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1.0 Wave problem

polynomials requires many nodes
wavelength.
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increases more nodes are needed
(pollution error).
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We define the following initial value problem with the wave
equation and a set of initial and boundary conditions:

I
0°FE :
T AV2E = f(t,x), (t,x) € [0,T[xQ,
OF
o5 thE = g(t.x),  (t,x) € [0,T[xT, Q
E(0,x) = E°(x), x € Q,
%—f(o,x) = Vx), X € Q, Y

The problem is defined over the domain {2 and the time — o
interval [0, T[. We first discretise the problem in time using
the second-order central difference method:

E"+1 - 2P 4 En—l

AP o C?v? En+1

E’(x) = E°x),

Tl Xl =D

El(x) = E%x)- AtVo(x).
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Applying the divergence theorem and substituting the boundary
conditions we get the following standard weak formulation:

E™ ¢ dQ + (CA?) / VE™"1.V¢ dQ + (2 At?) }{ (hRE™1)¢ dI" =
Q Q r

/ (2B" — E™' + (M) f(tn41,%) ) dQ + (A8 f g(tns1,%)6 dT
Q By

To solve the problem using the finite element method:
Ny

+1 e +1
Epl(x) = Y Ej TN (%)
J=1
To solve the problem using the partition of unity finite element method

M Q-1 .
EM(x) = Z N; | BrH + Z Ag,n+l ok (z cosag + ysinay)
i=1 =1
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computational domain FE mesh Computational domain enriched mesh
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The assembled linear system is M xM blocks

/ \ # b 4 N
A A ... A E, b
Aor A ... Aoy E> by

< = o >

\AMl Arre .. Auwm /  Exn | b

Each of the blocks (.A11) corresponds to one of the mesh nodes (1,1).
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The size of these blocks is O x O entries. Each block is associated with O unknowns
and Q entries of the load vector. One of the unknowns/load vector entries
correspond to the constant enrichment function.

¢ ) f 3
+1 bl
( 11 12 1Q \ B? i
Qjj Q5 e Gy J J
2 020 A bj
dg=l ™ “ E; = n Bg=g >
an aQ2 QQQ A?.n-f-l b?
\ ij Qi v O / ' i \ /
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In the first test example we consider a circular wave in a unity square domain.
The wave is defined by

E(t, . y) _ ei(kr—wt)

where we take (w = 1. Based on the above exact form we can then obtain the
initial velocity and displacements

UO — eik‘r’
Vo = €*(-iw)

We define the error as the difference between the exact and numerical
solution using the following error norm

HE—E

LP(S2)

Error =

2

LP(Q)
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The computational domain

2= [01,1.1] x [0:1,L1] is
meshed using 4-noded bilinear
elements. The total number of
elements is 16 with 25 nodes. The
same mesh is retained for different
wave numbers considered. The
analytical solution of the problem is
imposed on the domain boundary
to eliminate the error coming from
artificial boundary conditions.

As mentioned earlier it is not
possible to keep the same mesh if
you change the wavenumber for
the same domain in the standard
FEM.




Convergence study:
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The plots show the convergence for smaller time steps for different wavenumbers.
The error consistently improve for smaller time steps and always converges.
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Convergence study:
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The plots show the convergence for increasing the number of enrichment functions
and for different wavenumbers. The error consistently improve for more enrichment
functions and always converges. The time step is fixed at At =1.0 x 100" which is the

converged time step in the previous study.

005

004

0.03

L,

0.02

0.01

—_Q=17
——Q=21
003 —e—Q=27
—a—Q=31

PPy




HERIOT
5.4 Example 1 EWAI'T
UNIVERSITY
Comparison with the standard FEM:
Next we compare the PUFEM solution to the standard FEM solution. The problem
is solved for At = 1.0 x 104 and k = 6.

We consider two PUFEM solutions each with a different number of enrichment
functions but the same mesh

PUFEM1 Q = 9 Ny = 225

PUFEM2 Q = 11 Nyof = 275
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At the first time step the FEM solution error is smaller than PUFEM1 and larger
than PUFEM2. However, as the solution progresses in time the PUFEM1 and
PUFEM2 solution accumulates error at a smaller rate in time compared to the
FEM which leads to better error with both than with the FEM

0.035p

—e—FEM
003F —a—PUFEM1

—&— PUFEM2

0.025

0.02
]

0.015

1 1 1 ]
0 2000 4000 6000 8000 10000

# time steps
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The animation is created for k = 200 At = 1.0 x 1073 Q — 26

ReNum
—1.007e+00

0.50302

= _0.00045002

8050393

=-1.007e+00
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In the second test example we consider a problem with the following analytical
solution. The problem starts with a constant solution and then a circular wave is
introduced into the domain using a propagator function. The exact solution is
given by

E(t’ x, y) — Aeiwa (t’ x, y)

While the propagator function is defined by

_ (p — po)*

1 P —Po b
= . - b2
fr(p) T erf ( 7 ) (p — po) +ap + \/7?6

The problem is again considered over the unit square domain and the initial
conditions are defined based on the exact solution. The solution is also imposed
on the domain boundary through the boundary conditions to avoid error
resulting from artificial boundary conditions.
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The wave propagator animation created for the considered parameters

ImNum
—1.430e+00

[0.709‘?2

010945

& 0.55103
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Transient heat transfer
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Reduce the computational costs
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Problem definition:

p(t,x,@)c(t,x,@)%—?—v-(n(t,x,@)V@) — f(1,x,0)

n(r,ﬁ,@)g—i)+(-)(t,i) = gl,X,0)

0(0,x) = ©p(x)

Using the first order Backward Euler scheme we get:

P (x,0") " (x,0") " — ArV - ("n %) V@"H) - (0,7}

F = Alf"_H (X, @n) + ,0" (X, @n) N (X, (_)n) "

Using the divergence theorem and substituting the boundary condition
the following weak formulation of the problem is obtained:

/ (6" (x, ") ¢" (x,0") 60" + Atw" (x,0") V- VO ) d2 +
Q

fAt(@)&l _gn+l (x, @Il))¢ dl’ = / Fo dS)
r

Q
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Following the standard finite element approximation we evaluate
the temperature at the nodes and approximate the solution in
between the nodes using polynomial (often linear) interpolation

# nodes
o= D CINj(x)

j=1

Alternatively using the partition of unity method we expand the unknown
temperature at the nodes into a set of exponential functions:

# nodes Q
Oh= D D CiNix)Gy(x)
§=1 q=1
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The Gaussian enrichment functions have certain difficulties linked to
them. This can be seen in the following plot:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Q=[-2,2] x [-2,2] x [-2,2] k=01 p=c=10

O(t,z,y,z) = 20?2202 - 2)* (2 - »)* (2 - 2)* (1 — ™)

The problem is solved for an increased number of enrichment functions
using iterative (CMRH?!, GMRES) and direct (SVD and variations of Gaussian
Elimination) solvers.

FE1l FE2 FE3 FE4

# Nodes/Degrees of freedom 1331 9261 17576 29791

# Elements 1000 8000 15625 27000

PU2 PU3 PU4 PU5 PU6

# Enrichment funcctions 2 3 4 5 6

# Degrees of freedom 686 1029 1372 1715 2058
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PUFEM FEM FEM
216e & 343n 1000e & 1331n 27000e & 29791n



13.2 Example 1 (3D)

At = 0.001
10"
—a— FEM
—a— PUFEM
§10°
w
#TS=95
10-1 1 1
600 #DoF 14600 28600
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10" 10"
—=a— FEM —a— FEM
—a— PUFEM —a— PUFEM
210° 210°
w w
|# TS =25 | # TS =100
10. - - 10' 1 1
600 #DoF 14600 28600 600 #DoF 14600 28600
—e— PUS
—e— PUS
0.2 A L 1 1 J
20 40 60 80 100
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CPU time (s)

CPU time (s)

time step build /rebuild  solve/resolve time step build/rebuild  solve/resolve

PU2 Ist 217.86 0.03 FE1 Ist 1020.98 0.05

2nd 0.66 0.00 2nd 1.75 0.00
PU3 Ist 218.73 0.05 FE2 Ist 8118.54 3.62

i L LilL 2nd 12.83 0.05
FUs.  Ini Ll 15 FE3 st 15770.16 15.83

2 Ll i 2nd 26.66 0.14
wom 22041 0-25 FE4 st 27407.33 54.35

2nd 1.05 0.02 ond 14.93 0.37
PUG6 Ist 221.35 0.39

2nd 1.09 0.02




HERIOT
14.0 Example 2 (3D) EWAT'T

UNIVERSITY

2.0

2.0
04
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Q=[-2,2] x [-2,2] x [-2,2]

At=001 =01 p=c=10
© =0 ©6,=0 6,=400
Q=5 DoF's = 1372

PUFEM
216e & 343n
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15.1 Example 3 (3D)

1200.0
[ 1000.0
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Temp
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6783e & 1913n
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FGM of Zirconium dioxide and a Titanium alloy:

Fx,y) = 5 x 106(1 + sin(107x) sin(107ry))

g(t,x) =0K At=1s ©p = 300 K

Zirconium dioxide (ZrO2) material properties:

k(O) = 171+21x107*'@+1.16 x 107702,

c(®) = 274x1004+795x107'®@ —6.19 x 107*0% + 1.71 x 107 7€°
a(®) = 1331x107° —1.89 x 10786 +1.27 x 107 '1&2,

p(@) = 3657/(1 + a(© —300))3,

Titanium alloy (Ti-6Al-4v) material properties:

k(©) = 1.1+1.7x10720,

c(®) = 35x102+878x107'© -9.74 x 107402 +4.43 x 107763
a(®) = 743x107%+556 x 10770 — 2.69 x 1071202,

p(©) = 4420/(1+a(® - 300))3,

Mixture rule is volume fractions of the material are changing linearly

p=pivy + pan
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0.1m

r=0.04m

(0.0,0.0)

- .

A

0.2m

Problem configuration

Mesh 1 (332e, 201n) Mesh 2 (10013e, 5194n)
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Tempreture
6.08%9e+01 475 889 1303 1.717e+03

B
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A major problem in the partition of unity method is related to the ill-conditioned
linear system that can be produced when using a large number of enrichment
function. We will discuss this issue in the heat transfer problem but a similar
discussion also apply to the wave problem.

The weak formulation for heat transfer we have used before is:

/ (DAtV<,9-Vu"+1 +<pu"‘+1) dQ) + y{
Q

J At (u"+1 —g"“)cp dl' = /Q(u" - Atf"‘“)cp dS)

Using the partition of unity method we approximate he solution using:

N Q@
Wt ) =) ) UF"T8;6,(0)

=1 g=1
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The enrichment function is then given in the following form

exp (— (%)mq) — exp (‘ (%)mq) . gq=1,2,....Q
1 —exp (— (%)""’)

If we plot the enrichment
function for different orders
then we get

Gq(§) =

08

0.7+

06}

0.5+
q = 1,10,20,30,40,50,70

04

03

02F

0.1F




18.2 ill-conditioning issue

We can take a closer look

we can see that as a higher
order is considered the
difference between one
function and the other
becomes negligible.
Considering the machine o
precision the orders 39, 40 »©
and 41 of the function

would start to look very

much the same.
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* We used enriched finite elements to solve waves and heat diffusion
problems.

* The achieved reduction is up to 95% of the number of degrees of
freedom required with the standard finite element.

* The proposed approach uses time independent enrichment which
significantly reduces the computational costs of the time stepping.

* This is done by decomposing the system at the first time-step and
then reusing this decomposition at later time steps after updating
the right-hand side.

* The approach used for the conduction problem in homogeneous and
heterogeneous problem.

* One topic that must be discussed is the ill-conditioning issue.



