Numerical methods for random Helmholtz problem

Kai Zhang

Department of Mathematics, JLU

With Prof. G. Bao(ZJU), Prof. Y.Z. Cao(AU) Dr. Y.L. Hao(ZKNU) and Dr. Y. Gao(JLU)

Presentation in Dynamics, Control and Numerics, FAU Oct 27, 2021

イロト イポト イヨト イヨト

Outline

- Random interface grating.
 - Expectation approximation: Taylor shape expansion.
 - Variance approximation: Low-rank Cholesky method.
- ► ML for inverse acoustic scattering problem.
 - Obstacle: CNN.
- Conclusions and ongoing work.

イロト イポト イヨト イヨト

Background and model problem

Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Weak Galerkin method Numerical simulation

Motivation

- $\left(1\right)$ Grating or solar photovoltaic power generation.
- (2) Different mineral resources.

イロン イヨン イヨン イヨン

臣

Background and model problem Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Weak Galerkin method Numerical simulation

Deterministic grating problem Bao, Dobson and Cox 95'; Bao 95'; Chen and Wu 04'; Li, Wu and Zheng 11', etc

Random interface

Ellipse: Canuto and Kozubek 07'; Harbrecht, Schneider and Schwab 08'; Harbrecht and Li 13'; Zhu, Hu and Wu 18'; etc.

Grating: Bao, Cao, Hao and Z 18'

Maxwell: Hao, Kang, Li and Z 18'

Acoustic scattering: Hiptmair, et al. 17'

Electromagnetic wave scattering: Hanckes and Schwab 18'

イロン イヨン イヨン イヨン

Background and model problem

Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Weak Galerkin method Numerical simulation

Geometry of Helmholtz equation

 Figure: Deterministic grating problem, nominal interface, one realization

 of random interface.

Background and model problem Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Weak Galerkin method Numerical simulation

Assume that an incoming plane wave

$$u_I = e^{i\alpha x_1 - i\beta_1 x_3}$$

is incident upon the grating from the top with

 $\begin{cases} \alpha = k_1 \sin \theta \\ \beta_1 = k_1 \cos \theta \end{cases}$

and $-\pi/2 < \theta < \pi/2$ is the angle of incidence. We are interested in quasi-periodic solutions u, that is,

$$u_{\alpha} := u e^{-i\alpha x_1}$$

are A periodic. Then u_{α} satisfies

$$\bar{\mathcal{L}}u_{\alpha} := (\Delta_{\alpha} + k^2)u_{\alpha} = 0,$$

where the operator $\Delta_{\alpha} = \Delta + 2i\alpha\partial_{x_1} - |\alpha|^2$.

Outline Random interface grating ML for inverse acoustic scattering problem Conclusions Background and model problem Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Numerical simulation

The deterministic interface grating problem is given by:

 $\bar{\mathcal{L}}u = \bar{g}, \qquad \text{in } D^- \cup D^+,$ $[u] = 0, \quad \text{on } \Gamma,$ $\left[\frac{\partial u}{\partial \mathbf{n}}\right] = \mathbf{0},$ on Γ , $u = e^{-i\alpha x_1} u_1$, on Γ_1 , (1)u = 0, on Γ_2 , $u|_{\Gamma_3} = u|_{\Gamma_4},$ $\frac{\partial u}{\partial n}|_{\Gamma_3} = -\frac{\partial u}{\partial n}|_{\Gamma_4}.$

(ロ) (同) (E) (E) (E)

Outline Random interface grating ML for inverse acoustic scattering problem Conclusions Background and model problem Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Numerical simulation

Nominal interface and deterministic perturbed interface. Fix any fixed nominal interface $\Gamma \in C^{3,1}$, we claim $\mathbf{n}(\mathbf{x}) \in C^{2,1}(\Gamma, \mathbb{R}^2)$. Thus, for any

$$\kappa \in \mathcal{A} := \left\{ \nu \in \mathcal{C}^{2,1}(\Gamma, \mathbb{R}^2) : \|\nu\|_{\mathcal{C}^{2,1}(\Gamma, \mathbb{R}^2)} \leq 1 \right\},$$

we obtain a normal variation of the interface

$$\mathbf{V}(\mathbf{x}) := \kappa(\mathbf{x})\mathbf{n}(\mathbf{x}) \in C^{2,1}(\Gamma, \mathbb{R}^2).$$

There exists an $\delta_0>0,$ such that for any $0\leq\delta\leq\delta_0$ the perturbed interface

$$\Gamma_{\delta} := \{\mathbf{x} + \delta \kappa(\mathbf{x}) \mathbf{n}(\mathbf{x}) \, : \, \mathbf{x} \in \Gamma\} \in C^{2,1}(\Gamma, \mathbb{R}^2)$$

is well defined.

Background and model problem Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Weak Galerkin method Numerical simulation

Nominal interface and random perturbed interface. Given a random field $\kappa \in L^2(\Omega, C^{2,1}(\Gamma, \mathbb{R}^2))$ and a perturbation amplitude δ with $0 \le \delta \le \delta_0$, the random interface is

$$\Phi_{\delta}: \begin{cases} \mathsf{\Gamma} \times \Omega \to \mathbb{R}^2, \\ (\mathbf{x}, \omega) \mapsto \mathbf{x} + \delta \kappa(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}). \end{cases}$$

A realization of the subdomains $D^{\pm}_{\delta}(\omega)$ is thus separated by the interface

$${\sf F}_{\delta}(\omega):=\{\Phi_{\delta}({f x},\omega):{f x}\in{\sf F}\},\quad\omega\in\Omega.$$

Outline Random interface grating ML for inverse acoustic scattering problem Conclusions August 2014 Conclusions August 2014 Conclusions August 2014 Conclusions August 2014 Numerical simulation

The mean, two-point correlation function and covariance function:

$$\mathbb{E}_{\kappa}(\mathbf{x}) := \int_{\Omega} \kappa(\mathbf{x}, \omega) \, \mathrm{d} P(\omega), \quad \mathbf{x} \in \Gamma,$$

$$\operatorname{Cor}_{\kappa}(\mathbf{x},\mathbf{y}) := \int_{\Omega} \kappa(\mathbf{x},\omega) \kappa(\mathbf{y},\omega) \, \mathrm{d}P(\omega), \quad \mathbf{x},\mathbf{y} \in \Gamma,$$

$$\operatorname{Covar}_{\kappa}(\mathbf{x},\mathbf{y}) := \operatorname{Cor}_{\kappa}(\mathbf{x},\mathbf{y}) - \mathbb{E}_{\kappa}(\mathbf{x})\mathbb{E}_{\kappa}(\mathbf{y}), \quad \mathbf{x},\mathbf{y} \in \Gamma.$$

Assume that the random field $\kappa(\mathbf{x},\omega)$ is centered, namely

$$\mathbb{E}_{\kappa}(\mathbf{x}) = 0.$$

Therefore, $\mathbb{E}(\Gamma_{\delta}(\omega)) = \Gamma$ and

$$\operatorname{Covar}_{\kappa}(\mathbf{x},\mathbf{y}) = \operatorname{Cor}_{\kappa}(\mathbf{x},\mathbf{y}).$$

소리가 소문가 소문가 소문가

Outline Random interface grating ML for inverse acoustic scattering problem Conclusions Definition: Taylor shape expansion Variance approximation: Low-rank Cholesky method Numerical simulation

The random interface grating problem:

$$\begin{aligned}
\bar{\mathcal{L}}u(\mathbf{x},\omega) &= \bar{\mathbf{g}}, & \text{in } D_{\delta}^{-}(\omega) \cup D_{\delta}^{+}(\omega), \\
& [u(\mathbf{x},\omega)] &= 0, & \text{on } \Gamma_{\delta}(\omega), \\
& \left[\frac{\partial u}{\partial \mathbf{n}}(\mathbf{x},\omega)\right] &= 0, & \text{on } \Gamma_{\delta}(\omega), \\
& u(\mathbf{x},\omega) &= e^{-i\alpha x_{1}}u_{I}, & \text{on } \Gamma_{1}, \\
& u(\mathbf{x},\omega) &= 0, & \text{on } \Gamma_{2}, \\
& u(\mathbf{x},\omega)|_{\Gamma_{3}} &= u(\mathbf{x},\omega)|_{\Gamma_{4}}, \\
& \frac{\partial u}{\partial \mathbf{n}}(\mathbf{x},\omega)|_{\Gamma_{3}} &= -\frac{\partial u}{\partial \mathbf{n}}(\mathbf{x},\omega)|_{\Gamma_{4}}.
\end{aligned}$$
(2)

(日) (四) (三) (三) (三)

Background and model problem Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Weak Galerkin method Numerical simulation

Assumption I The interface $\Gamma(\omega)$ is $C^{2,1}$ -smooth.

Assumption II

The upper bound δ_0 is sufficiently small to ensure that the interface Γ_{δ} is not degenerate and lies still inside the domain Ω_0 .

Assumption III

The random field $\kappa(\mathbf{x}, \omega)$ has a finite second moment with respect to *P* which belongs to the Bochner space $L^2(\Omega, C^{2,1}(\Gamma, \mathbb{R}^2))$.

The first order shape derivative:

$$\mathrm{d} u(\mathbf{x}) := \mathrm{d} u[\kappa](\mathbf{x}) = \lim_{\delta \to 0} \frac{u_{\delta}(\mathbf{x}) - u(\mathbf{x})}{\delta}, \quad \mathbf{x} \in (D^{-} \cap D_{\delta}^{-}) \cup (D^{+} \cap D_{\delta}^{+}).$$

Outline Random interface grating ML for inverse acoustic scattering problem Conclusions Angel State Conclusions Conclusions Conclusions Angel State Co

Lemma 1 Under the Assumptions I–III, first order shape derivative $du(\mathbf{x}) := du[\kappa](\mathbf{x})$ satisfies

 $\bar{\mathcal{L}}\mathrm{d} u = 0, \qquad \mathrm{in} \ D^- \cup D^+,$ $[\mathrm{d} u] = 0, \qquad \text{on } \Gamma,$ $\left[\frac{\partial \mathrm{d} u}{\partial \mathbf{n}}\right] = \kappa [k^2] u,$ on Γ , du = 0, on Γ_1 , (3)du = 0, on Γ_2 , $\mathrm{d} u|_{\Gamma_3} = \mathrm{d} u|_{\Gamma_4},$ $\frac{\partial \mathrm{d} u}{\partial \mathbf{n}}|_{\Gamma_3} = -\frac{\partial \mathrm{d} u}{\partial \mathbf{n}}|_{\Gamma_4}.$

(ロ) (同) (E) (E) (E)

Lemma 2 Under Assumptions I–III, the random solution satisfies:

$$u(\mathbf{x},\omega) = \overline{u}(\mathbf{x}) + \mathrm{d}u[\kappa(\omega)](\mathbf{x})\delta + \frac{1}{2}\mathrm{d}^2u[\kappa,\kappa](\mathbf{x})\delta^2 + \mathcal{O}(\delta^3), \quad (4)$$

for all $\mathbf{x} \Subset \mathcal{K} \subset \Omega_0 \setminus U_{\delta_0}(\Gamma)$, *P*-a.s. $\omega \in \Omega$. $\overline{u}(\mathbf{x})$ is given by (2).

Theorem 3 The expectation $\mathbb{E}_u(\mathbf{x})$ of the random solutions to (3) can be approximated by

$$\mathbb{E}_{u}(\mathbf{x}) = \overline{u}(\mathbf{x}) + \mathcal{O}(\delta^{2}), \quad \mathbf{x} \in \mathcal{K} \Subset \Omega_{0} \setminus U_{\delta_{0}}(\Gamma), \tag{5}$$

Remark. Using MC-FEM or MLMC-FEM for $\mathbb{E}_{u}(\mathbf{x})$ in (5).

Theorem 4 The variance $\operatorname{Var}_{u}(\mathbf{x})$ of random solutions to (3) can be approximated by

$$\begin{aligned} \operatorname{Var}_{u}(\mathbf{x}) &= \delta^{2} \operatorname{Var}_{\mathrm{d}u}(\mathbf{x}) + \mathcal{O}(\delta^{3}) \\ &= \delta^{2} \operatorname{Cor}_{\mathrm{d}u}(\mathbf{x}, \mathbf{y})|_{\mathbf{y}=\mathbf{x}} + \mathcal{O}(\delta^{3}), \quad \mathbf{x} \in K \Subset \Omega_{0} \setminus U_{\delta_{0}}(\Gamma), \end{aligned}$$
(6)

From (3), the deterministic tensor product PDE of $\operatorname{Cor}_{du}(\mathbf{x}, \mathbf{y})$ on the product domain $\Omega_0 \times \Omega_0 \subset \mathbb{R}^{2d}$ is given by:

$$\bar{\mathcal{L}}_x \otimes \bar{\mathcal{L}}_y \mathrm{Cor}_{\mathrm{d}u}(\mathbf{x}, \mathbf{y}) = 0,$$

for all $(\bm{x}, \bm{y}) \in \Omega_0 \times \Omega_0$ with corresponding 20 boundary conditions. Not applicable!

Background and model problem Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Weak Galerkin method Numerical simulation

Low-rank approximation

Algorithm 1: Pivoted Cholesky decomposition **Data**: matrix $\mathbf{C} = [\operatorname{Cor}_{\kappa}(\mathbf{x}_i, \mathbf{x}_i)]_{i,i} \in \mathbb{R}^{n \times n}$ and error tolerance $\sigma > 0$ **Result**: low-rank approximation $\mathbf{C}_m = \sum_{i=1}^m \ell_i \ell_i^T$ such that $\operatorname{trace}(\mathbf{C} - \mathbf{C}_m) < \sigma$ begin set m := 1: set $\mathbf{d} := \operatorname{diag}(\mathbf{C})$ and $error := \|\mathbf{d}\|_1$; initialize $\pi := (1, 2, ..., n);$ while $error > \sigma$ do set $i := \arg \max\{d_{\pi_i} : j = m, m + 1, \dots, n\};$ swap π_m and π_i ; set $\ell_{m,\overline{\pi}m} := \sqrt{d_{\overline{\pi}m}}$ for $m+1 \le i \le n$ do compute $\ell_{m,\pi_i} := \left(\operatorname{Cor}_{\kappa}(\mathbf{x}_{\pi_m}, \mathbf{x}_{\pi_i}) - \sum_{i=1}^{m-1} \ell_{j,\pi_m} \ell_{j,\pi_i} \right) / \ell_{m,\pi_m};$ update $d_{\pi_i} := d_{\pi_i} - \ell_{m,\pi_i} \ell_{m,\pi_i};$ compute error := $\sum_{i=1}^{n} d_{\pi_i}$; increase m := m + 1: end

(I) Given the two-point correlation matrix $\mathbf{C} = [\operatorname{Cor}_{\kappa}(\mathbf{x}_i, \mathbf{x}_j)]_{i,j}$, we obtain

$$\operatorname{Cor}_{\kappa} \approx \operatorname{Cor}_{\kappa,m} = \sum_{i=1}^{m} \kappa_i \otimes \kappa_i. \tag{7}$$

Outline Random interface grating ML for inverse acoustic scattering problem Conclusions Background and model problem Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Numerical simulation

Low-rank approximation: (Cont') (II) Given κ , find $du = du[\kappa] \in H^1_g(D^-) \cup H^1_g(D^+)$

$$-\int_{D^{+} \bigcup D^{-}} s \frac{\partial \mathrm{d}u}{\partial x_{1}} \frac{\partial v}{\partial x_{1}} \,\mathrm{d}\mathbf{x} - \int_{D^{+} \bigcup D^{-}} \frac{1}{s} \frac{\partial \mathrm{d}u}{\partial x_{3}} \frac{\partial v}{\partial x_{3}} \,\mathrm{d}\mathbf{x}$$
(8)
+
$$\int_{D^{+} \bigcup D^{-}} (k^{2} - |\alpha|^{2}) s \mathrm{d}uv \,\mathrm{d}\mathbf{x} = -\int_{\Gamma} \kappa [k^{2}] uv \,\mathrm{d}\mathbf{x}, \quad v \in H^{1}_{p}(\Omega_{0}).$$

Linearity of the mapping $\kappa \mapsto du[\kappa]$. (III) With such a low-rank approximation κ_i at hand, we have

$$\operatorname{Cor}_{\mathrm{d}u} \approx \operatorname{Cor}_{\mathrm{d}u,m} = \sum_{i=1}^{m} \mathrm{d}u[\kappa_i] \otimes \mathrm{d}u[\kappa_i].$$
 (9)

イロン 不同と 不同と 不同と

Low-rank approximation: (Cont')

Overall Algorithm 2: Low rank approximation for the variance.

Input: matrix $[\operatorname{Cor}_{\kappa}(\mathbf{x}_i, \mathbf{x}_j)]_{i,j}$ and tolerance $\varepsilon_0 > 0$.

Output: A third order approximation of $Var_u(\mathbf{x})$.

- (I) Compute $\operatorname{Cor}_{\kappa} \approx \sum_{i=1}^{m} \kappa_i \otimes \kappa_i$ by Algorithm 1.
- (II) Given κ_i , calculate the quantity $du[\kappa_i]$ by weak formulation.
- (III) Compute the quantity Cor_{du} by the formula (9).

$$\mathbb{V}\mathrm{ar}_{u}(\mathbf{x}) = \left[\mathbb{V}\mathrm{ar}_{\mathrm{d}u}(\mathbf{x})\right]\delta^{2} + \mathcal{O}(\delta^{3}) = \left[\mathrm{Cor}_{\mathrm{d}u}(\mathbf{x},\mathbf{y})\big|_{\mathbf{y}=\mathbf{x}}\right]\delta^{2} + \mathcal{O}(\delta^{3}).$$

The advantage of WG method

(1) The solution itself or its gradient changes rapidly near the interface.

(2) The stablizer: the parameter is 1. HDGM, adjust the flux terms or penalty terms to guarantee the stability.

(3) The interfaces are always complicated.

Allows arbitrary polygons as the partitions are shape regular. The convergence analysis with different polygons are guaranteed under the same framework.

[1] J.P. Wang and X. Ye A weak galerkin finite element method for second-order elliptic problems. J. Comput. Appl. Math., 241, 2013, 103-115.

Outline Random interface grating ML for inverse acoustic scattering problem Conclusions Background and model problem Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Numerical simulation

Theorem 6. On $K \subseteq D \setminus U_{\sigma_0}(\Gamma)$, there holds for the expectation \mathbb{E}_u of the random solution to the original problem (2)

$$\left\| \mathbb{E}_{u} - \overline{u}_{h} \right\| \leq C \left(\delta^{2} + h \right) \left\| \overline{u} \right\|_{H^{2}(D_{0}^{-}) \cup H^{2}(D_{0}^{+})}$$

with

$$|||v||| = \sqrt{||\nabla_d v||^2 + ||v_i||^2 + s(v, v)}.$$
 (10)

Outline Random interface grating ML for inverse acoustic scattering problem Conclusions Automation (Conclusions) Conclusions (Conclusions) (Conclusi

Numerical simulation

Figure: Three different kinds of nominal interfaces: (a) straight line; (b) sin-like line; (c) line with corner.

<ロ> (四) (四) (三) (三) (三)

Numerical simulation

The random perturbation of the interface is assumed to exhibit the Gaussian two-point correlation

$$\operatorname{Cor}_{\kappa} = \exp(-\sigma \|\mathbf{x} - \mathbf{y}\|^2)$$

with $\sigma = 10$. Here, $k_{-} := 3.2\pi$ and $k_{+} := 1.6\pi$

高 と く ヨ と く ヨ と

Background and model problem Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Weak Galerkin method Numerical simulation

Expectation error of three examples: $O(\delta^2)$

イロン イヨン イヨン イヨン

æ

Background and model problem Expectation approximation: Taylor shape expansion Variance approximation: Low-rank Cholesky method Weak Galerkin method Numerical simulation

Variance error of three examples: $O(\delta^3)$

イロン イヨン イヨン イヨン

æ

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Inverse problems

Given the observation, or output, or expectation. Determine the cause, or input, or control.

X: the set/space of quantities (functions) or shapes (geometries)—target objects.

 \mathbb{Y} : the set/space of data.

F: a relationship/mapping from X to Y. Inverse problems:

$$F(x) = y, \quad x \in \mathbb{X}, \quad y \in \mathbb{Y}.$$

Given y, find x or missing information of F.

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Inverse scattering problems

Waves, oscillations accompanied by a transfer of energy that travel through space or mass.

Fine properties: propagating, penetrating, non-destructive.

Inverse scattering problems:

F(target object) = wave field away from the object.

イロト イポト イヨト イヨト

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

PDE Model

Time-harmonic waves: $\tilde{u}(x,t) = e^{i\omega t}u(x)$

$$\frac{1}{c^2}\widetilde{u}_{tt} - \Delta\widetilde{u} = 0 \Rightarrow \Delta u + k^2 u = 0, \quad k = \frac{\omega}{c}.$$

Acoustic scattering problems.

(a) Wave scattering from an active source: $f = \varphi \chi_{\Omega}$, $\varphi \in L^{\infty}(\mathbb{R}^n)$

$$(\Delta + k^2)u = f$$
, $\lim_{r \to \infty} r^{\frac{n-1}{2}} (\partial_r - ik)u = 0$, $r = |x|$.

(b) Penetrable medium scattering: $u^i(x, \theta, k) = e^{ikx \cdot \theta}$, plane wave

$$(\Delta + k^2(1+q))u = 0, \quad u = u^i + u^s,$$

 $\lim_{r \to \infty} r^{\frac{n-1}{2}} (\partial_r - ik)u^s = 0.$

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Acoustic scattering problems (Cont') (c) Obstacle scattering: $u^{i}(x, \theta, k) = e^{ikx \cdot \theta}$, plane wave

$$(\Delta + k^2)u = 0 \text{ in } \mathbb{R}^n \backslash \Omega, \quad \mathcal{B}u|_{\partial\Omega} = 0, \quad u = u^i + u^s,$$
$$\lim_{r \to \infty} r^{\frac{n-1}{2}} (\partial_r - ik)u^s = 0. \tag{11}$$

◇ Far field pattern: observation aperture $\hat{x} := x/|x| \in \mathbb{S}^{n-1}$, incident aperture $\hat{\theta} \in \mathbb{S}^{n-1}$, as $r \to \infty$,

$$u^{s}(\Omega; x, \theta) = \frac{e^{i\frac{\pi}{4}}}{\sqrt{8k\pi}} \left(e^{-i\frac{\pi}{4}} \sqrt{\frac{k}{2\pi}} \right)^{n-2} \frac{e^{ikr}}{r^{\frac{n-1}{2}}} \left\{ u^{s}_{\infty}(\Omega; \hat{x}, \hat{\theta}) + \mathcal{O}\left(\frac{1}{r^{\frac{n}{2}}}\right) \right\}.$$

◊ inverse acoustic scattering:

(a)
$$F(f) = u_{\infty}^{s}(\hat{x}, \hat{\theta});$$
 (b) $F(q) = u_{\infty}^{s}(\hat{x}, \hat{\theta});$ (c) $F(\Omega) = u_{\infty}^{s}(\hat{x}, \hat{\theta}).$

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Inverse acoustic obstacle scattering problem

Incident plane wave $u^i(x,\theta) = e^{ikx\cdot\theta}$,

$$(\Delta + k^2)u = 0 \text{ in } \mathbb{R}^n \backslash \Omega, \quad \mathcal{B}u|_{\partial\Omega} = 0, \quad u = u^i + u^s,$$
$$\lim_{r \to \infty} r^{\frac{n-1}{2}} (\partial_r - ik)u^s = 0.$$

o inverse acoustic obstacle scattering:

$$F(\Omega) = u^{\mathfrak{s}}_{\infty}(\hat{x},\hat{ heta}), \quad (\hat{x},\hat{ heta}) \in \Gamma \times \Sigma.$$

 $\Gamma \subset \mathbb{S}^{n-1}$: observation aperture; $\Sigma \subset \mathbb{S}^{n-1}$: incident aperture.

◊ Γ = S^{*n*-1} and Σ = S^{*n*-1}: full-aperture data; Otherwise, limited-aperture data, or incomplete data.

History: inverse scattering problems with incomplete data

Full-aperture data: [Colton and Kress, 92], uniquely determine.

Limited-aperture data: analytic function, unique continuation; severely ill-conditioned process. [Mager and Bleistein, 78,79], [Zinn, 89], [Bao and Liu, 03], etc.

- regularized homotopy continuation method: [Bao and Liu, 03]
- ◊ a variant of the enclosure method: [Ikehata, Niemi and Siltanen, 12]
- a generalization of the orthogonal projection method: [Ochs, 87]
- ◊ the methods based on transformed field expansion: [Li, Liu and Wang, 17]

History: inverse scattering problems with incomplete data (Cont')

- $\diamond\,$ aforesaid structures: real-analyticity and reciprocity relations
 - (1) retrieve the missing data.
 - (2) apply the existing numerical methods for the corresponding full-aperture problems. [Liu and Sun, 17]
- phaseless case: artificial reference scatterer retrieving the phase information of the measurement data. [Li, Liu and Zou, 09], [Zhang and Guo, 18], [Zhang, Guo, Li and Liu, 18], [Dong, Zhang and Guo, 19], [Ji, Liu and Zhang, 19].
- ◊ phaseless case: ML

[Yin, Yang and Liu, 20], [Gao and Zhang, 21], [Yang, Gui, Ming and Hu, 20], [Gao, Liu, Wang and Zhang, 21]

イロト イポト イヨト イヨト

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

One example with incomplete data

Sampling method: imaging functional

$$I(z) := \Big| \int_{\Sigma} e^{-ik\hat{\theta} \cdot z} \int_{\Gamma} u^{\infty}(\hat{x}, \hat{\theta}) e^{ik\hat{x} \cdot z} ds(\hat{x}) ds(\hat{\theta}) \Big|^2, \quad z \in \mathbb{R}^n.$$

kite: $x(t) = (a, b) + (\cos t + 0.65 \cos 2t - 0.65, 1.5 \sin t), \quad 0 \le t \le 2\pi.$

イロト イポト イヨト イヨト

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

One example with incomplete data (Cont')

 $\hat{x} \in (0, \pi/2), \quad \hat{x} \in (\pi/2, \pi), \quad \hat{x} \in (\pi, 3\pi/2), \quad \hat{x} \in (3\pi/2, 2\pi)$

Our contribution: convolution neural network (CNN) for retrieve the missing data, even phaseless case.

・ロト ・ 同ト ・ ヨト ・ ヨト

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Preliminary of machine learning Developments

- Artificial neural network (ANN): [McCulloch and Pitts, 43]
- Convolutional neural networks (CNN): [LeCun et al., 88], LeNet5
- ◊ Deep neural network (DNN): [Hinton et al., 10]
- ◊ 2017, AlphaGo defeated Ke Jie.
- RNN, LSTM, etc. Powerful tools in image processing and natural language processing.

Mathematical analysis

- "universal approximation theorem", [Cybenko and Hornik, 89].
- ◊ Barron space, [E, Ma and Wu, 19].

イロト イポト イヨト イヨト

(

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

CNN notations

- ♦ Let $\mathbf{z}_{i,i}^{l}$: input patch at (i, j), *l*-th layer, picture.
- ♦ $y_{i,j,k}^{l}$: feature value at (i, j), k-th feature map, l-th layer.

$$\begin{cases} y_{i,j,k}^{l} = (\mathbf{w}_{k}^{l})^{T} \mathbf{z}_{i,j}^{l} + b_{k}^{l}, \\ z_{i,j,k}^{l} = \sigma^{l}(y_{i,j,k}^{l}). \end{cases}$$

Denote $W = \{\mathbf{w}_k^l\}$ and $b = \{b_k^l\}$. The parametric rectified linear unit (PReLU)

$$\sigma(lpha, x) = \left\{ egin{array}{cc} lpha \cdot x, & x < 0, \ x, & x \ge 0, \end{array}
ight.$$

where α is a learned array with the same dimension as x.

イロト イポト イヨト イヨト

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

CNN representation

Advantage:

(1) considering locality of features and extracting spatial features.(2) fixed small window size of convolutions.

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Star shaped domain

The star shaped domains

$$x(t) = r(t)\cos(t), \quad y(t) = r(t)\sin(t), \quad t \in [0, 2\pi].$$

We then represent the radius function r(t) by the truncated Fourier series expansion

$$r(t) = a_0 \left\{ 1 + \frac{1}{2N} \sum_{n=1}^{N} n^{-q} \left[a_n \cos(nt) + b_n \sin(nt) \right] \right\}, \quad (12)$$

where $N \in \mathbb{N}$ is the cut-off frequency, and $a_n, b_n, n = 1, \dots, N$ are random numbers draw from the uniform distribution in [-1, 1].

イロト イポト イヨト イヨト

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Multi-static response matrix

The multi-static response matrix $\mathbb{F}_{full} \in C^{2m \times 2m}$:

$$\mathbb{F}_{full} = \begin{pmatrix} u_{1,1}^{\infty} & u_{1,2}^{\infty} & \cdots & u_{1,2m}^{\infty} \\ u_{2,1}^{\infty} & u_{2,2}^{\infty} & \cdots & u_{2,2m}^{\infty} \\ \vdots & \vdots & \ddots & \vdots \\ u_{2m,1}^{\infty} & u_{2m,2}^{\infty} & \cdots & u_{2m,2m}^{\infty} \end{pmatrix},$$

where $u_{i,j}^{\infty} = u_{\infty}^{s}(\hat{x}_{j}; \hat{\theta}^{i})$ for $1 \leq i, j \leq 2m$ corresponding to 2m observation directions \hat{x}_{j} and 2m incident directions $\hat{\theta}^{i}$. Generally speaking, we can partition into a 2-by-2 block matrix

$$\mathbb{F}_{full} = \begin{pmatrix} \mathbb{F}_{11} & \mathbb{F}_{12} \\ \mathbb{F}_{21} & \mathbb{F}_{22} \end{pmatrix}, \qquad (13)$$

where $\mathbb{F}_{11} \in C^{m_1 \times m_1}$, $\mathbb{F}_{12} \in C^{m_1 \times m_2}$, $\mathbb{F}_{21} \in C^{m_2 \times m_1}$, $\mathbb{F}_{22} \in C^{m_2 \times m_2}$, and $m_1 + m_2 = 2m$.

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Algorithm development

(I) Using (12), generate the random domain.

(II) Using FEM to solve obstacle scattering (11), and then obtain $\mathbb{F}_{\textit{full}}.$

(III) Using CNN retrieve the missing data.

(IV) Apply the existing numerical methods for the corresponding full-aperture problems.

 Outline
 Background and model problem

 Random interface grating
 Preliminary of ML: CNN

 ML for inverse acoustic scattering problem
 CNN for inverse scattering problems with incomplete data

 Numerical simulations
 Numerical simulations

Notations 1: \mathcal{L}_1

- \diamond sample set: n^* ; train set: n_1 ; test set: n_2 .
- ◇ Given the input data $x = \mathbb{F}_{12}^n \in \mathbb{R}^{m_1 \times m_1 \times 2}$ and the target outputs $y = [\mathbb{F}_{11}^n, \mathbb{F}_{12}^n; \mathbb{F}_{21}^n, \mathbb{F}_{22}^n] \in \mathbb{R}^{2m \times 2m \times 2}$ in the training set, we wish $y^C(x; W, b) \approx y(x)$, where $y^C(x; W, b) = [\mathbb{F}_{11}^{n,C}, \mathbb{F}_{12}^{n,C}; \mathbb{F}_{21}^{n,C}, \mathbb{F}_{22}^{n,C}].$

$$\mathcal{L}_1(y, y^{C}) = \frac{1}{n_1} \sum_{n=1}^{n_1} \sum_{i,j=1}^{2} \|\mathbb{F}_{ij}^n - \mathbb{F}_{ij}^{n,C}\|_F^2,$$
(14)

where $\|\cdot\|_{F}$ is the Frobenius norm of a matrix. \diamond We use the CNN to compute

$$W^*, b^* = \arg \min_{W,b} \mathcal{L}_1(y, y^{\mathcal{C}}),$$

with the Adam optimizer.

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Notations 2: sub-block relative errors

We define the following sub-block relative errors

$$e_{11}^{n} = \frac{\|\mathbb{F}_{11}^{n} - \mathbb{F}_{11}^{n,C}\|_{F}}{\|\mathbb{F}_{11}^{n}\|_{F}}, \ e_{21}^{n} = \frac{\|\mathbb{F}_{21}^{n} - \mathbb{F}_{21}^{n,C}\|_{F}}{\|\mathbb{F}_{21}^{n}\|_{F}}, \ e_{22}^{n} = \frac{\|\mathbb{F}_{22}^{n} - \mathbb{F}_{22}^{n,C}\|_{F}}{\|\mathbb{F}_{22}^{n}\|_{F}}, n = n_{1} + 1, \cdots, n^{*}$$

for each sample in the test set, and use the sub-block relative errors of the test set

$$\bar{e}_{11} = rac{1}{n_2} \sum_{n=n_1+1}^{n^*} e_{11}^n, \ \ \bar{e}_{21} = rac{1}{n_2} \sum_{n=n_1+1}^{n^*} e_{21}^n, \ \ \bar{e}_{22} = rac{1}{n_2} \sum_{n=n_1+1}^{n^*} e_{22}^n,$$

to check the efficiency of our CNN.

イロト イポト イヨト イヨト

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Notations 3: e^n , MSEⁿ, and PSNRⁿ

◊ The recovery multi-static response matrix is

$$\widetilde{\mathbb{F}}_{full}^{n} = \begin{pmatrix} \mathbb{F}_{11}^{n,C} & \mathbb{F}_{12}^{n} \\ \mathbb{F}_{21}^{n,C} & \mathbb{F}_{22}^{n,C} \end{pmatrix}, \quad n = n_1 + 1, \cdots, n^*,$$

for each sample in the test set.

♦ Given \mathbb{F}_{full}^n and $\widetilde{\mathbb{F}}_{full}^n$, define

$$e^{n} = \frac{\|\mathbb{F}_{11}^{n} - \mathbb{F}_{11}^{n,C}\|_{F} + \|\mathbb{F}_{21}^{n} - \mathbb{F}_{21}^{n,C}\|_{F} + \|\mathbb{F}_{22}^{n} - \mathbb{F}_{22}^{n,C}\|_{F}}{\|\mathbb{F}_{11}^{n}\|_{F} + \|\mathbb{F}_{21}^{n}\|_{F} + \|\mathbb{F}_{22}^{n}\|_{F}},$$

$$MSE^{n} = \frac{1}{2m \cdot 2m} \sum_{i=1}^{2m} \sum_{j=1}^{2m} \left|\mathbb{F}_{full}^{n}(i,j) - \widetilde{\mathbb{F}}_{full}^{n}(i,j)\right|^{2},$$

$$PSNR^{n} = 10 \cdot \log_{10} \left(\frac{\max_{i,j} |\mathbb{F}_{full}^{n}(i,j)|}{|\mathsf{MSE}^{n}|_{f}}\right).$$

$$Extraction Mutual Methods for random Helmholtz problem$$

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Notations 4: ē, MSE, and PSNR

Introduce the relative error, mean square error (MSE), and peak signal-to-noise ratio (PSNR) of the test set as follows:

$$\overline{e} = \frac{1}{n_2} \sum_{n=n_1+1}^{n^*} e^n,$$

$$\overline{\mathsf{MSE}} = \frac{1}{n_2} \sum_{n=n_1+1}^{n^*} \mathsf{MSE}^n,$$

$$\overline{\mathsf{PSNR}} = \frac{1}{n_2} \sum_{n=n_1+1}^{n^*} \mathsf{PSNR}^n.$$

イロト イポト イヨト イヨト

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Two numerical simulations

(I) Standard optimization functional.

(II) Phaseless case.

We take N = 5, q = 0, and a_0 to be a random number drawn from the uniform distribution in [0.5, 1.5] under (12).

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Example 1: Standard optimization functional

 $n^* = 20000, m_1 = m_2 = 45, \mathcal{L}_1 = \mathcal{L}_1(y, y^C).$

イロン イヨン イヨン イヨン

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Example 1: sub-block relative errors

Table: 1. The sub-block relative errors of test set in Example 1.

		error real(%)				error image(%)					
(n_1, r_2)	n ₂)	\bar{e}_{11}	ē	21	ē	22	ē	l1	ē	21	ē ₂₂
(2000,50)0)	26.01	84	.15	26	.01	30	.72	86.	.03	30.71
(4000,100)0)	19.01	67	.55	19	.00	22	.49	68.	.43	22.49
(8000,200)0)	14.22	51	.15	14	.22	16	.88	52	.12	16.88
(16000,400)0)	10.66	38	.88	10	.66	12	.61	39.	.82	12.61
					erre	or no	orm(%)			
		(n_1, r_2)	n ₂)	ē	11	ē	21	ē	22		
	(2000,50		0)	28	.06 84		.99	30.71			
	(4	1000,100	0)	20	.52	67.	.92	20.	.52		
	(8	3000,200	0)	15	.38	51.	.54	15	.38		
	(16	5000,400	0)	11	.50	39.	.27	11	.50	(用)	 < ≣ ≡

g Numerical methods for random Helmholtz problem

Kai Zhang

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Example 1: \overline{e} , \overline{MSE} , and \overline{PSNR}

Table: 2. The relative errors, MSEs, and PSNRs of test set in Example 1.

		relative error $\overline{e}(\%)$				$MSE(10^{-2})$					
(n_1, n_2)	2)	real	im	age	no	rm	re	al	ima	age	norm
(2000,50	0)	39.13	44	.03	41	.40	9.3	72	9.3	884	5.430
(4000,100	0)	34.06	38	.47	36	.11	6.9	79	7.0)42	4.371
(8000,200	0)	23.97	27	.09	25	.41	3.4	45	3.4	40	2.594
(16000,400	0)	16.63 18.80 17.63		1.691 1.6		692	1.365				
					PS	NR					
		(n_1, n_2)		real in		ima	age	no	rm		
]	(2000,500) (4000,1000) (8000,2000)		00) 19		21	16	.22	22	.37		
			0) 20.		28	17	.27	22	.24		
)0)	23.	24	20	.22	25	.65		
[(16	5000,400	0)	26.	46	23	.46	28	.63	< 注→	< ≣) ≣

Kai Zhang Numerical methods for random Helmholtz problem

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Example 1: pictures

Figure: Numerical constructions of the 1st shape in the test set. (1) the true shape; (2) reconstructed shape from the full MSR matrix \mathbb{F}_{full}^n ; (3) reconstructed shape from the limited MSR matrix \mathbb{F}_{12}^n ; (4) reconstructed shape from the recovered MSR matrix $\widetilde{\mathbb{F}}_{full}^n$ via CNN.

・ロト ・ 同ト ・ ヨト ・ ヨト

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Example 2: Phaseless case

 $n^* = 50000$, $m_1 = m_2 = 45$, Optimization functional \mathcal{L}_2 is same as Example 1. The input is the module.

・ロト ・日本 ・ヨト ・ヨト

Э

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Example 2: the relative errors \overline{e} and \overline{MSE}

Table: 3. Phase and phaseless in Example 2 with regularization term.

	relative error $\overline{e}(\%)$			$MSE(10^{-2})$			
(n_1, n_2)	real	image	norm	real	image	norm	
(5000,1250)	30.08	33.63	33.73	5.372	5.319	3.686	
(10000,2500)	21.71	24.43	22.97	2.869	2.852	2.128	
(20000,5000)	15.26	17.17	16.14	1.390	1.383	1.149	
(40000,10000)	12.00	13.45	12.67	0.798	0.786	0.677	

	relati	relative error $\overline{e}(\%)$			$MSE(10^{-2})$			
(n_1, n_2)	real	image	norm	real	image	norm		
(5000,1250)	57.49	64.95	60.91	20.535	20.615	11.332		
(10000,2500)	46.92	53.41	49.90	12.562	12.719	6.648		
(20000,5000)	41.77	47.73	44.51	9.860	10.008	5.266		
(40000,10000)	37.97	43.28	40.40	7.510	7.573	4.408		

Kai Zhang

Numerical methods for random Helmholtz problem

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Example 2: PSNR

Table: 4. Phase and phaseless in Example 2 with regularization term.

	PSNR					
(n_1, n_2)	real	image	norm			
(5000,1250)	21.34	18.47	23.91			
(10000,2500)	24.16	21.18	26.64			
(20000,5000)	27.12	24.18	29.30			
(40000,10000)	29.02	26.10	31.20			
		PSNR				
(n_1, n_2)	real	image	norm			
(5000,1250)	15.87	12.84	20.24			
(10000,2500)	17.33	14.23	21.65			
(20000,5000)	18.30	15.18	22.55			
(40000,10000)	18.91	15.81	22.91			

臣

Background and model problem Preliminary of ML: CNN CNN for inverse scattering problems with incomplete data Numerical simulations

Example 2: pictures

Figure: Numerical constructions for square-shape obstacle by (1) the full MSR matrix \mathbb{F}_{full}^c ; (2) the limited MSR matrix \mathbb{F}_{12}^c ; (3) the recovery MSR matrix $\widetilde{\mathbb{F}}_{full}^c$, via CNN; (4) nearest sample MSR matrix $\widetilde{\mathbb{F}}_{full}^{c^*}$.

	relative error (%)					
matrix type	real	image	norm			
$\widetilde{\mathbb{F}}^{s}_{full}$	32.00	30.42	31.25			
$\widetilde{\mathbb{F}}_{full}^{s^*}$	66.75	69.21	67.94			

(日) (部) (E) (E)

Reference

- G. BAO, Y.Z. CAO, Y.L. HAO, AND K. ZHANG, A robust numerical method for the random interface grating problem via shape calculus, weak Galerkin method, and low-rank approximation. J Sci. Comput., 77(1), 2018, 419-442.
- Y.L. HAO, F.D. KANG, J.Z. LI AND K. ZHANG, Computation of moments for Maxwell's equations with random interfaces via pivoted low-rank approximation. J Comput. Phys., 371, 2018, 1-18.
- Y. GAO AND K. ZHANG, Machine learning based data retrieval for inverse scattering problems with incomplete data. J Inverse III Posed Probl, 29(2), 2021, 249-266.
- Y. GAO, H.Y. LIU, X.C. WANG AND K. ZHANG, On an artificial neural network for inverse scattering problems. J Comput. Phys., 448, 2022, 110771.

(日) (部) (注) (注) (三)

Conclusions

- Random interface grating.
 - Expectation approximation: Taylor shape expansion, $O(\delta^2)$.
 - Variance approximation: Low-rank Cholesky method, $O(\delta^3)$.
- ML for inverse acoustic scattering problem.
 - Obstacle: CNN.

Ongoing works

Bayesian inverse problem for defect and crack in waveguided.

イロト イポト イヨト イヨト

Thank you!

zhangkaimath@jlu.edu.cn

イロン イヨン イヨン イヨン

æ