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Why solve

min
u∈L2((0,T)×ω)

∫ T

0

∫
ω◦
(y(t,x)− yd(x))2 +

∫ T

0

∫
ω

u(t,x)2 (1)

s.t.


∂ty−∆y = u1ω (0,T)×Ω,

y = 0 (0,T)×∂Ω,

y|t=0 = y0 Ω,

when you can solve

min
u∈L2(ω)

∫
ω◦
(y− yd)

2 +
∫

ω

u2 s.t.

{
−∆y = u1ω in Ω,

y = 0 on ∂Ω
(2)

?
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The turnpike property

I Given yd = yd(x), ω,ω◦, y0, there
exist C,λ > 0 independent of T
such that for T large enough,

‖yT(t)− ȳ‖L2(Ω)+‖u(t)− ū‖L2(ω)

6 C
(

e−λt + e−λ(T−t)
)

for all t ∈ [0,T].
I Here (uT ,yT) solution to (1) and

(ū, ȳ) to (2)

0 Tε T − ε
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(ū, ȳ) to (2)

0 Tε T − ε

2 / 33



Shameless advertising
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Linear theory

Theorem1

Let y0 ∈ L2(Ω) and yd ∈ L2(ω◦) be fixed; ω,ω◦ ⊂Ω open,
non-void. There exist C,λ > 0, independent of y0 and yd, such that
for large enough T > 0,

‖yT(t)− ȳ‖L2(Ω)+‖uT(t)− ū‖L2(ω)

6 C
(∥∥y0− ȳ

∥∥
L2(Ω)

e−λt +‖p‖L2(Ω)e
−λ(T−t)

)
holds for t ∈ [0,T].

How does one prove such a result?

1[Porretta, Zuazua, SICON ’13]
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Linear theory
Necessary and sufficient conditions for optimality: (uT = pT1ω,
ū = p̄1ω)

Transient
∂tyT −∆yT = pT1ω

∂tpT +∆pT = (yT − yd)1ω◦

y|t=0 = y0

p|t=T = 0

(3)

Steady{
−∆ȳ = p̄1ω

−∆p̄ =−(ȳ− yd)1ω◦
(4)

At least 2 (transparent) ways to proceed:

I Riccati2

I Diagonalization3

Both uncouple the optimality system by a feedback operator, and
use stabilizability to get decay in phase space (yT ,pT).

2[Porretta, Zuazua; 2013]
3[Trélat, Zuazua; 2015]
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Wave equation and others

Theory applies more generally to

1. abstract first-order systems ẏ = Ay+Bu (principal part of A
symmetric on H ) and cost

φ(y(T))+
∫ T

0
‖My(t)− yd‖2

H +
∫ T

0
‖u(t)‖2

U ,

as long as (A,B) and (A∗,M∗) stabilizable;

2. second-order systems like the wave equation ∂
2
t y−∆y = u1ω

and cost like

φ(y(T),∂ty(T))+
∫ T

0
‖y(t)− yd‖2

H1
0(Ω)

+
∫ T

0

∫
ω

u(t)2.

Stabilizability translates to ω,Ω satisfying GCC.
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Caution

min
u∈L2((0,T)×ω)

∫
ω◦
(y(T,x)− yd(x))2 +

∫ T

0

∫
ω

u(t,x)2

s.t.


∂ty−∆y = u1ω (0,T)×Ω,

y = 0 (0,T)×∂Ω,

y|t=0 = y0 Ω,

Turnpike doesn’t hold!
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Critical elements for turnpike: 1). stabilizability for (A,B) and
detectability for (A∗,M∗), and 2). state-tracking term.

7 / 33



Nonlinear theory

min
u∈L2((0,T)×ω)

∫ T

0

∫
Ω

|y(t)− yd|2 +
∫ T

0

∫
ω

|u(t)|2

s.t.


∂ty−∆y+ y3 = u1ω (0,T)×Ω,

y = 0 (0,T)×∂Ω,

y|t=0 = y0 Ω

I Write and linearize optimality system for perturbation
variables (δy,δp):{

∂tδy−∆δy+ f ′(ȳ)δy = δp1ω,

∂tδp+∆p− f ′(ȳ)δp = δy+ f ′′(ȳ)p̄δy.
(5)
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Nonlinear theory

I Clue: (5) is the optimality system for

min
v

∫ T

0

∫
Ω

ρ(x)ζ2(t,x)+
∫ T

0

∫
ω

v(t,x)2

s.t.


∂tζ−∆ζ+ f ′(ȳ)ζ = v1ω (0,T)×Ω,

y = 0 (0,T)×∂Ω,

ζ|t=0 = δy0 Ω,

where ρ(x) = 1− f ′′(ȳ(x))p̄(x).
I Turnpike holds for this LQ whenever infΩ ρ(x)> 0. This can

be ensured when ‖yd‖L2(Ω)� 1!
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Bottleneck

Question

Can we have yd large?

A: Lack of uniqueness of minimizers for the steady problem!4
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Question

Can we avoid f ∈ C2? The theory doesn’t even apply for
Lipschitz-only f !

4[Pighin; JEMS 2022]
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Our setup

min
u∈L2((0,T)×ω)

φ
(
(ζ,∂tζ)(T)

)
+

∫ T

0

∥∥(ζ(t),∂tζ(t))− (ζ̄,0)
∥∥2

H1
0×L2(Ω)

+
∫ T

0

∫
ω

u(t,x)2

s.t.

{
∂2

t ζ−∆ζ+ f (ζ) = u1ω (0,T)×Ω,

(ζ,∂tζ)|t=0 = (ζ0,ζ1).

Key assumptions:

I f ∈ Lip(R)
I ζ̄ is a steady state: −∆ζ̄+ f (ζ̄) = 0 in Ω.

I ω chosen so that exact-controllability holds (multiplier
condition)
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Set y = (ζ,∂tζ) and ȳ = (ζ̄,0):

min
u∈L2((0,T)×ω)

φ(y(T))+
∫ T

0
|y(t)− ȳ|2H +

∫ T

0

∫
ω

u(t,x)2

s.t.

{
∂ty−Ay = f(y)+Bu (0,T),
y|t=0 = y0

Theorem5

Suppose f (0) = 0. For any y0 ∈H , there exists T∗ > 0 and
constants C,λ > 0 such that for all T > T∗, any minimizer (uT ,yT)
satisfies

‖uT‖L2((0,T)×ω) 6 C

and
‖yT(t)− ȳ‖H 6 C(e−λt + e−λ(T−t))

holds for all t ∈ [0,T].

5[Esteve-Yagüe, Geshkovski, Pighin, Zuazua. Nonlinearity ’22]
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Tool #1

Assumption (satisfied by wave eq):
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Tool #2

Lemma (”Lipschitz interpolation”)

There exists C1 > 0 such that for any(!) u ∈ L2((0,T)×ω), and
any T > 0, for any u, it holds

sup
t∈[0,T]

‖y(t)− ȳ‖H 6 C1
(
‖y(0)− ȳ‖H +‖y− ȳ‖L2(0,T;H )+‖u‖L2

)

Comment

I Not aware how to extend it to non-globally Lipschitz f .

I Possibly milder form of a quantitative ”input-to-state”
stability (ISS)6

6[Sontag 2008]
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Step 1: Global estimate

Lemma

Exists C2 > 0 such that JT(uT)6 C2 for all T > T0.

Proof. Quasi-turnpike principle:

1. Controllability yields u1 such that y1(T0) = ȳ;

2. Consider u2 = u11[0,T0] on [0,T]. Then
J (uT)6 J (u2) =: C2.
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Step 1: Global estimate

1. Used in conjunction with Lipschitz interpolation:

sup
t∈[0,T]

‖y(t)− ȳ‖2
H + JT(uT)6 C2

3 (6)

for C3 > 0 independent of T.

2. Consequently, turnpike holds on intervals whose length is
independent of T! For t ∈ [0,τ+T0],

‖yT(t)− ȳ‖H 6 C3eλte−λt 6 C3eλ(τ+T0)(e−λt + e−λ(T−t)).

Same for t ∈ [T− (τ+T0),T].
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Step 2: Localization
Localize study to [τ+T0,T− (τ+T0)]. τ > 0 is a degree of freedom
independent of T, and T will be chosen sufficiently large.

1. There must exist τ1 ∈ [0,τ) and τ2 ∈ (T− τ,T] s.t.

‖yT(τj)− ȳ‖H 6
‖yT − ȳ‖L2(0,T;H )√

τ
6

C3√
τ

(7)

2. Restrict uT to [τ1,τ2]: it solves

min
u

yt=Ay+f (y)+Bu in (τ1,τ2)
y(τ1)=yT (τ1)
y(τ2)=yT (τ2)

∫
τ2

τ1

‖y(t)− ȳ‖2
H dt+

∫
τ2

τ1

‖u(t)‖2
L2

3. Quasi-turnpike again! Controllability 2 times (from τ1 to
τ1 +T0 and then τ2−T0 to τ2) yields

sup
t∈[τ1,τ2]

‖yT(t)− ȳ‖H 6 C•
(
‖yT(τ1)− ȳ‖H +‖yT(τ2)− ȳ‖H

)
(8)

for some C• > 0 independent of T,τ,τ1,τ2.
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‖yT − ȳ‖L2(0,T;H )√

τ
6

C3√
τ

(7)

2. Restrict uT to [τ1,τ2]: it solves

min
u

yt=Ay+f (y)+Bu in (τ1,τ2)
y(τ1)=yT (τ1)
y(τ2)=yT (τ2)

∫
τ2

τ1

‖y(t)− ȳ‖2
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Step 2: Localization

4. Combining (8) and (7):

‖yT(t)− ȳ‖6 2C•C3√
τ

6
2C2
•√
τ
,

for all t ∈ [τ1,τ2], hence also for all t ∈ [τ,T− τ].

1. Pick τ > 16C4
•, then this is a contraction!

2. By induction, for n > 1 s.t. T−2nτ > 2T0:

sup
t∈[nτ,T−nτ]

‖yT(t)− ȳ‖6 1
2

(
4C2
•√
τ

)n

. (9)

3. A judicious choice of n will yield the desired estimate.
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Iterative quasi-turnpike.
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Discussion and outlook
1. Proof is ”modular”: to generalize to other examples, need to

improve individual steps. For instance, ”Lipschitz
interpolation” inequality to more general nonlinearities. What
matters is that RHS in ”Lipschitz interpolation” is roughly the
cost functional!

2. If φ(ȳ) = 0, there is no final arc and we get exponential decay.

3. ȳ can be a controlled steady state also, if said control is added
in the control penalty. The assumption we should look to
relax is ȳ being a steady state.

Morale: Choose the cost functional adapted to the assumptions.

4. Finite-dimensional case with Lagrangian ‖P(y− ȳ)‖2 +‖u‖2;
y ∈ Rd and P : Rd→ Rm. Can expect turnpike estimate for
‖P(yT − ȳ)‖, but ”Lipschitz interpolation” is difficult to get for
this term! Loyasewicz’s inequality can be useful here (en
cours).
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relax is ȳ being a steady state.

Morale: Choose the cost functional adapted to the assumptions.

4. Finite-dimensional case with Lagrangian ‖P(y− ȳ)‖2 +‖u‖2;
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4. Finite-dimensional case with Lagrangian ‖P(y− ȳ)‖2 +‖u‖2;
y ∈ Rd and P : Rd→ Rm. Can expect turnpike estimate for
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2. If φ(ȳ) = 0, there is no final arc and we get exponential decay.

3. ȳ can be a controlled steady state also, if said control is added
in the control penalty. The assumption we should look to
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Optimal actuators, optimal sensors

I The heat equation (∂t−∆)y = 0 is observable from any open
ω⊂Ω in any time T > 0: there exists CT(ω)> 0 such that

CT(ω)‖y(T, ·)‖2
L2(Ω) 6

∫ T

0

∫
ω

|y(t,x)|2

holds for all solutions y.

I

C∗T(ω) := inf
y0∈L2(Ω)\{0}

∫ T
0
∫

ω
|y(t,x)|2

‖y(T, ·)‖2
L2(Ω)

Question7

Given L ∈ (0,1), what is ω of fixed volume meas(ω) = Lmeas(Ω),
which maximizes sensing/observation per C∗T(ω)?

7[Privat, Trélat, Zuazua, 2013-2019]
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Bottleneck

I Fourier is our friend: bj = aje−λjT ,

C∗T(ω) = inf
∑

∞
j=1 |bj|2=1

∫ T

0

∫
ω

∣∣∣∣∣ ∞

∑
j=1

bjeλjtφj(x)

∣∣∣∣∣
2

I Expanding the square,

= inf σ

(
eλk+λj−1

λk +λj

∫
ω

φj(x)φk(x)dx

)
j,k>1

.

Quite opaque. Gramian is (still) not very well understood (at
least, not by the speaker).

I So, ”worst-case scenario” problem is too hard.
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Randomization

I Randomize the Fourier coefficients of the initial data:
aν

j = βν
j aj for every j, where βν

j are independent Bernoulli r.v.

C∗T,rand(ω) := inf
∑

∞
j=1 |bj|2=1

E
∫ T

0

∫
ω

∣∣∣∣∣ ∞

∑
j=1

β
ν
j bjeλjtφj(x)

∣∣∣∣∣
2

.

I We have 0 6 C∗T(ω)6 C∗T,rand(ω); inequalities can be (and are
often) strict; furthermore

C∗T,rand(ω) = inf
j>1

e2λjT −1
2λj

∫
ω

|φj(x)|2dx.

Similar ideas for wave, Schrödinger (different optimal shapes).
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Heat (N∗(T) φj suffice):
Wave (spillover phenomenon):

The picture for the randomized problem is relatively clear89. But
we still know almost nothing about the deterministic problem.

8[Privat, Trélat, Zuazua; ARMA 2015]
9[Privat, Trélat, Zuazua; JEMS 2016]
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The ”simplest” case
Consider10 {

ẏ(t)−Ay(t) = bu(t) (0,T),
y|t=0 = y0

where A ∈ Rn×n, b ∈ Rn, so u(t) ∈ R.

I Kalman rank condition: rank
[
b Ab · · · An−1b

]
= n.

Minimal L2-norm control satisfies ‖u‖L2(0,T) 6 CT(b)‖y0‖ for

all y0.

I Define C∗T(b) as the smallest such constant.

Optimal actuator design

min
b∈Sn−1

C∗T(b) (10)

10[Geshkovski, Zuazua; IEEE TAC (accepted) 2021]
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Linear algebra

Let A ∈ Rn×n.

1. The companion matrix A to A is given by

A :=


0 1 0 . . . 0

0 0 1
...

...
. . .

. . . 0
0 . . . 0 0 1
−an . . . . . . . . . −a1


where {a1, . . . ,an} are the coefficients of the characteristic
polynomial of A.

2. We say that A is similar to A if there exists an invertible
P ∈ Rn×n such that A = PAP−1.

27 / 33



Brunovsky’s normal form

Lemma (Brunovsky normal form)

Let A ∈ Rn×n, n > 2. For any b ∈ Rn such that (A,b) satisfies the
Kalman rank condition, there exists an invertible matrix
P = P(b) ∈ Rn×n such that

A = PAP−1 and b = Pen. (11)

Moreover, the matrix P(b) ensuring (11) is unique, and its columns
are given by

fk =

{
b k = n(

An−k +∑
n−k
j=1 ajAn−k−j

)
b 1 6 k 6 n−1

:= pk(A)b

28 / 33



Rewriting the cost

Lemma

We have
CT(b) =

∥∥P−1(b)
∥∥κ(T), (12)

where κ(T) is the controllability cost for (A,en).

I Proof: The system ż(t)−Az(t) = enu(t) is equivalent to
ẏ(t)−Ay(t) = bu(t) via y = P(b)z .

I Hence, (10) equivalently rewrites as

min
b∈Sn−1

∥∥P−1(b)
∥∥= max

b∈Sn−1
λmin

(
P(b)P(b)>

)
(13)
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Non-uniqueness

Proposition

Let A ∈ Rn×n be similar to its companion matrix. Let R ∈ Rn×n be
such that

1. [A,R] = 0 (”A and R commute”)

2. RR> = R>R = In (”R is orthogonal”)

Then

max
b∈Sn−1

λmin

(
P(b)P(b)>

)
= max

b∈Sn−1
λmin

(
P(Rb)P(Rb)>

)
.

Proof: Just note λmin
(
P(b)P(b)>

)
= λmin

(
∑

n
k=1 pk(A)bb>pk(A)>

)
,

use Rayleigh quotient .
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Computational hardships

I Also hard to find numerical
solutions. Works up to n = 9
for typical Toeplitz matrices.
Then 8h on a PC. Why?

I Problem is not concave, due
to rank-1 structure:

max
B∈Rn×n

B�0
trace(B)=1
rank(B)=1

λmin(L(B))

I NP hard combinatorial
optimization problem.
Blindly applying IPOPT
doesn’t work; genetic
algorithms work slightly
better.

b 7→ λmin(P(b)P(b)>)
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Discussion and outlook

1. Uniqueness modulo rotations? We need to compute gradients
of f : Sn−1→ R+

f (b)'min
x 6=0

〈Mb,x〉2
‖x‖2

Pickles: 1). gradients on Sn−1, and 2). the min.

I To address 1), consider f̃ extension of f to Rn. With the
Euclidean gradient ∇f̃ , we can get gradf (b) by projecting
orthgonally to Sn−1: grad f (b) = (In−bb>)∇f̃ (b).

I To compute ∇f̃ , we could appeal to Danskin’s theorem.

I Given maximizer b∗, study curvature of f away from set
{Rb∗ : R in Prop.}
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Discussion and outlook

2. What is a good relaxation to render problem tractable? If we
remove the rank constraint, probably fine and concave. But
who is to say that solution to relaxed problem will be of
rank-1 (or even low rank)?

3. Some semblance to phase retrieval and matrix recovery11: find
b ∈ Rn from phaseless measurements yk = |〈ak,b〉|2, k 6 m.
Noting that |〈ak,b〉|2 = trace(aka>k bb>) := trace(AkB), phase
retrieval solves

min
B∈Rn×n

B�0
y=A(B)

rank(B)

4. Why `2 sphere? Well, because of the spectral matrix norm. If
`1 sphere, ‖P−1(b)‖1 = maxj ∑i |P−1(b)i,j|, so we have not
eliminated the inverse..

5. PDEs? Heat equation through flatness (en cours).

11[Waldspurger 2021, Cours Peccot]
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