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Why solve

T T
min [ 0 -+ [ [ uo?
uel?((0,7)xw) Jo Jo, 0 ®

dy—Ay=uly (0,7)xQ,
s.t. y=0 (0,T) x 0L,

when you can solve

—Ay =ul in Q

: 2 2 (0] )
min = +/ u- s.t.

uel2(o) /0)0 =a) o {y =0 on dQ
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The turnpike property

> Given y; = ys(x), ®,0, °, there
exist C,A > 0 independent of T
such that for T large enough,

lyr(8) =l r2(0) + llu(t) = @l 2 ()
<C < e Mg efx(m))

for all € [0,T].

» Here (ur,yr) solution to (1) and
(,y) to (2)
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The turnpike property

> Given y; = ys(x), ®,0, °, there
exist C,A > 0 independent of T
such that for T large enough,

1y () = Fllz2 (@) + lu() — #ll 2(w)
<C ( e Mg e—?u(T—t))

for all € [0,T].

» Here (ur,yr) solution to (1) and N
(,y) to (2) \ S N
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Linear theory

Theorem?

Let y0 € L*(Q) and y; € L*(,) be fixed; o, ®, C Q open,
non-void. There exist C,A > 0, independent of y° and y,, such that
for large enough T > 0,

lyr () =l 2(0) + lur () — bl 2(w)
<C (I =5l ™ + WPl 2qye ™)
holds for z € [0, T].

How does one prove such a result?

Y[Porretta, Zuazua, SICON '13]
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Linear theory
Necessary and sufficient conditions for optimality: (ur = prle,
it=plg)
Transient

dyr — Ayr =prle Steady

ot +Apr = (yr —yd)lo, (3) {—APZPL»

(4)

Veo =° —Ap=—(V—ya)lo,

Dli—r =0

At least 2 (transparent) ways to proceed:

> Riccati?

» Diagonalization?
Both uncouple the optimality system by a feedback operator, and
use stabilizability to get decay in phase space (yr,pr).

2[Porretta, Zuazua; 2013]
3[Trélat, Zuazua; 2015]
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Wave equation and others

Theory applies more generally to

1. abstract first-order systems |y = Ay + Bu | (principal part of A

symmetric on #) and cost

o)+ [ 1wy —all+ [ 1)

as long as (A,B) and (A*,M*) stabilizable;

2. second-order systems like the wave equation atzy—Ay =uly ‘

and cost like

o0+ [ 0 —vullyqy + [ [

Stabilizability translates to m,Q satisfying GCC.
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Caution

min / (y(T,x) +/ / (,x)?
uel2((0,T) x®) J

oy—Ay=uly (0,T)xQ,
s.t. y=0 (0,T) x 0Q,
y’t:O :yo Qv

Turnpike doesn’t hold!

Critical elements for turnpike: 1). stabilizability for (A,B) and

detectability for (A*,M*), and 2). state-tracking term. -



Nonlinear theory

T
min [ @ -waf+ [ [ o
uel?((0,T)x o) 0 Jo

0y —Ay+y =uly (0,T)x L,
s.t. y=0 (0,T) x 0Q,
Y=o =" Q

» Write and linearize optimality system for perturbation
variables (8y,dp):

0:0y — Ady +f'(7)dy = dple,
9:dp +Ap —f'(5)8p = 8y +f"()pdy.
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Nonlinear theory

» Clue: (5) is the optimality system for

mm// §2tx+/ / 1,x)?

0L —AL+f'(3)C=vle (0,7)xQ,
s.t. y=0 (0,T) x 0Q,
C|t:0 = 5)’0 Q?
where p(x) = 1" (3(x))p(x).

» Turnpike holds for this LQ whenever infgp(x) > 0. This can
be ensured when [|y4][;2(q) < 1!
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Bottleneck

Question

Can we have y, large?

A: Lack of uniqueness of minimizers for the steady problem!*

Lz

111111

Question

Can we avoid f € C2? The theory doesn't even apply for
Lipschitz-only f!
4[Pighin; JEMS 2022]
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Our setup

min ~ ¢((,0,C) —i—/ H —(£,0) HH1><L2

MGLZ((O,T)XOJ
+/ / u(t,x)2
0 [0}

o0 {B?C—Ac+f<c> Cule (0,7) %9,
- (6,30 lmo = (0,51,

Key assumptions:
» fcLip(R)
» (is a steady state: —AL+f({) =0 in Q.
» ® chosen so that exact-controllability holds (multiplier
condition)
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Set y = (§,9,L) and 3= (C,0):

] T _12 T 2
min o1+ [ O3B+ [ [ utey

uel?((0,T) xm)
{aty—Ay: f(y) +Bu (0,T),

s.t.
)7|t:0 :yo

5[Esteve—YagLie, Geshkovski, Pighin, Zuazua. Nonlinearity '22]
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Set y = (§,9,L) and 3= (C,0):

] T _12 T 2
min o1+ [ O3B+ [ [ utey

ucl?((0,T)xw)
o aty_Ay:f(y)+Bu (07T)7
Y=o ="

Theorem®

Suppose f(0) = 0. For any y° € #, there exists T* > 0 and
constants C,A > 0 such that for all 7 > T*, any minimizer (ur,yr)
satisfies

lurll20,1)xw) < C
and
yr(8) = 5llor < Cle™ M)
holds for all # € [0,T].
5[Esteve-Yagiie, Geshkovski, Pighin, Zuazua. Nonlinearity '22]
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Tool #1

Assumption (satisfied by wave eq):

(a) There exists a time Tp > 0 such that (10.4) is exactly controllable at time
To. Namely, for any data (yO, y) € H# x A, there exists a control u €
Lz((O, To) X w) such that the unique solution y to (10.4) set on (0, Tp) satisfies
¥(0) = y° and y(Top) = y'.

(b) There exists some r > 0 and some constant C(Tp) > 0 such that

. 2 0_ =2
inf u < C(Ty)lly° = 7112 (10.9)
uELz((O,E])Xa)) ” ”Lz((O,TD)Xm) ”y y”)f
YO =y°

y(Tp) =¥
and
inf  Jlul? < C)lly' - 13 (10.10)
UEL2(O.T)xw) L2((0,Th)xw) H
y0) =y
y(Tp) =y!

for every y0, y! € B,.(y), where
B ={zeH|llz-Yllw <1}
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Tool #2

Lemma (" Lipschitz interpolation”)

There exists C; > 0 such that for any(!) u € L*>((0,T) x ®), and
any T > 0, for any u, it holds

e ly(#) =5l < Cr(I5(0) = 5llor + 1y = Fll2(0,7;30) + el z2)
te|0,

6[Sontag 2008]
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Tool #2

Lemma (" Lipschitz interpolation”)

There exists C; > 0 such that for any(!) u € L*>((0,T) x ®), and
any T > 0, for any u, it holds

e ly(#) =5l < Cr(I5(0) = 5llor + 1y = Fll2(0,7;30) + el z2)
te|0,

Comment

» Not aware how to extend it to non-globally Lipschitz f.

» Possibly milder form of a quantitative "input-to-state”
stability (1SS)®

6[Sontag 2008]
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Step 1: Global estimate

Lemma
Exists C, > 0 such that 97 (ur) < C; for all T > Ty.
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Step 1: Global estimate

Lemma
Exists C, > 0 such that 97 (ur) < C; for all T > Ty.

Proof. Quasi-turnpike principle:
1. Controllability yields u; such that y;(7Ty) = ¥;

2. Consider u; = u;lp 7, on [0,T]. Then
I(ur) < J(up) =: Cs. O

\ N
| U
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Step 1: Global estimate

1. Used in conjunction with Lipschitz interpolation:

sup |[y(t) =35+ Ir(ur) < G5 (6)
t€[0,T]

for C3 > 0 independent of T.
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Step 1: Global estimate
. Used in conjunction with Lipschitz interpolation:
sup [|y() =35+ Ir(ur) < C3 (6)

t€[0,7]

for C3 > 0 independent of T.

. Consequently, turnpike holds on intervals whose length is
independent of T! For r € [0,T4 Ty),

lyr(£) =3l < C3eMe™
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Step 1: Global estimate
1. Used in conjunction with Lipschitz interpolation:
sup [|y() =35+ Ir(ur) < C3 (6)
t€[0,T]

for C3 > 0 independent of T.

2. Consequently, turnpike holds on intervals whose length is
independent of T! For r € [0,T4 Ty),

76 — llor < CaeMe™ < CahF+Tn) (o= 4 = MT-0).

Same for t € [T — (t+Tp),T).
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I 1
27 37 T —3r T —21 T T-71 T

T — (1 +To)
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Step 2: Localization

Localize study to [t+To,T — (t+Tp)]. T> 0 is a degree of freedom
independent of T, and T will be chosen sufficiently large.
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Step 2: Localization
Localize study to [t+7y,T — (t+Tp)]. T> 0 is a degree of freedom
independent of T, and T will be chosen sufficiently large.
1. There must exist T € [0,7) and 1 € (T —1,T] s.t.

- ”yT_)_)HLz(O,T;}[)
lyr () =3l < NG
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Step 2: Localization
Localize study to [t+To,T — (t+Tp)]. T> 0 is a degree of freedom
independent of T, and T will be chosen sufficiently large.
1. There must exist T € [0,7) and 1 € (T —1,T] s.t.
- Iyr =329 _ Cs
Iyr(g) =3l < N Y
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Step 2: Localization

Localize study to [t+To,T — (t+Tp)]. T> 0 is a degree of freedom

independent of T, and T will be chosen sufficiently large.

1. There must exist T € [0,7) and 1 € (T —1,T] s.t.

_ lyr =3l 200.7:9¢ Cs3
lyr (%) —5llsr < ﬁ“ =

S

2. Restrict ur to [11,12]: it solves

T2
min JAEORR /
T1

}x——f4)41f())—kl3u in (t1,72)
y(T)=yr(11)
y(t2)=yr(t2)

(7)

(n)lIz:
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Step 2: Localization
Localize study to [t+7),T — (t+Tp)]. T> 0 is a degree of freedom
independent of T, and T will be chosen sufficiently large.
1. There must exist T € [0,7) and 1 € (T —1,T] s.t.

_ Iyt = 3ll201:0200) _ C3
lyr (%) —5llsr < ﬁ< L =2 (7)

S

2. Restrict ur to [11,12]: it solves

T2
min [ o -sla [l
T1

},_A)+f(})+Bu in (11,72)
y(t)=yr(n)
¥(12)=yr(12)
3. Quasi-turnpike again! Controllability 2 times (from 7; to
T1+To and then t, — T to ’Cz) yields
sup ]Hyr(f) =5l < Co(llyr(mt) =3l + llyr(v2) = 5lla) (8)
1e(T1,T2

for some C, > 0 independent of T,71,7;,7T>.
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Step 2: Localization

4. Combining (8) and (7):

2C.C5 _ 202
NV

for all 7 € [11,12], hence also for all ¢ € [t,T —1].

lyr(8) =3l <

19/33



Step 2: Localization

4. Combining (8) and (7):
2C.C5 _ 202
Voo
for all 7 € [11,12], hence also for all ¢ € [t,T —1].
1. Pick T > 16C%, then this is a contraction!

lyr(8) =3l <
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Step 2: Localization

. Combining (8) and (7):

ey -5l < 256 2%
yr M \ﬁ X \/%7

for all 7 € [11,12], hence also for all ¢ € [t,T —1].
. Pick T > 16C%, then this is a contraction!

2. By induction, for n > 1 s.t. T —2nt > 2Ty:

402>
sup y y . 9
t€nt,T—n1) br() =3l < (\/’E )
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Step 2: Localization

. Combining (8) and (7):

ey -5l < 256 2%
yr M \ﬁ X \/%7

for all 7 € [11,12], hence also for all ¢ € [t,T —1].

. Pick t> 16C4 then this is a contraction!

2. By induction, for n > 1 s.t. T —2nt > 2Ty:

402>
sup ||y y . 9
t€nt,T—n1) br() =3l < (\/’E )

. A judicious choice of n will yield the desired estimate.

19/33



4c; |
N

1c2\?

( r)\.

ac2\3 |

(55—  —
0 T 27 3T T -37 T—-27 T T-7

T+ Ty T—(r+T)

Iterative quasi-turnpike.
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Discussion and outlook

1. Proof is "modular”: to generalize to other examples, need to
improve individual steps. For instance, " Lipschitz
interpolation” inequality to more general nonlinearities. What
matters is that RHS in " Lipschitz interpolation” is roughly the
cost functional!
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Discussion and outlook

1. Proof is "modular”: to generalize to other examples, need to
improve individual steps. For instance, " Lipschitz
interpolation” inequality to more general nonlinearities. What
matters is that RHS in " Lipschitz interpolation” is roughly the
cost functional!

2. If §(3) =0, there is no final arc and we get exponential decay.
3. ¥ can be a controlled steady state also, if said control is added
in the control penalty. The assumption we should look to

relax is y being a steady state.

Morale: Choose the cost functional adapted to the assumptions.

4. Finite-dimensional case with Lagrangian ||P(y —9)||* + ||u||?;
yeR? and P:R? — R™. Can expect turnpike estimate for
||P(yr —¥)||, but "Lipschitz interpolation” is difficult to get for
this term! Loyasewicz's inequality can be useful here (en
cours).

21/33






Optimal actuators, optimal sensors

» The heat equation (o, —A)y =0 is observable from any open
® C Q in any time T > 0: there exists Cr(®) > 0 such that

CrOT My < [ [ bGP

holds for all solutions y.

7[Privat, Trélat, Zuazua, 2013-2019]
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» The heat equation (o, —A)y =0 is observable from any open
® C Q in any time T > 0: there exists Cr(®) > 0 such that

CrOT My < [ [ bGP

holds for all solutions y.
>

fOT fw |y<t7x)‘2

C in
r(®) = werz@\{o} [[y(T,-)|1% 4

[Privat, Trélat, Zuazua, 2013-2019]
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Optimal actuators, optimal sensors

» The heat equation (o, —A)y =0 is observable from any open
® C Q in any time T > 0: there exists Cr(®) > 0 such that

CrOT My < [ [ bGP

holds for all solutions y.
>

fOT fw |y(t7x)‘2

C in
r(®) = werz@\{o} [[y(T,-)|1% 4

Question’

Given L € (0,1), what is @ of fixed volume meas(®) = Lmeas(Q),
which maximizes sensing/observation per Cj.(®)?

7[Privat, Trélat, Zuazua, 2013-2019]
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Bottleneck

> Fourier is our friend: b; = aje ™7,

T
Ci(@)= inf / /
£ hk=1Jo Jo

2

Y bie;(x)
=1
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Bottleneck

> Fourier is our friend: b; = aje ™7,

T
Ci(@)= inf / /
e bP=1Jo Jo

» Expanding the square,

. AAN 1
= inf G<exk+xj /m ¢j(x)q)k(x)dx>

Quite opaque. Gramian is (still) not very well understood (at
least, not by the speaker).

2

Y bie;(x)
=1

jﬂk>l
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Bottleneck

> Fourier is our friend: b; = aje ™7,

T
Ci(@)= inf / /
£ nk=1o Jo

» Expanding the square,

. AAN 1
= inf G<exk+xj /m ¢j(x)q)k(x)dx>

Quite opaque. Gramian is (still) not very well understood (at
least, not by the speaker).

2

Y bie;(x)
=1

jﬂk>l

» So, "worst-case scenario” problem is too hard.

23/33



Randomization

» Randomize the Fourier coefficients of the initial data:
a; = Bja; for every j, where B} are independent Bernoulli r.v.

C;,rand (0)) =

inf
L lbilP=1

), .

Y BYbie""0;(x)
=

2
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Randomization

» Randomize the Fourier coefficients of the initial data:
a; = Bja; for every j, where B} are independent Bernoulli r.v.

2

Y BYbie""0;(x)
=

T
C; ®):= inf E/ /
T,rand( ) Z}Zl\bjP:l o Jo

» We have 0 < Cj(®) < Cj ,.q(®); inequalities can be (and are
often) strict; furthermore

" . e27\.jT _ 1 2
Chrana(©) = int = [ 0,(x) .
2 Jo

jz1

Similar ideas for wave, Schrodinger (different optimal shapes).
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Wave (spillover phenomenon):
Heat (N*(T) ¢; suffice):

g

g ZA

L | '
80 7
:, | |

4

y

Fig. 2. On this figure, @ = (0, 7)%, L = 0.2, T = 0.05, and Ag = —A is the Neumann— )
Laplacian defined on the domain D(Ao) = {y € H*(2,C) | [y =0and 3 = 0 on 3Q). D
Row 1, from left to right: optimal domain w (in green) for N = 1,2, 3. Row 2, from lefi
to right: optimal domain " (in green) for N = 4, 5, 6 (color figure online)

Fig. 3. @ = (0,7)?, with Dirichlet boundary conditions. Row 1: L = 0.2; row 2: L = 0.4; row
3: L = 0.6. From left to right: N = 2 (4 eigenmodes), N = 5 (25 eigenmodes), N = 10 (100
cigenmodes), N = 20 (400 eigenmodes). The optimal domain is in green.

The picture for the randomized problem is relatively clear®®. But
we still know almost nothing about the deterministic problem.

8[Privat, Trélat, Zuazua; ARMA 2015]

9[Privat, Trélat, Zuazua; JEMS 2016]
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The " simplest” case
Consider1®

{y(r) —Ay(t) = bu(r) (0,T),
Yo =2°

where A € R b e R", so u(t) € R.

» Kalman rank condition: rank [b Ab - A”‘lb] =n.
Minimal L?-norm control satisfies |lu|;2(o 1) < Cr(b)[y°]| for
all y?.

» Define C;.(b) as the smallest such constant.

10[Geshkovski, Zuazua; IEEE TAC (accepted) 2021]
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The " simplest” case
Consider1®

(1) —Ay(1) = bu(r)  (0,T),
Vo ="
where A € R b e R", so u(t) € R.

» Kalman rank condition: rank [b Ab - A”‘lb] =n.
Minimal L?-norm control satisfies |lu|;2(o 1) < Cr(b)[y°]| for
all y?.

» Define C;.(b) as the smallest such constant.
Optimal actuator design

in Ci(b 10
iy G(e) (10)

10[Geshkovski, Zuazua; IEEE TAC (accepted) 2021]
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Linear algebra

Let A € R™*".
1. The companion matrix 2 to A is given by

0 1 0 0
0 0 1
0 0 O 1
- _an _al_
where {ay,...,a,} are the coefficients of the characteristic

polynomial of A.

2. We say that A is similar to 2 if there exists an invertible
P € R™" such that A = PIP~!.

27/33



Brunovsky’s normal form

Lemma (Brunovsky normal form)

Let A€ R™", n>2. For any b € R" such that (A,b) satisfies the
Kalman rank condition, there exists an invertible matrix
P = P(b) € R™" such that

A=PAP"  and  b=Pe, (11)

Moreover, the matrix P(b) ensuring (11) is unique, and its columns
are given by

b k=n
fe= (A"—k+zj'?;{<ajA"—k—f)b I<k<n—1"

28/33



Rewriting the cost

Lemma

We have
Cr(b) = ||P~ (b)|| x(T), (12)

where k(T) is the controllability cost for (2, e,).

» Proof: The system z(r) — Az(¢) = e,u(t) is equivalent to
y(t) —Ay(t) = bu(t) via y=P(b)z O.
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Rewriting the cost

Lemma

We have
Cr(b) = ||P~ (b)|| x(T), (12)

where k(T) is the controllability cost for (2, e,).
» Proof: The system z(r) — Az(¢) = e,u(t) is equivalent to
y(t) —Ay(t) = bu(t) via y=P(b)z O.

» Hence, (10) equivalently rewrites as

min [[P7(0)]] =| max A (POIPB)T) | (13)

29/33



Non-uniqueness

Proposition
Let A € R™" be similar to its companion matrix. Let R € R"™" be
such that
1. [A,R]=0 ("A and R commute")
2. RR" =R'R =1, ("R is orthogonal”)
Then
max Amin (P(b)p(b)T) — max xm( (Rb)P (Rb)T) .

beSn—1 beSr—1

Proof: Just note Apin (P(b)P(b)T) = Amin (Zzzlpk(A)bprk(A)T),

use Rayleigh quotient 0.

30/33



Computational hardships

» Also hard to find numerical b Amin(P(b)P(b)T)
solutions. Works up ton=9

for typical Toeplitz matrices.
Then 84 on a PC. Why?

» Problem is not concave, due
to rank-1 structure:

max  Amin(L(B))
BeRnXVl
B>0
trace(B)=1
rank(B)=1

» NP hard combinatorial
optimization problem.
Blindly applying IPOPT
doesn't work; genetic
algorithms work slightly
better.




Discussion and outlook

1. Uniqueness modulo rotations? We need to compute gradients
of f: S 1 SRy
. (Mb,x)?
b) ~ min ————
O = e

Pickles: 1). gradients on S"~!, and 2). the min.
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1. Uniqueness modulo rotations? We need to compute gradients
of f: S 1 SRy

. (Mb,x)?
b) ¥ min ———=—
1) w0 ||x]|?

Pickles: 1). gradients on S"~!, and 2). the min.

» To address 1), consid~erf extension of f to R”. With the
Euclidean gradient Vf, we can get gradf(b) by projecting
orthgonally to §"~!: gradf(b) = (I, —bb " )VF(b).
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Discussion and outlook

1. Uniqueness modulo rotations? We need to compute gradients
of f: S 1 SRy

. (Mb,x)?
b) ¥ min ———=—
1) w0 ||x]|?

Pickles: 1). gradients on S"~!, and 2). the min.

» To address 1), consid~erf extension of f to R”. With the
Euclidean gradient Vf, we can get gradf(b) by projecting
orthgonally to §"~!: gradf(b) = (I, —bb " )VF(b).

» To compute Vf, we could appeal to Danskin's theorem.

» Given maximizer b*, study curvature of f away from set
{Rb*: Rin Prop.}
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Discussion and outlook

2. What is a good relaxation to render problem tractable? If we
remove the rank constraint, probably fine and concave. But
who is to say that solution to relaxed problem will be of
rank-1 (or even low rank)?
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2. What is a good relaxation to render problem tractable? If we
remove the rank constraint, probably fine and concave. But
who is to say that solution to relaxed problem will be of
rank-1 (or even low rank)?

3. Some semblance to phase retrieval and matrix recovery!!: find
b € R" from phaseless measurements y; = |(ax,b)|?, k < m.
Noting that |{ax,b)|* = trace(axa] bb") := trace(AyB), phase
retrieval solves

min rank(B)
BER™"

B0
y=A4(B)
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b € R" from phaseless measurements y; = |(ax,b)|?, k < m.
Noting that |{ax,b)|* = trace(axa] bb") := trace(AyB), phase
retrieval solves

min rank(B)

BcRM*n
B>0

y=A(B)

4. Why 2 sphere? Well, because of the spectral matrix norm. If
¢! sphere, ||P71(b)||; = max;Y,;|P~ ()|, so we have not
eliminated the inverse..
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rank-1 (or even low rank)?

3. Some semblance to phase retrieval and matrix recovery!!: find
b € R" from phaseless measurements y; = |(ax,b)|?, k < m.
Noting that |{ax,b)|* = trace(axa] bb") := trace(AyB), phase
retrieval solves

min rank(B)
BER™"

B0
y=A4(B)

4. Why 2 sphere? Well, because of the spectral matrix norm. If
¢! sphere, ||P71(b)||; = max;Y,;|P~ ()|, so we have not
eliminated the inverse..

5. PDEs? Heat equation through flatness (en cours).
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