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◮ Random interface grating.
◮ Expectation approximation: Taylor shape expansion.

◮ Variance approximation: Low-rank Cholesky method.

◮ ML for inverse acoustic scattering problem.
◮ Obstacle: CNN.

◮ Conclusions and ongoing work.
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Motivation
(1) Grating or solar photovoltaic power generation.
(2) Different mineral resources.
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Deterministic grating problem
Bao, Dobson and Cox 95’; Bao 95’;
Chen and Wu 04’; Li, Wu and Zheng 11’, etc

Random interface
Ellipse: Canuto and Kozubek 07’; Harbrecht, Schneider and
Schwab 08’; Harbrecht and Li 13’; Zhu, Hu and Wu 18’; etc.

Grating: Bao, Cao, Hao and Z 18’

Maxwell: Hao, Kang, Li and Z 18’

Acoustic scattering: Hiptmair, et al. 17’

Electromagnetic wave scattering: Hanckes and Schwab 18’
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Geometry of Helmholtz equation
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Figure: Deterministic grating problem, nominal interface, one realization
of random interface.
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Assume that an incoming plane wave

uI = e iαx1−iβ1x3

is incident upon the grating from the top with
{

α = k1 sin θ
β1 = k1 cos θ

and −π/2 < θ < π/2 is the angle of incidence.
We are interested in quasi-periodic solutions u, that is,

uα := ue−iαx1

are Λ periodic. Then uα satisfies

L̄uα := (∆α + k2)uα = 0,

where the operator ∆α = ∆ + 2iα∂x1 − |α|2.
Kai Zhang Numerical methods for random Helmholtz problem
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The deterministic interface grating problem is given by:

L̄u = ḡ , in D− ∪ D+,

[u] = 0, on Γ,
[
∂u

∂n

]
= 0, on Γ,

u = e−iαx1uI ,on Γ1, (1)

u = 0, on Γ2,

u|Γ3
= u|Γ4

,

∂u

∂n
|Γ3

= −∂u

∂n
|Γ4

.
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Nominal interface and deterministic perturbed interface.
Fix any fixed nominal interface Γ ∈ C 3,1, we claim
n(x) ∈ C 2,1(Γ, R2). Thus, for any

κ ∈ A :=
{
ν ∈ C 2,1(Γ, R2) : ‖ν‖C2,1(Γ,R2) ≤ 1

}
,

we obtain a normal variation of the interface

V(x) := κ(x)n(x) ∈ C 2,1(Γ, R2).

There exists an δ0 > 0, such that for any 0 ≤ δ ≤ δ0 the perturbed
interface

Γδ := {x + δκ(x)n(x) : x ∈ Γ} ∈ C 2,1(Γ, R2)

is well defined.
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Nominal interface and random perturbed interface.
Given a random field κ ∈ L2(Ω,C 2,1(Γ, R2)) and a perturbation
amplitude δ with 0 ≤ δ ≤ δ0, the random interface is

Φδ :

{
Γ × Ω → R

2,

(x, ω) 7→ x + δκ(x, ω)n(x).

A realization of the subdomains D±

δ (ω) is thus separated by the
interface

Γδ(ω) := {Φδ(x, ω) : x ∈ Γ}, ω ∈ Ω.

Kai Zhang Numerical methods for random Helmholtz problem
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The mean, two-point correlation function and covariance function:

Eκ(x) :=

∫

Ω
κ(x, ω)dP(ω), x ∈ Γ,

Corκ(x, y) :=

∫

Ω
κ(x, ω)κ(y, ω)dP(ω), x, y ∈ Γ,

Covarκ(x, y) := Corκ(x, y) − Eκ(x)Eκ(y), x, y ∈ Γ.

Assume that the random field κ(x, ω) is centered, namely

Eκ(x) = 0.

Therefore, E(Γδ(ω)) = Γ and

Covarκ(x, y) = Corκ(x, y).

Kai Zhang Numerical methods for random Helmholtz problem
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The random interface grating problem:

L̄u(x, ω) = ḡ , in D−

δ (ω) ∪ D+
δ (ω),

[u(x, ω)] = 0, on Γδ(ω),
[
∂u

∂n
(x, ω)

]
= 0, on Γδ(ω),

u(x, ω) = e−iαx1uI , on Γ1, (2)

u(x, ω) = 0, on Γ2,

u(x, ω)|Γ3
= u(x, ω)|Γ4

,

∂u

∂n
(x, ω)|Γ3

= −∂u

∂n
(x, ω)|Γ4

.
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Assumption I
The interface Γ(ω) is C 2,1-smooth.

Assumption II
The upper bound δ0 is sufficiently small to ensure that the
interface Γδ is not degenerate and lies still inside the domain Ω0.

Assumption III
The random field κ(x, ω) has a finite second moment with respect
to P which belongs to the Bochner space L2(Ω,C 2,1(Γ, R2)).

The first order shape derivative:

du(x) := du[κ](x) = lim
δ→0

uδ(x) − u(x)

δ
, x ∈

(
D− ∩ D−

δ

)
∪
(
D+ ∩ D+

δ

)
.
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Lemma 1 Under the Assumptions I–III, first order shape derivative
du(x) := du[κ](x) satisfies

L̄du = 0, in D− ∪ D+,

[du] = 0, on Γ,
[
∂du

∂n

]
= κ[k2]u, on Γ,

du = 0, on Γ1, (3)

du = 0, on Γ2,

du|Γ3
= du|Γ4

,

∂du

∂n
|Γ3

= −∂du

∂n
|Γ4

.
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Lemma 2 Under Assumptions I–III, the random solution satisfies:

u(x, ω) = u(x) + du[κ(ω)](x)δ +
1

2
d

2u[κ, κ](x)δ2 + O(δ3), (4)

for all x ⋐ K ⊂ Ω0 \ Uδ0
(Γ), P-a.s. ω ∈ Ω. u(x) is given by (2).

Theorem 3 The expectation Eu(x) of the random solutions to (3)
can be approximated by

Eu(x) = u(x) + O(δ2), x ∈ K ⋐ Ω0 \ Uδ0
(Γ), (5)

Remark. Using MC-FEM or MLMC-FEM for Eu(x) in (5).

Kai Zhang Numerical methods for random Helmholtz problem
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Theorem 4 The variance Varu(x) of random solutions to (3) can
be approximated by

Varu(x) = δ2
Vardu(x) + O(δ3) (6)

= δ2
Cordu(x, y)|y=x + O(δ3), x ∈ K ⋐ Ω0 \ Uδ0

(Γ),

From (3), the deterministic tensor product PDE of Cordu(x, y) on
the product domain Ω0 × Ω0 ⊂ R

2d is given by:

L̄x ⊗ L̄yCordu(x, y) = 0,

for all (x, y) ∈ Ω0 ×Ω0 with corresponding 20 boundary conditions.
Not applicable!

Kai Zhang Numerical methods for random Helmholtz problem
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Low-rank approximation

(I) Given the two-point correlation matrix C = [Corκ(xi , xj )]i ,j , we
obtain

Corκ ≈ Corκ,m =

m∑

i=1

κi ⊗ κi . (7)

Kai Zhang Numerical methods for random Helmholtz problem
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Low-rank approximation: (Cont’)
(II) Given κ, find du = du[κ] ∈ H1

g (D−) ∪ H1
g (D+)

−
∫

D+
⋃

D−

s
∂du

∂x1

∂v

∂x1
dx−

∫

D+
⋃

D−

1

s

∂du

∂x3

∂v

∂x3
dx (8)

+

∫

D+
⋃

D−

(k2 − |α|2)sduv dx = −
∫

Γ
κ[k2]uv dx, v ∈ H1

p(Ω0).

Linearity of the mapping κ 7→ du[κ].
(III) With such a low-rank approximation κi at hand, we have

Cordu ≈ Cordu,m =

m∑

i=1

du[κi ] ⊗ du[κi ]. (9)

Kai Zhang Numerical methods for random Helmholtz problem



Outline
Random interface grating

ML for inverse acoustic scattering problem
Conclusions

Background and model problem
Expectation approximation: Taylor shape expansion
Variance approximation: Low-rank Cholesky method
Weak Galerkin method
Numerical simulation

Low-rank approximation: (Cont’)

Overall Algorithm 2: Low rank approximation for the variance.

Input: matrix [Corκ(xi , xj)]i ,j and tolerance ε0 > 0.

Output: A third order approximation of Varu(x).

(I) Compute Corκ ≈∑m
i=1 κi ⊗ κi by Algorithm 1.

(II) Given κi , calculate the quantity du[κi ] by weak formulation.

(III) Compute the quantity Cordu by the formula (9).

Varu(x) = [Vardu(x)]δ
2 + O(δ3) =

[
Cordu(x, y)

∣∣
y=x

]
δ2 + O(δ3).
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The advantage of WG method

(1) The solution itself or its gradient changes rapidly near the
interface.

(2) The stablizer: the parameter is 1.
HDGM, adjust the flux terms or penalty terms to guarantee the
stability.

(3) The interfaces are always complicated.
Allows arbitrary polygons as the partitions are shape regular.
The convergence analysis with different polygons are guaranteed
under the same framework.

[1] J.P. Wang and X. Ye A weak galerkin finite element method for

second-order elliptic problems. J. Comput. Appl. Math., 241, 2013,

103-115.

Kai Zhang Numerical methods for random Helmholtz problem



Outline
Random interface grating

ML for inverse acoustic scattering problem
Conclusions

Background and model problem
Expectation approximation: Taylor shape expansion
Variance approximation: Low-rank Cholesky method
Weak Galerkin method
Numerical simulation

Theorem 6. On K ⋐ D \ Uσ0(Γ), there holds for the expectation
Eu of the random solution to the original problem (2)

|||Eu − uh||| ≤ C
(
δ2 + h

)
‖u‖

H2(D−

0 )∪H2(D+
0 )

with

|||v ||| =
√

‖∇dv‖2 + ‖vi‖2 + s(v , v). (10)
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Numerical simulation
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Figure: Three different kinds of nominal interfaces: (a) straight line; (b)
sin-like line; (c) line with corner.
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The random perturbation of the interface is assumed to exhibit the
Gaussian two-point correlation

Corκ = exp(−σ‖x − y‖2
)

with σ = 10.
Here, k− := 3.2π and k+ := 1.6π

Kai Zhang Numerical methods for random Helmholtz problem
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Expectation error of three examples: O(δ2)
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Variance error of three examples: O(δ3)
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Inverse problems
Given the observation, or output, or expectation.
Determine the cause, or input, or control.

X: the set/space of quantities (functions) or shapes
(geometries)—target objects.
Y: the set/space of data.
F : a relationship/mapping from X to Y.
Inverse problems:

F (x) = y , x ∈ X, y ∈ Y.

Given y , find x or missing information of F .
Kai Zhang Numerical methods for random Helmholtz problem
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Inverse scattering problems

Waves, oscillations accompanied by a transfer of energy that travel
through space or mass.
Fine properties: propagating, penetrating, non-destructive.

Inverse scattering problems:

F (target object) = wave field away from the object.

Kai Zhang Numerical methods for random Helmholtz problem
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PDE Model

Time-harmonic waves: ũ(x , t) = e iωtu(x)

1

c2
ũtt − ∆ũ = 0 ⇒ ∆u + k2u = 0, k =

ω

c
.

Acoustic scattering problems.
(a) Wave scattering from an active source: f = ϕχΩ, ϕ ∈ L∞(Rn)

(∆ + k2)u = f , lim
r→∞

r
n−1

2 (∂r − ik)u = 0, r = |x |.

(b) Penetrable medium scattering: ui(x , θ, k) = e ikx ·θ, plane wave

(∆ + k2(1 + q))u = 0, u = ui + us ,

lim
r→∞

r
n−1

2 (∂r − ik)us = 0.

Kai Zhang Numerical methods for random Helmholtz problem
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Acoustic scattering problems (Cont’)
(c) Obstacle scattering: ui(x , θ, k) = e ikx ·θ, plane wave

(∆ + k2)u = 0 in R
n\Ω, Bu|∂Ω = 0, u = ui + us ,

lim
r→∞

r
n−1

2 (∂r − ik)us = 0. (11)

⋄ Far field pattern: observation aperture x̂ := x/|x | ∈ S
n−1,

incident aperture θ̂ ∈ S
n−1, as r → ∞,

us(Ω; x , θ) =
e i π

4√
8kπ

(
e−i π

4

√
k

2π

)n−2
e ikr

r
n−1

2

{
us
∞(Ω; x̂ , θ̂) + O

(
1

r
n
2

)}
.

⋄ inverse acoustic scattering:

(a) F (f ) = us
∞(x̂ , θ̂); (b) F (q) = us

∞(x̂ , θ̂); (c) F (Ω) = us
∞(x̂ , θ̂).

Kai Zhang Numerical methods for random Helmholtz problem
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Inverse acoustic obstacle scattering problem

Incident plane wave ui(x , θ) = e ikx ·θ,

(∆ + k2)u = 0 in R
n\Ω, Bu|∂Ω = 0, u = ui + us ,

lim
r→∞

r
n−1

2 (∂r − ik)us = 0.

⋄ inverse acoustic obstacle scattering:

F (Ω) = us
∞(x̂ , θ̂), (x̂ , θ̂) ∈ Γ × Σ.

Γ ⊂ S
n−1: observation aperture; Σ ⊂ S

n−1: incident aperture.

⋄ Γ = S
n−1 and Σ = S

n−1: full-aperture data; Otherwise,
limited-aperture data, or incomplete data.

Kai Zhang Numerical methods for random Helmholtz problem
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History: inverse scattering problems with incomplete data

Full-aperture data: [Colton and Kress, 92], uniquely determine.

Limited-aperture data: analytic function, unique continuation;
severely ill-conditioned process. [Mager and Bleistein, 78,79],
[Zinn, 89], [Bao and Liu, 03], etc.

⋄ regularized homotopy continuation method: [Bao and Liu, 03]

⋄ a variant of the enclosure method:
[Ikehata, Niemi and Siltanen, 12]

⋄ a generalization of the orthogonal projection method:
[Ochs, 87]

⋄ the methods based on transformed field expansion:
[Li, Liu and Wang, 17]

Kai Zhang Numerical methods for random Helmholtz problem
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History: inverse scattering problems with incomplete data (Cont’)

⋄ aforesaid structures: real-analyticity and reciprocity relations
(1) retrieve the missing data.
(2) apply the existing numerical methods for the
corresponding full-aperture problems. [Liu and Sun, 17]

⋄ phaseless case: artificial reference scatterer
retrieving the phase information of the measurement data.
[Li, Liu and Zou, 09], [Zhang and Guo, 18], [Zhang, Guo, Li
and Liu, 18], [Dong, Zhang and Guo, 19], [Ji, Liu and Zhang,
19].

⋄ phaseless case: ML
[Yin, Yang and Liu, 20], [Gao and Zhang, 21], [Yang, Gui,
Ming and Hu, 20], [Gao, Liu, Wang and Zhang, 21]

Kai Zhang Numerical methods for random Helmholtz problem
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One example with incomplete data

Sampling method: imaging functional

I (z) :=
∣∣∣
∫

Σ
e−ikθ̂·z

∫

Γ
u∞(x̂ , θ̂)e ikx̂ ·zds(x̂)ds(θ̂)

∣∣∣
2
, z ∈ R

n.

kite: x(t) = (a, b)+(cos t+0.65 cos 2t−0.65, 1.5 sin t), 0 ≤ t ≤ 2π.

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4
Kite shaped domain
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One example with incomplete data (Cont’)

x̂ ∈ (0, π/2), x̂ ∈ (π/2, π), x̂ ∈ (π, 3π/2), x̂ ∈ (3π/2, 2π)

Our contribution: convolution neural network (CNN) for retrieve
the missing data, even phaseless case.

Kai Zhang Numerical methods for random Helmholtz problem



Outline
Random interface grating

ML for inverse acoustic scattering problem
Conclusions

Background and model problem
Preliminary of ML: CNN
CNN for inverse scattering problems with incomplete data
Numerical simulations

Preliminary of machine learning
Developments

⋄ Artificial neural network (ANN): [McCulloch and Pitts, 43]

⋄ Convolutional neural networks (CNN): [LeCun et al., 88],
LeNet5

⋄ Deep neural network (DNN): [Hinton et al., 10]

⋄ 2017, AlphaGo defeated Ke Jie.

⋄ RNN, LSTM, etc. Powerful tools in image processing and
natural language processing.

Mathematical analysis

⋄ “universal approximation theorem”, [Cybenko and Hornik, 89].

⋄ Barron space, [E, Ma and Wu, 19].

Kai Zhang Numerical methods for random Helmholtz problem
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CNN notations

⋄ Let zl
i ,j : input patch at (i , j), l -th layer, picture.

⋄ y l
i ,j ,k : feature value at (i , j), k-th feature map, l -th layer.

{
y l
i ,j ,k = (wl

k)Tzl
i ,j + bl

k ,

z l
i ,j ,k = σl(y l

i ,j ,k).

Denote W = {wl
k} and b = {bl

k}. The parametric rectified linear
unit (PReLU)

σ(α, x) =

{
α · x , x < 0,
x , x ≥ 0,

where α is a learned array with the same dimension as x .

Kai Zhang Numerical methods for random Helmholtz problem
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CNN representation

Advantage:
(1) considering locality of features and extracting spatial features.
(2) fixed small window size of convolutions.
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Star shaped domain

The star shaped domains

x(t) = r(t) cos(t), y(t) = r(t) sin(t), t ∈ [0, 2π].

We then represent the radius function r(t) by the truncated
Fourier series expansion

r(t) = a0

{
1 +

1

2N

N∑

n=1

n−q [an cos(nt) + bn sin(nt)]

}
, (12)

where N ∈ N is the cut-off frequency, and an, bn, n = 1, · · · ,N are
random numbers draw from the uniform distribution in [−1, 1].
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Multi-static response matrix
The multi-static response matrix Ffull ∈ C 2m×2m:

Ffull =




u∞
1,1 u∞

1,2 · · · u∞
1,2m

u∞
2,1 u∞

2,2 · · · u∞
2,2m

...
...

. . .
...

u∞
2m,1 u∞

2m,2 · · · u∞
2m,2m




,

where u∞

i ,j = us
∞(x̂j ; θ̂

i) for 1 ≤ i , j ≤ 2m corresponding to 2m

observation directions x̂j and 2m incident directions θ̂i .
Generally speaking, we can partition into a 2-by-2 block matrix

Ffull =

(
F11 F12

F21 F22

)
, (13)

where F11 ∈ Cm1×m1, F12 ∈ Cm1×m2, F21 ∈ Cm2×m1 ,
F22 ∈ Cm2×m2 , and m1 + m2 = 2m.
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Algorithm development

(I) Using (12), generate the random domain.

(II) Using FEM to solve obstacle scattering (11), and then obtain
Ffull .

(III) Using CNN retrieve the missing data.

(IV) Apply the existing numerical methods for the corresponding
full-aperture problems.
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Notations 1: L1

⋄ sample set: n∗; train set: n1; test set: n2.

⋄ Given the input data x = F
n
12 ∈ R

m1×m1×2 and the target
outputs y = [Fn

11, F
n
12; F

n
21, F

n
22] ∈ R

2m×2m×2 in the training
set, we wish yC (x ;W , b) ≈ y(x), where

yC (x ;W , b) = [Fn,C
11 , Fn,C

12 ; Fn,C
21 , Fn,C

22 ].

⋄

L1(y , yC ) =
1

n1

n1∑

n=1

2∑

i ,j=1

‖Fn
ij − F

n,C
ij ‖2

F , (14)

where ‖ · ‖F is the Frobenius norm of a matrix.

⋄ We use the CNN to compute

W ∗, b∗ = arg min
W ,b

L1(y , yC ),

with the Adam optimizer.
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Notations 2: sub-block relative errors

We define the following sub-block relative errors

en
11 =

‖Fn
11 − F

n,C
11 ‖F

‖Fn
11‖F

, en
21 =

‖Fn
21 − F

n,C
21 ‖F

‖Fn
21‖F

, en
22 =

‖Fn
22 − F

n,C
22 ‖F

‖Fn
22‖F

,

n = n1 + 1, · · · , n∗

for each sample in the test set, and use the sub-block relative
errors of the test set

ē11 =
1

n2

n∗∑

n=n1+1

en
11, ē21 =

1

n2

n∗∑

n=n1+1

en
21, ē22 =

1

n2

n∗∑

n=n1+1

en
22,

to check the efficiency of our CNN.
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Notations 3: en, MSEn, and PSNRn

⋄ The recovery multi-static response matrix is

F̃
n
full =

(
F

n,C
11 F

n
12

F
n,C
21 F

n,C
22

)
, n = n1 + 1, · · · , n∗,

for each sample in the test set.

⋄ Given F
n
full and F̃

n
full , define

en =
‖Fn

11 − F
n,C
11 ‖F + ‖Fn

21 − F
n,C
21 ‖F + ‖Fn

22 − F
n,C
22 ‖F

‖Fn
11‖F + ‖Fn

21‖F + ‖Fn
22‖F

,

MSEn =
1

2m · 2m

2m∑

i=1

2m∑

j=1

∣∣∣Fn
full(i , j) − F̃

n
full(i , j)

∣∣∣
2
,

PSNRn = 10 · log10




max
i ,j

|Fn
full(i , j)|

MSEn


 .
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Notations 4: e, MSE, and PSNR

Introduce the relative error, mean square error (MSE), and peak
signal-to-noise ratio (PSNR) of the test set as follows:

e =
1

n2

n∗∑

n=n1+1

en,

MSE =
1

n2

n∗∑

n=n1+1

MSEn,

PSNR =
1

n2

n∗∑

n=n1+1

PSNRn.
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Two numerical simulations

(I) Standard optimization functional.

(II) Phaseless case.

We take N = 5, q = 0, and a0 to be a random number drawn from
the uniform distribution in [0.5, 1.5] under (12).
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Example 1: Standard optimization functional

n∗ = 20000, m1 = m2 = 45, L1 = L1(y , yC ).
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Example 1: sub-block relative errors

Table: 1. The sub-block relative errors of test set in Example 1.

error real(%) error image(%)

(n1, n2) ē11 ē21 ē22 ē11 ē21 ē22

(2000,500) 26.01 84.15 26.01 30.72 86.03 30.71

(4000,1000) 19.01 67.55 19.00 22.49 68.43 22.49

(8000,2000) 14.22 51.15 14.22 16.88 52.12 16.88

(16000,4000) 10.66 38.88 10.66 12.61 39.82 12.61

error norm(%)

(n1, n2) ē11 ē21 ē22

(2000,500) 28.06 84.99 30.71

(4000,1000) 20.52 67.92 20.52

(8000,2000) 15.38 51.54 15.38

(16000,4000) 11.50 39.27 11.50
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Example 1: e, MSE, and PSNR

Table: 2. The relative errors, MSEs, and PSNRs of test set in Example 1.

relative error e(%) MSE(10−2)

(n1, n2) real image norm real image norm

(2000,500) 39.13 44.03 41.40 9.372 9.384 5.430

(4000,1000) 34.06 38.47 36.11 6.979 7.042 4.371

(8000,2000) 23.97 27.09 25.41 3.445 3.440 2.594

(16000,4000) 16.63 18.80 17.63 1.691 1.692 1.365

PSNR

(n1, n2) real image norm

(2000,500) 19.21 16.22 22.37

(4000,1000) 20.28 17.27 22.24

(8000,2000) 23.24 20.22 25.65

(16000,4000) 26.46 23.46 28.63
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Example 1: pictures

Figure: Numerical constructions of the 1st shape in the test set. (1) the
true shape; (2) reconstructed shape from the full MSR matrix Fn

full ; (3)
reconstructed shape from the limited MSR matrix Fn

12; (4) reconstructed

shape from the recovered MSR matrix F̃n
full via CNN.
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Example 2: Phaseless case

n∗ = 50000, m1 = m2 = 45, Optimization functional L2 is same as
Example 1. The input is the module.
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Example 2: the relative errors e and MSE

Table: 3. Phase and phaseless in Example 2 with regularization term.

relative error e(%) MSE(10−2)

(n1, n2) real image norm real image norm

(5000,1250) 30.08 33.63 33.73 5.372 5.319 3.686

(10000,2500) 21.71 24.43 22.97 2.869 2.852 2.128

(20000,5000) 15.26 17.17 16.14 1.390 1.383 1.149

(40000,10000) 12.00 13.45 12.67 0.798 0.786 0.677

relative error e(%) MSE(10−2)

(n1, n2) real image norm real image norm

(5000,1250) 57.49 64.95 60.91 20.535 20.615 11.332

(10000,2500) 46.92 53.41 49.90 12.562 12.719 6.648

(20000,5000) 41.77 47.73 44.51 9.860 10.008 5.266

(40000,10000) 37.97 43.28 40.40 7.510 7.573 4.408
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Example 2: PSNR

Table: 4. Phase and phaseless in Example 2 with regularization term.

PSNR

(n1, n2) real image norm

(5000,1250) 21.34 18.47 23.91

(10000,2500) 24.16 21.18 26.64

(20000,5000) 27.12 24.18 29.30

(40000,10000) 29.02 26.10 31.20

PSNR

(n1, n2) real image norm

(5000,1250) 15.87 12.84 20.24

(10000,2500) 17.33 14.23 21.65

(20000,5000) 18.30 15.18 22.55

(40000,10000) 18.91 15.81 22.91
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Example 2: pictures

Figure: Numerical constructions for square-shape obstacle by (1) the full
MSR matrix Fc

full ; (2) the limited MSR matrix Fc
12; (3) the recovery MSR

matrix F̃c
full via CNN; (4) nearest sample MSR matrix F̃c∗

full .

relative error (%)

matrix type real image norm

F̃
s
full 32.00 30.42 31.25

F̃
s∗

full 66.75 69.21 67.94
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Conclusions

◮ Random interface grating.
◮ Expectation approximation: Taylor shape expansion, O(δ2).

◮ Variance approximation: Low-rank Cholesky method, O(δ3).

◮ ML for inverse acoustic scattering problem.
◮ Obstacle: CNN.

Ongoing works

Bayesian inverse problem for defect and crack in waveguided.
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Thank you!

zhangkaimath@jlu.edu.cn
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