (10) equivalently rewrites as

$$
\begin{equation*}
\min _{b \in \mathbb{S}^{n-1}}\left\|P^{-1}(b)\right\|=\max _{b \in \mathbb{S}^{n-1}} \lambda_{\min }\left(P(b) P(b)^{\top}\right) \tag{13}
\end{equation*}
$$

Non-uniqueness

Proposition

Let $A \in \mathbb{R}^{n \times n}$ be similar to its companion matrix. Let $\mathbf{R} \in \mathbb{R}^{n \times n}$ be such that

1. $[A, \mathbf{R}]=0$ (" A and \mathbf{R} commute")
2. $\mathbf{R} \mathbf{R}^{\top}=\mathbf{R}^{\top} \mathbf{R}=\mathrm{I}_{n}$ (" \mathbf{R} is orthogonal")

Then

$$
\max _{b \in \mathbb{S}^{n-1}} \lambda_{\min }\left(P(b) P(b)^{\top}\right)=\max _{b \in \mathbb{S}^{n-1}} \lambda_{\min }\left(P(\mathbf{R} b) P(\mathbf{R} b)^{\top}\right)
$$

Proof: Just note $\lambda_{\text {min }}\left(P(b) P(b)^{\top}\right)=\lambda_{\text {min }}\left(\sum_{k=1}^{n} p_{k}(A) b b^{\top} p_{k}(A)^{\top}\right)$, use Rayleigh quotient

Computational hardships

- Also hard to find numerical solutions. Works up to $n=9$ for typical Toeplitz matrices. Then $8 h$ on a PC. Why?
- Problem is not concave, due to rank-1 structure:

$$
\max _{\begin{array}{c}
B \in \mathbb{R}^{n \times n} \\
B \succeq 0 \\
\operatorname{trace}(B)=1 \\
\operatorname{rank}(B)=1
\end{array}} \lambda_{\min }(L(B))
$$

- NP hard combinatorial optimization problem. Blindly applying IPOPT doesn't work; genetic algorithms work slightly better.

$$
b \mapsto \lambda_{\min }\left(P(b) P(b)^{\top}\right)
$$

Discussion and outlook

1. Uniqueness modulo rotations? We need to compute gradients of $f: \mathbb{S}^{n-1} \rightarrow \mathbb{R}_{+}$

$$
f(b) \simeq \min _{x \neq 0} \frac{\langle M b, x\rangle^{2}}{\|x\|^{2}}
$$

Pickles: 1). gradients on \mathbb{S}^{n-1}, and 2). the min.

Discussion and outlook

1. Uniqueness modulo rotations? We need to compute gradients of $f: \mathbb{S}^{n-1} \rightarrow \mathbb{R}_{+}$

$$
f(b) \simeq \min _{x \neq 0} \frac{\langle M b, x\rangle^{2}}{\|x\|^{2}}
$$

Pickles: 1). gradients on \mathbb{S}^{n-1}, and 2). the min.

- To address 1), consider \tilde{f} extension of f to \mathbb{R}^{n}. With the Euclidean gradient $\nabla \tilde{f}$, we can get $\operatorname{grad} f(b)$ by projecting orthgonally to $\mathbb{S}^{n-1}: \operatorname{grad} f(b)=\left(\mathrm{I}_{n}-b b^{\top}\right) \nabla \tilde{f}(b)$.

Discussion and outlook

1. Uniqueness modulo rotations? We need to compute gradients of $f: \mathbb{S}^{n-1} \rightarrow \mathbb{R}_{+}$

$$
f(b) \simeq \min _{x \neq 0} \frac{\langle M b, x\rangle^{2}}{\|x\|^{2}}
$$

Pickles: 1). gradients on \mathbb{S}^{n-1}, and 2). the min.

- To address 1), consider \tilde{f} extension of f to \mathbb{R}^{n}. With the Euclidean gradient $\nabla \tilde{f}$, we can get $\operatorname{grad} f(b)$ by projecting orthgonally to $\mathbb{S}^{n-1}: \operatorname{grad} f(b)=\left(\mathrm{I}_{n}-b b^{\top}\right) \nabla \tilde{f}(b)$.
- To compute $\nabla \tilde{f}$, we could appeal to Danskin's theorem.
- Given maximizer b^{*}, study curvature of f away from set $\left\{\mathbf{R} b^{*}: \mathbf{R}\right.$ in Prop. $\}$

Discussion and outlook

2. What is a good relaxation to render problem tractable? If we remove the rank constraint, probably fine and concave. But who is to say that solution to relaxed problem will be of rank-1 (or even low rank)?

Discussion and outlook

2. What is a good relaxation to render problem tractable? If we remove the rank constraint, probably fine and concave. But who is to say that solution to relaxed problem will be of rank-1 (or even low rank)?
3. Some semblance to phase retrieval and matrix recovery ${ }^{11}$: find $b \in \mathbb{R}^{n}$ from phaseless measurements $y_{k}=\left|\left\langle a_{k}, b\right\rangle\right|^{2}, k \leqslant m$. Noting that $\left|\left\langle a_{k}, b\right\rangle\right|^{2}=\operatorname{trace}\left(a_{k} a_{k}^{\top} b b^{\top}\right):=\operatorname{trace}\left(A_{k} B\right)$, phase retrieval solves

$$
\min _{\substack{B \in \mathbb{R}^{n \times n} \\ B \asymp 0 \\ y=\overline{\mathcal{A}}(B)}} \operatorname{rank}(B)
$$

Discussion and outlook

2. What is a good relaxation to render problem tractable? If we remove the rank constraint, probably fine and concave. But who is to say that solution to relaxed problem will be of rank-1 (or even low rank)?
3. Some semblance to phase retrieval and matrix recovery ${ }^{11}$: find $b \in \mathbb{R}^{n}$ from phaseless measurements $y_{k}=\left|\left\langle a_{k}, b\right\rangle\right|^{2}, k \leqslant m$. Noting that $\left|\left\langle a_{k}, b\right\rangle\right|^{2}=\operatorname{trace}\left(a_{k} a_{k}^{\top} b b^{\top}\right):=\operatorname{trace}\left(A_{k} B\right)$, phase retrieval solves

$$
\min _{\substack{B \in \mathbb{R}^{n \times n} \\ B \subset 0 \\ y=\overline{\mathcal{A}}(B)}} \operatorname{rank}(B)
$$

4. Why ℓ^{2} sphere? Well, because of the spectral matrix norm. If ℓ^{1} sphere, $\left\|P^{-1}(b)\right\|_{1}=\max _{j} \sum_{i}\left|P^{-1}(b)_{i, j}\right|$, so we have not eliminated the inverse..

Discussion and outlook

2. What is a good relaxation to render problem tractable? If we remove the rank constraint, probably fine and concave. But who is to say that solution to relaxed problem will be of rank-1 (or even low rank)?
3. Some semblance to phase retrieval and matrix recovery ${ }^{11}$: find $b \in \mathbb{R}^{n}$ from phaseless measurements $y_{k}=\left|\left\langle a_{k}, b\right\rangle\right|^{2}, k \leqslant m$. Noting that $\left|\left\langle a_{k}, b\right\rangle\right|^{2}=\operatorname{trace}\left(a_{k} a_{k}^{\top} b b^{\top}\right):=\operatorname{trace}\left(A_{k} B\right)$, phase retrieval solves

$$
\min _{\substack{B \in \mathbb{R}^{n \times n} \\ B \subset 0 \\ y=\overline{\mathcal{A}}(B)}} \operatorname{rank}(B)
$$

4. Why ℓ^{2} sphere? Well, because of the spectral matrix norm. If ℓ^{1} sphere, $\left\|P^{-1}(b)\right\|_{1}=\max _{j} \sum_{i}\left|P^{-1}(b)_{i, j}\right|$, so we have not eliminated the inverse..
5. PDEs? Heat equation through flatness (en cours).
${ }^{11}$ [Waldspurger 2021, Cours Peccot]

[^0]: ${ }^{2}$ [Porretta, Zuazua; 2013]
 ${ }^{3}$ [Trélat, Zuazua; 2015]

