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Contact structure and REEB vector field in 3D.

Let M be a 3D manifold, a contact structure is a rank 2 sub-

bundle D ⊂ TM which is defined by D = kerα with α a 1-form

and α∧ dα a volume form. We orient M by α∧ dα independently

of the choice of α.

If α is given, the Reeb vector field ~R is defined by

α(~R) = 1, dα(~R, .) = 0

~R is transversal to D.
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Hamiltonian interpretation of ~R:

Σ = D⊥ \ 0 is a symplectic 4D sub-cone of T ?M . If ρ : Σ → R+

is defined by ρ(sα) = |s|, the Hamiltonian dynamics of ρ in Σ is

homogeneous of degree 0 and the orbits project onto the Reeb

orbits. We denote by Rt, t ∈ R the Reeb flow on Σ or the sphere

bundle S(Σ).



Sub-Riemannian metric

We give a smooth metric g on D. This defines a distance on M

by minimizing the lengths of “horizontal” curves (tangent to D

at every point). The geodesics with speed 1 are the projections

on M of the Hamiltonian orbits of the dual metric

1

2
g?(x, ξ) =

1

2
‖ξ|Dx‖

2
g

sitting inside U?X := {g? = 1}. Assuming that D is oriented, we

get a choice of the contact form αg satisfying

(dαg)|D = vg

This defines a Reeb vector field ~Rg which will be the main actor

in what follows.
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The fibers of the unit cotangent bundle U?M are 2D-cylinders.

The Reeb flow plays the role of a compactification of the

geodesics flow: the co-sphere bundle

S(T ?M) = U?M ∪ S(Σ)

identifies as a disjoint union of U?M and the sphere bundle of

Σ = D⊥. The geodesic flow lives on U?M while the Reeb flow

lives on S(Σ).
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Example 1: Heisenberg H3/Γ

We consider the presentation of H3 as R3 equipped with the

group law

(x, y, z) ? (x′, y′, z′) = (x+ x′, y + y′, z + z′ − xy′)

We choose the lattice

Γ := {(x, y, z)|(x, y) ∈ (
√

2πZ)2, z ∈ 2πZ}

Our sR manifold is then M := R3/Γ with the orthonormal basis

for D given by

X = ∂x, Y = ∂y − x∂z

We have αg = dz + xdy and ~Rg = ∂z.
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The spectrum of ∆ = −(X2 +Y 2) is explicitely computable: one

gets the union of the eigenvalues of the flat torus R2/
√

2πZ2 and

the set of integers

m(2l + 1), m = 1, · · · , l = 0, · · ·

with multiplicities 2m.

The lengths spectrum (the set of lengths of closed geodesics) is

the set of

2π
√

2n, n ∈ N
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Example 2: magnetic fields over a Riemannian surface

Let π : M → X be a principal S1-bundle on an oriented Rieman-

nian surface (X,h) i.e. M is equipped with a free action of S1

and X = M/S1.

We assume that this bundle is equipped with an Hermitian con-

nection ∇ whose horizontal distribution is our D. If the curvature

of the connection does not vanish, the distribution D is contact.

We take for g the pull-back on D of the metric h by π.
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The curvature of ∇ is a 2-form B (the magnetic field) and one

introduces the magnetic scalar b = B/dxh. The sR metric is

invariant by the S1 action, this gives an invariant momentum e.

The geodesics of (M,D, g) of momentum e project onto the

trajectories on X with the magnetic field b and the electric charge

e.
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The Reeb vector field is

~R = b∂θ −~b

where ~b is the horizontal lift of the Hamiltonian vector field of b

w.r. to the symplectic form B on X.
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Example 3: Liouville

Again (X,h) is a Riemannian surface. M is the unit cotangent

bundle. D = ker λ where λ is the restriction to M of the Liouville

1-form ξdx+ ηdy. We take onto D the restriction of the “Sasaki

metric” to D so that αg = λ. Then the Reeb vector field is the

geodesic flow of h.
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Spiraling

In the Heisenberg case, the geodesics are helices spiraling around

vertical axis which are the Reeb orbits. This can be seen as

follows

g? = ξ2 + (η − xζ)2 = |ζ|(u2 + v2)

with {u, v} = 1 and {ζ, u2 + v2} = 0. I = u2 + v2 is an harmonic

oscillator. The dynamics is decoupled and if we remember that

ρ := |ζ| is the Reeb Hamiltonian, we see that

g? = ρI

which allows to compute the geodesic flow quite easily because

{ρ, I} = 0.
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Taking σ ∈ Σ and (u, v) ∈ R2 as coordinates in T ?M , the geodesic

flow is given by

~G = ρ
∂

∂θ
+

1

2
I~ρ

with ρI = 1.

Gt(σ, u+ iv) =
(
RIt/2(σ), eit/I(u+ iv)

)
As I → 0, ρ → ∞, the geodesics are spiraling very fast around

the Reeb orbits while moving slowly along the Reeb orbits.

13



Birkhoff normal forms.

We assume for simplicity that the bundle D →M is topologically

trivial. This holds for the magnetic sR if X is a torus and for the

Liouville sR if the surface X is orientable. Then

Theorem 1 (CdV-Hillairet-Trélat) There exists an homoge-

neous canonical transformation χ : C → C′ with C a conic neigh-

borhood of Σ in T ?M \ 0 and C′ a conic neighborhood of Σ× 0

in Σ× R2, with R2
u,v equipped with the symplectic form dv ∧ du,

so that χ|Σ = Id× 0 and

g? ◦ χ−1 =
∞∑
j=1

ρj(σ)Ij +O
(
I2 (I/ρ)∞

)
with ρj homogeneous of degree 2 − j, ρ1 = ρ with ρ the Reeb

Hamiltonian and I = u2 + v2.
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From the Birkhoff normal form, one gets the following asymp-

totics for the geodesic flow:

~G ∼
1

I

∂

∂θ
+

1

2
I~ρ

which gives the following approximation of the geodesic flow as

I → 0:

Gt(σ, u+ iv) ∼
(
RIt/2(σ), eit/I(u+ iv)

)
which is valid for t = O(1/I) >> 1.

Note that it is well known in the 2D magnetic example: when

e is large the magnetic orbits spiral around the level lines of the

magnetic field.
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Periodic geodesics.

Let us assume that the BNF is convergent in some cone around

Σ, ie there exists a smooth homogeneous function F so that

F (σ, I) ◦ χ = g? where F = ρI + · · · .

Assume also that the Reeb flow has a ND closed orbit of period

T0, then, for each l ∈ N and k >> 1, there exists a closed geodesic

γk,l of approximate length

Lk,l ∼ 2
√
klT0π

The geodesics γk,l cover l-times the Reeb closed orbit and spiral

very fast around it.
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To prove this we start by defining, for I small, a smooth family

of periodic orbits of 1
IF (σ, I). Then we look at the return map

for the angle θ.

Conjecture 1 The existence of closed geodesics spiraling around

a ND periodic Reeb orbit stil holds even if the BNF is not con-

vergent.
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The Laplacian

We choose a smooth density |dx| on M . The Laplacian ∆ is the

Friedrichs extension on L2 = L2(M, |dx|) of Q(f) =
∫
M g?(df)|dx|.

If (X,Y ) is an ONB of D (locally), ∆ = X?X + Y ?Y = −X2 −
Y 2 + l.o.t. The symbol of ∆ is g? which vanishes exactly on

Σ. The Laplacian is sub-elliptic (Hörmander) and hence has a

discrete spectrum (λk) with an o.n.b. of eigenfunctions of (φk).
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Weyl law

If N(λ) = #{j|λk ≤ λ}, we have, as λ→ +∞,

N(λ) ∼
∫
M αg ∧ dαg

32
λ2

Note that this asymptotics is independent of the measure |dx|.
If M = S3,

∫
M αg ∧ dαg is the (inverse of) the asymptotic Hopf

invariant (Arnold 86) of the Reeb vector field, which is hence a

spectral invariant.
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Quantum limits.

What is a QL?

We consider, for a ΨDO A of degree 0 and ppal symbol

a : S(T ?M) → R, the quantities 〈Aφk|φk〉. Taking subsequences,

they converge to
∫
S(T ?M) adµ for some probability measures µ.

Such µ’s are called Quantum limits.
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Theorem 2 (CdV-Hillairet-Trélat) Let us decompose the sphere
bundle S(T ?M) as the union of the unit bundle U?M := {g? = 1}
and the sphere bundle of the characteristic manifold S(Σ).

1. Any QL µ (a probability measure on S(T ?M)), can be uniquely
written as the sum µ = µ0 + µ∞ where µ∞ is supported by
S(Σ) and is invariant by the Reeb flow, while µ0(S(Σ)) = 0
and µ0 is invariant by the geodesic flow.

2. If (φj) is an ONB of eigenfunctions, there exists a subse-
quence (φjk) of density 1, so that all corresponding QL’s are
supported by S(Σ) and are invariant by Reeb.

3. If the Reeb flow is ergodic, then we have QE for any real
eigenbasis with the limit measure the normalized Liouville
measure on ρ−1(1) ∼ S(Σ).
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Toeplitz operators.

In order to quantize the BNF, we need to quantize the Reeb

Hamiltonian as a function on the symplectic cone Σ: this can be

done by using the Toeplitz quantization as introduced by Louis

Boutet de Monvel and Victor Guillemin.
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To any symplectic sub-cone of T ?M , they associate an Hilbert

subspace HΣ of L2(M) which consists of distributions whose WF

is included in Σ. If Π : L2(M)→HΣ is the orthogonal projection

and A a ΨDO on M , they define a “Toeplitz operator” TA :=

ΠA on HΣ. The set of operators TA is a graded algebra. The

principal symbol of TA is the restriction to Σ of the symbol of

A. The rules of calculus are the same as those of ΨDO ’s.



QBNF.

Theorem 3 We use a FIO associated to the canonical transform

χ to transform ∆ into

∆0 =
∞∑
j=1

Rj ⊗Ωj +R∞

where the Rj are Toeplitz operators on Σ of degree 1 − j, R0

is elliptic with symbol |ρ|, Ω is an harmonic oscillator on R2 and

R∞ is smoothing along Σ (the symbol is O((I/ρ)∞).
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The Landau operators ∆l’s .

It follows that we have, for each value of l ∈ N a sequence of

eigenvalues (µlj), j = 1, · · · , which are the eigenvalues of the

Toeplitz operator of degree 1

∆l :=
∞∑
j=1

(2l + 1)jRj

modulo smoothing operators.

The ppal symbol of ∆l is (2l + 1)ρ.

We call such a sequence of eigenvalues a Landau cluster. Such

eigenvalues are approximations of some exact eigenvalues of ∆:

for each l, there exists a sequence λkj of eigenvalues of ∆ with

λkj = µlj +O(j−∞).
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Trace formulae

What is a trace formula?

We express the trace of a suitable function f(∆) into two ways:

Trace(f(∆)) =
∑
k

f(λk)

and

Trace(f(∆)) =
∫
M
K(x, x)|dx|

where K is the Schwartz kernel of f(∆)) computed in a direct

way using group theory (Poisson, Selberg), PDE theory, . . .

One get the heat trace using f : x → exp(−tx), the Shrödinger

trace f : x → exp(−zx), <(z) > 0, the wave trace f : x →
exp(−it

√
x)), . . .
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Flat tori and Riemannian case Recall the following formula :

Γ ⊂ Rd is a lattice and Γ? the dual lattice.

∑
γ?∈Γ?

e−4π2‖γ?‖2t =
1

(4πt)d/2

∑
γ∈Γ

e−‖γ‖
2/4t



This follows from the Poisson summation formula.

This formula has a spectral interpretation: we consider the flat

torus Rd/Γ: the lhs is the trace of exp(−t∆) while the rhs is a

sum on the periodic geodesics.
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This Schrödinger trace formula for the flat tori was extended

as an asymptotic formula for compact Riemannian manifolds

by myself in 73’; the wave trace was used by Chazarain and

Duistermaat-Guillemin shortly after. Both approaches show that

the length spectrum (the set of lengths of closed geodesics) is

generically a spectral invariant.

28



The Schrödinger trace in the Riemannian case is, as z → 0, <(z) >

0, ∑
k

e−λkz ∼
∑
γ
aγ(z)e−L

2
γ/4z

with aγ(z) of polynomial growth w.r. to 1/z [CdV73].

The wave trace says that the singular support of the Schwartz

distribution ∑
k

e−it
√
λk

is the set of length of periodic geodesics [Chazarain, Duistermaat-

Guillemin 74].

Both hold generically.
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We will try to get such formulae for sR manifolds.

For <(z) > 0, we have

∞∑
m=1

2m
∞∑
l=0

e−(2l+1)mz =
π2

4z2
−

1

2z
+
π2

z2

∞∑
n=1

1

1 + cosh(2π2n/z)

This formula is obtained using the Poisson summation formula.

It can be interpreted as a trace formula for the Laplacian of a

quotient of the 3D Heisenberg group (example 1).

The lhs is the spectral part. The rhs is the dynamical part: it

contains the Weyl formula, the lengths of periodic geodesics and

the periods of the Reeb vector field.
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Melrose Trace formulae

Melrose trace formula (1984) says that the Duistermaat-Guillemin
trace formula for the wave trace distribution

W (t) :=
∑
k

exp(−it
√
λk)

holds outside t = 0:

the singular support of W (t) is included in the length spectrum
and, assuming some ND assumption, the ppal term is given ex-
plicitely in terms of the Poincaré map and the Morse index of
the periodic geodesic.
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Boutet-Guillemin Trace formulae for ∆l

Boutet de Monvel and Guillemin showed that the D-G wave trace

formula extends to the case of elliptic self-adjoint Toeplitz oper-

ators of degree 1, hence it works for the ∆l’s. The corresponding

orbits are the closed Reeb orbits. The periods are the Tγ/(2l+1)

if the Tγ are the Reeb periods.
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Geometric interpretation of the Schrödinger Trace formula

for H3/Γ

For <(z) > 0, recall the formula

Z0(z) :=
∞∑

m=1

2m
∞∑
l=0

e−(2l+1)mz =
π2

4z2
−

1

2z
+
π2

z2

∞∑
n=1

1

1 + cosh(2π2n/z)

The lhs is obtained by removing from the trace of exp(−z∆)

for the sR manifold H3/Γ the trace of exp(−z∆T ), where T is

the flat torus R2/
√

2πZ2.
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As z = t is real and t→ 0+, we get

Z0(t) =
π2

4t2
−

1

2t
+

2π2

t2

∞∑
n=1

ane
−2π2n/t + · · ·

This gives the heat expansion and the Weyl law. Moreover the

exponentially small terms are of the form exp(−L2
n/4t) with Ln’s

the lengths of periodic geodesics 2π
√

2n.

As <(z)→ 0, we get a dense family of poles

zn,l = 2πn/(2l + 1)

which correspond to the periods of the Hamiltonian fields of

(2l + 1)ρ, the ppal symbols of the ∆l’s.

This formula contains an heat trace expansion and a wave trace

singularity along the imaginary axis.
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This leads to

Conjecture 2 The Reeb periods are spectral invariants of the

sR laplacian.

First hint: Melrose formula → closed geodesics → Reeb orbits

Second hint: ∆ ∼ ⊕∆l. BdM-G formula for each ∆l → Reeb

orbits.
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Thanks for your attention
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