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1.1. A multiscale vision in a globally connected world

What is COVID19

• The onset of SARS�CoV�2 responsible for the initial COVID-19
outbreak and the subsequent pandemic, has brought to almost all
countries and societies across the globe huge problems a�ecting health,
safety/security, economics, and practically all expressions of collective
behaviors.

• A signi�cant percentage of governments believed this to be a so-called
black swan event for our society, including a number of scientists.
However, this event is de�nitely not a black swan as the event should
have been predictable (and indeed was predicted by a few) but many of
our societies appear to be unprepared to tackle this problem.

• SARS�CoV�2 is mainly transmitted through the respiratory route
10-12 via respiratory droplets, up to 1 millimetre in diameter, that an
infected person expels.
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1.2. A multiscale vision in in a globally connected world

I The large Spike protein forms a sort of crown on the surface of the
viral particles and acts as an anchor allowing the virus to bind to the
Angiotensin-Converting Enzyme 2 (ACE2) receptors on the host cell.
After binding, the host cell transmembrane proteases cut the Spike
proteins, allowing the virus surface to approach the cell membrane,
fuse with it and the viral RNA enter the cell.

I The virus hijacks the cell machinery and the cell dies releasing
millions of new viruses thus generating a virus infection. COVID-19
starts with the arrival of SARS�CoV�2 virions to the respiratory
mucosal surfaces of the nose and throat that express high levels of
ACE-2 receptors on the surface .

I Immune system actions: When the virus manages to overcome the
barrier of the mechanisms and the mucus secreted by goblet cells
from a �rst e�ective reaction, a rapid release of danger signals
activates the reaction of the host's innate immunity. Corona viruses
are successful at suppressing various mechanisms, but not all of
them, in an immune response.
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1.3. A multiscale vision in a globally connected world

Mathematical reasonings on pandemic modeling

• Modeling approach should go far beyond deterministic population
dynamics, as individual reactions to the infection and pandemic events
are heterogeneously distributed throughout the population. Spatial
dynamics is an important feature as the dynamics are generated by
nonlocal interactions and transportation devices.

• The modeling ought to be developed within a multiscale vision, as the
dynamics of individuals depend on the dynamics at smaller scales inside
each individual by the competition between virus particles and the
immune system.

• The approach described in this lecture looks �rstly for a model
local-in-space accounting for the infection dynamics and, subsequently for
the competition inside each individual, between the proliferating virus and
the immune-system speci�c to the individual. Subsequently the approach
focuses on collective behaviors.
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1.4. A multiscale vision in a globally connected world

Mathematical reasonings on virus pandemic

• Applied mathematicians cannot tackle the modeling problem by a
stand-alone approach � an interdisciplinary vision is necessary through
mutually enriching and bene�cial interactions with scientists in other
�elds including virology, epidemiology, immunology and biology in
general.

• The scope of such a research project should not be con�ned only to
�biological and medical sciences�, but also be addressed to wider aspects
of and other communities in our society.

• Once re�ned and informed by empirical data, mathematical models can
produce insightful provisional simulations which can even uncover
dynamics which were not previously observed (cf. emergent behavior).
Hence mathematical models can and should also be viewed as a tool to
generate dialogue and wider communication between the hard and
applied sciences. This dialogue can in turn lead to a perspective on and
insight into possible future events.
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2.1. Modeling strategy

What we can learn from the Lecture by Lee Hartwell

• Nobel Laureate Lee Hartwell (born 1939) has well in mind that the
mathematical approach to the description of the dynamics of the inert
matter cannot be straightforwardly applied to living systems:

Biological systems are very di�erent from the physical or chemical

systems of the inanimate matter. In fact, although living systems

obey the laws of physics and chemistry, the notion of function or

purpose di�erentiate biology from other natural sciences. Indeed,

cells are not molecules, but have a living dynamics induced by

the lower scale of genes and is organized into organs.

• This statement directly looks forward a challenging research perspective
whose �rst step consists in acknowledging that the mathematics used for
the inert matter fails when applied to the living matter.

H.L. Hartwell, J.J. Hop�eld, S. Leibler, and A.W. Murray, From
molecular to modular cell biology Nature, 402, c47�c52, (1999).
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2.2. Modeling strategy

Preliminary step towards a strategy

We suggest to replace the de�nition of Soft sciences with

Science of Living Systems

and to develop a strategy to take into account that in the case of the
living matter the approach cannot be supported by �eld theory.

The strategy consists in replacing the field theory by
a mathematical structure (say mathematical theory)
suitable to capture, as far as possible, the complexity
features of living systems. This structure defines the
conceptual framework for the derivation of models in
different fields of science of living systems.

• P. Ball, Why Society is a Complex Matter, Springer-Verlag,
Heidelberg, (2012).

• N. Bellomo, A. Bellouquid, L. Gibelli, and N. Outada, A Quest

Towards a Mathematical Theory of Living Systems, Birkhäuser-Springer,
New York, (2017).
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2.3. Modeling strategy

Rationale towards a strategy

I Understanding the links between the dynamics of living systems and
their complexity features;

I Derivation of a general mathematical structure, consistent with the
aforesaid features. The aim consists in o�ering the conceptual
framework toward the derivation of speci�c models;

I Design of speci�c models corresponding to well de�ned classes of
systems by implementing the said structure with suitable models of
individual-based, micro-scale, interactions;

I Validation of models by quantitative comparison of the dynamics
predicted by them with that one delivered by empirical data. In
addition, models are required to reproduce qualitatively emerging
behaviors.
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2.4. Modeling strategy
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2.5. Modeling strategy

Five Common Features and Sources of Complexity

1. Ability to express a strategy: Living entities are capable to develop
speci�c strategies and organization abilities that depend on the state of
the surrounding environment.

2. Heterogeneity: The ability to express a strategy is not the same for
all entities as expression of heterogeneous behaviors is a common feature
of a great part of living systems.

3. Nonlinear interactions: Interactions are nonlinearly additive and
involve immediate neighbors, but in some cases also distant entities.

4. Learning ability: Living systems receive inputs from their
environments and have the ability to learn from past experience.

5. Darwinian mutations and selection: All living systems are
evolutionary, as birth processes can generate entities more �tted to the
environment, who in turn generate new entities again more �tted to the
outer environment.
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2.6. Modeling strategy

Understanding living systems

• Multiscale aspects: Modeling always needs a multiscale approach,
where the dynamics at the large scale needs to be properly related to the
dynamics at the low scales. For instance, the functions expressed by a cell
are determined by the dynamics at the molecular (genetic) level.

• Role of the environment: The environment evolves in time, in
several cases also due to interactions with the internal living system.

• Large deviations: Emerging behaviors often present large deviations
although the qualitative behaviors is reproduced. In this case, small
deviations in the input create large deviations in the output.

• Individuals within a certain population can aggregate into
groups of affinity: Communications and subsequent dynamics can
take advantage (or disadvantage) from the said aggregation by creating a
new communication network.
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2.7. Modeling strategy

What is the Black Swan?

It is worth detailing a little more the expression Black Swan, introduced
in the specialized literature for indicating unpredictable events, which are
far away from those generally observed by repeated empirical evidence.
According to the de�nition by Taleb a Black Swan is speci�cally
characterized as follows:

�A Black Swan is a highly improbable event with three principal

characteristics: It is unpredictable; it carries a massive impact; and, after

the fact, we concoct an explanation that makes it appear less random,

and more predictable, than it was.�

* N. N. Taleb, The Black Swan: The Impact of the Highly
Improbable, Random House, New York City, 2007.
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2.8. Modeling strategy

On a systems approach
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2.9. Modeling strategy

Blocks of the systems approach

Block 1: Contagion occurs between individuals depending on the level of
con�nement only in the case of spatial homogeneity, and to local
densities for crowd movement in complex venues.

Block 2: The dynamics follows inside each individual depending on the
interaction at the small scale between virus infection and immune
particles, within host dynamics. The modeling takes into account the
heterogeneous behavior of individuals, as well as heterogeneity,
progression and competition inside each individual entity. The dynamics
of the virus is coupled with that of the lung.

Blocks 3,4: Show the output of the interactions consisting in recovery or
death of patients, where this �nal exit can go through the passage across
the hospitalization which is related to the level of the pathology.
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2.10. Modeling strategy

Block 5: Refers to the passage from Block 2 to an organized
hospitalization dynamics. If the dynamics within Block 5 are properly
modelled accounting for medical care, the number of patients which are
recovered should increase, while that of dead persons should decrease.

Block 6: Refers to the dynamics by which the contagion spreads over a
territory made of a sequence of interconnected areas. The dynamics
might include aggregation through endogenous networks.

Block 7: Studies the dynamics by which the contagion spreads over a
territory through long range exogenous networks, where connections
between nodes depend on the transportation system.
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3.1. A multiscale vision of contagion and in-host dynamics

Contagion in crowds: Consider a population of N0 individuals
homogeneously distributed in space. A small number εN0 is initially
infected, while (1− ε)N0 is considered healthy. Contagion depends on
the frequency of contacts, on the level of the infection within each
individual, on the level of physical protection used by individuals aware of
the risk of contagion, and on the so-called social distance.
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3.2. A multiscale vision of contagion and in-host dynamics

A simple model of contagion: The contagion dynamics, followed by
the competition for survival within each individual, can be modeled
according to the following rationale:

1. Individuals are viewed as active particles which are carriers of an
internal state, called activity. The level of infection of each a-particle
can progress (or regress) in time due to a prevalence (or lack of
prevalence) of the virus aggressiveness over the immune defence.

2. Contagion depends on the level of the infection as well as on the
social distance between individuals which is a constant parameter in
the case of spatial homogeneity.

3. Dynamics within each individual depends on the heterogeneous
competition between a proliferative virus and the immune system.
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3.3. A multiscale vision of contagion and in-host dynamics

In-host dynamics

� The overall population is subdivided into four sub-populations labeled
by the subscripts i = 1, 2, 3, 4. The abbreviation i-FS is used to denote
the i-th population viewed as a functional subsystem.

� The micro-state of a-particles includes two variables u ∈ [0, 1] and
w ∈ [0, 1] corresponding, respectively, to the progression of virus invasion
and to the level of activation of the immune defence. In this sense, u = 0
represents the absence of the viral infection, while u > 0 characterizes
the presence of the disease, where increasing values of u towards 1
correspond to more aggressive states. Similarly, w = 0 and w = 1
correspond, respectively, to the lowest and highest immune system
activation. If discrete variables are used one has

u = {uj =
j − 1

m− 1
, j = 1, . . . ,m}, and w = {wk =

k − 1

n− 1
, k = 1, . . . , n},

where u1 = 0 corresponds to the healthy level and w1 = 0 to the lack of
immune defence and um = 1, wn = 1
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3.4. A multiscale vision of contagion and in-host dynamics

Within host dynamics

I i = 1: Healthy individuals with distribution f1,k1 (t, u1, wk), where t is
the time belonging to the interval [0, T ].

I i = 2: Infected individuals with distribution f j,k2 (t, uj , wk), with
1 < j < m.

I i = 3: Individuals recovered from the infection with distribution
f3(t), namely infected individuals that succeed in reaching back to
the state j = 1.

I i = 4: f4(t) is the number of individuals of the infected population
who do not succeed to recover, that are infected individuals who
reach the state j = m.
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3.5. A multiscale vision of contagion and in-host dynamics

Within host dynamics A general structure is reported as it provides the
conceptual basis for these developments.

d

dt
frij = Gr

ij(f)− Lr
ij(f)

=

m∑
s=1

n∑
h,k,p,q=1

ηpqhk(r, s)(f)A
pq
hk(hk → ij)(f)frhk f

s
pq

−frij
m∑
s=1

n∑
p,q=1

ηpqij (f) f
s
pq,

The subscripts h, k and p, q denote the micro-states corresponding to the
r, s FSs which by interactions lead to the dynamics of fr. In addition,
ηpqhk, η

pq
ij , denote the interaction rates, and Apq

hk the transition rate into
the micro-state i, j of the r-FS. The time dynamics are then ruled by a
gain term of particles which at time t gain the state (i, j) and a loss term
related to particles which lose such a state.
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3.6. Towards a multiscale vision of contagion and in-host

dynamics

Within host dynamics: Modeling of interactions.

1. i = 1: Active 1-FS particles interact with a-particles from 2-FS and
can become, in probability, infected. The rate of infection depends
on the physical interaction rate η0, supposed to be constant, and to
the level of progression uj of the infected individuals as the
probability of infection grows with uj .

2. i = 1, 2: The interaction rate depends on the social distance.
Interactions do not modify the levels of the immune defence, while
particles which move from 1-FS to 2-FS take the value u2 and start
their competition to survive the attack from the immune system.

3. i = 2: Viral particles progress (proliferate) thanks to foraging of the
surrounding tissues, while the immune defence counteracts the
progression by inducing a regression.

4. i = 2, 3, 4: A-particles from 2-FS move to 3-FS if the immune
defence succeeds to obtain a regression down to u1, while a-particles
from 2-FS move to 4-FS if the immune defence does not succeed to
obtain a regression.
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3.7. A multiscale vision of contagion and in-host dynamics

Functional subsystems

Infected
i = 2

Healthy
i = 1

Recovered
i = 3

Dead
i = 4

α

Figure � Transfer diagram of the model. Boxes represent functional subsystems
and arrows indicate transition of individuals.
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3.8. A multiscale vision of contagion and in-host dynamics

Flow chart of the systems approach

u1

Recovered

u2

Healthy

uj+1uj−1 uj uj+1 um−1 um

Dead

β ujγ wk

Figure � Dynamics within infected population.
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3.9. A multiscale vision of contagion and in-host dynamics

How do parameters in�uence on the dynamics? Let us introduce the
key number:

κ =
α · β
γ

which refers the intensity of the infection α · β to the immune defence γ,
where α and β refer to infectivity and the progression of the virus,
respectively. Increasing values of κ denote an increasing level of the
infection attack.
A very �rst, and rapid, biological interpretation is as follows:

The defence of the immune system applies an e�ective contrast

to the virus progression. However the e�cacy of the action is

more relevant if the defence keeps a �xed value independently on

the level of infection or progression. If the defence increases with

increasing values of α and β, the e�cacy is even higher.

N. Bellomo Modeling of a Virus Pandemic



3.10. A multiscale vision of contagion and in-host dynamics
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(a) κ = 0.2, �xed β = 0.1 (b) κ = 0.2, �xed α = 0.4

Figure � Sensitivity to κ.
(a) Blue: α = 0.4, γ = 0.2, Red: α = 0.2, γ = 0.1, Yellow: α = 0.1, γ = 0.05.
(b) Blue: β = 0.15, γ = 0.3, Red: β = 0.1, γ = 0.2, Yellow: β = 0.05, γ = 0.1.
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3.11. A multiscale vision of contagion and in-host dynamics
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(c) κ = 0.02, �xed β = 0.01 (d) κ = 0.02, �xed α = 0.4

Figure � Sensitivity to κ.
(c) Blue: α = 0.4, γ = 0.2, Red: α = 0.2, γ = 0.1, Yellow: α = 0.1, γ = 0.05.
(d) Blue: β = 0.15, γ = 0.3, Red: β = 0.1, γ = 0.2, Yellow: β = 0.05, γ = 0.1.
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3.12. A multiscale vision of contagion and in-host dynamics

When should locking be implemented? Let T` is the lapse of time,
after the discovery of the infection, at which locking is imposed with α`;
and Td is the lapse of time from T` to impose less restrictive locking rules
(locking-down) corresponding to αd > α`.

T
1
T

2
T

3
T

d
2000

Time

0

0.01

0.02

0.03

0.04

0.05

0.06

In
fe

c
te

d
 p

o
p

u
la

ti
o

n
T

1
=100

T
2
=200

T
3
=300

Figure � We take T` = 100, 200, 300, and �xed lock-open time Td = 1200. α = 0.4

for t ∈ [0, T`) ∪ [Td, Tmax] while α = 0.25 during the locking interval.
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3.13. A multiscale vision of contagion and in-host dynamics

And how long should locking last? Simulations show how delaying Td
reduces the peak, but increases the time interval of the persistence of the
infection.
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Figure � Varying de-locking times. We take a �xed locking time T` = 300, and three

di�erent lock-open times Td = 900, 1200, 1500. α = 0.4 for t ∈ [0, Tl) ∪ [Td, Tmax]

while α = 0.25 during the locking interval.

N. Bellomo Modeling of a Virus Pandemic



3.14. A multiscale vision of contagion and in-host dynamics

How �exible shall lock-down relaxation be?
We study the in�uence of the relaxation level for �xed values of Td and
T`. Simulations show that a large relaxation can generate high level
peaks.
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Figure � Varying the de-locking value αd. We take �xed locking and lock-open times

Tl = 300 and Td = 1200, respectively. α = 0.4 initially for t ∈ [0, Tl) then reduced to

α = 0.25 during the locking interval and �nally we consider three di�erent lock-open

values αd = 0.3, 0.4, 0.5.
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3.15. A multiscale vision of contagion and in-host dynamics

On a research perspective:

Populations and representation: Three populations: Virus particles,
immune cells, and lung tissue cells which feed the virus. The state of the
FSs is delivered by the distribution functions fij(t, u), fij(t, v), and
fij(t, w), in each hexagon of the lung at time t over the activity variable.
The following activities are linked to each FS, i = 1: u = reproductive

ability ; i = 2: v = activation of the immune ability ; i = 3: feeding ability

the virus particles to contribute to reproduction with u, v, w ∈ D = [0, 1].

Virus interaction with local tissue, proliferation and space
propagation: Virus particles interacting locally with lung cells proliferate
depending on their level of progression up to when the virus load reaches
a critical value. Then virus particles move to the boundary hexagons.
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3.16. A multiscale vision of contagion and in-host dynamics
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Figure � Upper Left Lung Parenchyma and internal forces
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3.17. A multiscale vision of contagion and in-host dynamics

Activation of the immune system, virus regression or progression:
The immune system activates from the sentinel level by a collective
learning process which can reduce the speed of progression and even
induce regression. The dynamics is sensitive to the initial virus load.

Recovery, need of hospitalization, and eventual death: Modeling can
contribute to the strategy towards hospitalization by referring this choice
to the pathological stage related to progression. Trends to low stages of
the progression indicate trends to full recovery. Progression and trend of
the virus load over critical levels are indicator of eventual death of the
patient.

Lung dynamics and damage: The in-host dynamics should be coupled
with the lung dynamics by an appropriate coupling of the two models.
The study of lung damage can contribute to develop therapeutical
strategies.
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