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Information

Few words about the contents:
e geometrically exact beams (GEB)
e networks of GEB
o well-posedness (for CP(H}), CP(H2) or C; , solutions)
e exponential stabilization, by means of a boundary feedback control (for one
beam and some networks)

e exact controllability of a nodal profile (for networks)

Notation for the cross product. For any u,¢ € R3 we also write u x ¢ as 1 ¢ = u x (,
meaning that

0 —us u9
u= | us 0 —u |,
—ug ul 0

while u is recovered by means of the operator vec(-) acting on skew-symmetric
matrices as follows: vec(u) = u.
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What is a geometrically exact beam?

"Geometrically exact beam”
“Nonlinear Timoshenko beam”
“Geometrically nonlinear beam”

at time ¢

oW ()

reference

Small strains BUT large motions.

linear constitutive law <+ — nonlinear governing system
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The mathematical model 1.

Framework 1. The state is (p, R), expressed in some fixed coordinate system {e; };’.’:1,
o centerline’s position p(z,t) € R3

e cross sections’ orientation given by the columns b/ of R(x,t) € SO(3)

looks like a
quasilinear
wave equation

Set in (0,¢) x (0,T), the governing system reads (freely vibrating beam)

om all[o &)™) =|as alllo &l

given M(z),C(z) € Sﬁ_+ the mass and flexibility matrices and Y. (z) € R3 the
curvature before deformation, and where v, s depend on (p,R):

_ R7O:p _ -1 RT0;p —e1
v= [vec (RTatR)] and z=C [vec (RTO:R) — TJ '

Notation. Cross-product: & ¢ = u X ¢ and vec (T) = u

SO(3): rotation matrices. Si+: positive definite symmetric matrices of size n.
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The mathematical model 2.

Framework 2. The state is y = L} , expressed in the moving basis {b’ }?:1,

e linear and angular velocities v(z,t) € RS
e internal forces and moments z(z,t) € RS

Set in (0,¢) x (0,7, the governing system reads (freely vibrating beam)

o Y0 %0 03
M 0 01 El Tc _ 751 @2 31 22 Mo
{0 c} aty_[l 0} Ooy = Y. & 0 y=r 0o %2 [cz]
0 ’Y‘c 0 7o

denoting by v1, 21 and wva, z2 the first and last 3 components of v, z.

Oy + A(z)0zy + B(z)y = g(z, y).

Notation. Cross-product: & ¢ = u X ¢ and vec (@) = u
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The mathematical model 3.

Two frameworks:

1. GEB. Quasilinear
second-order

(Reissner '81, Simo '85)
‘Wave-like’

linked by a nonlinear transformation:

R7o:p
. I 0 vec (RTatR,) _
T: (p7R)'_> [0 071 RTazp_el -

vec (RTO;R) — T

2. IGEB. Semilinear (quadratic)
first-order hyperbolic

(Hodges '03)

‘Hamiltonian framework’ (Simo '88)
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The mathematical model for networks
The states are now (p;, R;)icz and (y;)icz, with y; = [zl}
T

Transmission conditions at a multiple node n (where several beams meet):

o Rigid joint. Any two incident beams i, j remain attached to each other p; = p;
and without changing the respective angles between them RiRiT = RjRJT.

o Kirchhoff condition. In the fixed basis, the internal forces and moments exerted
by the incident beams at the node are balanced with the external load.

— derive the corresponding transmission conditions for the IGEB model:

e Continuity of velocities. For any two incident beams ¢, j,

R, 0| _[R; O ]

0 R|" T |0 R;|Y

e Corresponding Kirchhoff condition. For ¢, the external load applied at the node
n, expressed in the body-attached basis,

Z Tz?l |:]gl gz] 2i = (qn

incident beam 1

Boundary condition at a simple node n: for the incident beam i,

n
T; Zi = Qn, or vV; = (Qn ]
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Well-posedness

Based on Li-Jin '01 and Bastin-Coron '16 and '17:
® (yi)ieT rl[ 1[0, £;] x [0,T]; R'2) semi-global in time
o (yi)iez € CO([O T) [T;cz H*(0,£;R'?)) local in time, with g, = —Kpv;
where K, € R6%6

Requires some properties of the transmission for the system in diagonal form
conditions.

Let m € {1,2,...} be given. For all i € Z, we suppose that
e C;,M; € C™([0,£4];85.,);
o for ©; := (Cz/ZMiC;/z)_l, there exists U;, D; € C™([0,£;];R6%6) such that

©; = U] D?U; in [0,4;], where D;(z) € S§_ diagonal & consists of the square
roots of the eigenvalues of ©;(x), and U;(z) is unitary.

i.e. enough regularity of C;, M; and the eigenvalues and
eigenvectors of (C;/QMiC;/z)*

8/23



Well-posedness: inverting the transformation

linked by a nonlinear transformation:

R? x SO(3) — R!2

7_ RTazp
: I 0 vec (RTO:R) -
(P, R) — {0 C—l} RT70.p —e1 -

vec (RTO:R) — T
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Well-posedness: inverting the transformation

We do the presentation for a single beam.

The GEB model
(oo &) [0 =] Me] = [ o] [[
(P, R)(0,8) = (fP, f7)
(1) 2(6,1) = —Kv(, t)
(,R)(z,0) = (p°, R®)(2)

(9¢p, RW)(2,0) = (p', w)(2)
and its IGEB counterpart
3ty + A(2)9zy + B(z)y = (=, y)
v(0,t) =0
(2)

z(L,t) = —Kv(£,t)

y(z,0) = y°(z)

1(:){ 1(:1] z} in (0,¢) x (0,T)

te (0,T)
te (0,T)
z € (0,0)

z € (0,4),

in (0, 0) x (0,T)
fort € (0,T)
fort € (0,T)

for z € (0, £).

(22)
(2b)
(2¢)

(2d)

e clamped at z =0

e force opposing velocities applied at x = ¢

Notation: y = {Z}
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Well-posedness: inverting the transformation

ntial position of the centerline

link B I () Y A Y B

i
A)

h 0
01 o 2
o 01 02 03 X 0 05 1 o o 1
;

Theorem
Assume that (fP, fR) = (p°, R?)(0) holds with

M, C € C' ([0, £; R®*%)

~

RO Tpl
R € C%(]0,4];SO(3)) e [I 0 } ((R(;))rgo
0 RO 2 3 ~lo c ! ROHTLp0 ¢
(0%, R?) € C2([0, s R® x SO(3)) vec((RO)f%RO)fn

p',w’ € CY([0,4;R?)
Then,

if there exists a unique solution y € C1([0,£] x [0, T]; R12) to (2) with initial data y°
(for some T > 0),

= there exists a unique solution (p, R) € C2([0, 4] x [0, T]; R3 x SO(3)) to (1) with
initial data (p°, R?, p!,w®) and boundary data (fP, f®), and y = T(p, R).
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Well-posedness: inverting the transformation

The GEB model

By 0 R 0 Dz o R 0

[w;a) at] [[u R] My] = [(m) ‘,z] [[D R] ,] in (0,6) x (0,T) (12)

(®,R)(0, 1) = (7, /™) te(0,7) (16)

(1) 2(6,6) = ~Kv(e, ) te,T) (1)
(P R)(z,0) = (p°, R)(2) z€ (0,0 (1¢)

(800, RW)(,0) = (n‘,w“)(m

and its IGEB counterpart

By + A@)0zy + B@)y = 5(@,v) —Im(0r6)x (0.7T) (2)

2 v(0,t) =0 for t € (0,T) (2b)
( ) z(¢,t) = —Kv(L, t) for 0, T) (2)
v(z,0) = 4°(z) for € (0, 8). (2d)

By = {(p,R) € €7 (10,4 x [0, T} B® x SO@)) }

last 6 equations

Bz = {y € C" (10.4] x [0, 7] R'?) : [some constraints] }.

last 6
equations
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Well-posedness: inverting the transformation

Notation. v = {”1} and s = Cz = {51]
v2 S2

Idea of the proof.
e A solution y to (2) always belongs to E2 since we maintained the link between

the initial and boundary data of (1) and (2);

e 7 : E1 — Es is bijective: let y = [Z} € FEsy

e 7T (p,R) =y is equivalent to the linear PDE systems
in (0, £) x (0,T)

9¢p = Ruy in (0,€) x (0,T) R = Ry
8zp = R(s1 +e1) in (0,£) x (0,T) 9:R = R(52 + T.) in (0,£) x (0,T)
p(0,0) = p°(0). R(0,0) = R°(0)
o Quaternions. .
9 R % Equivalence:
R =(q§ —(q,9)13 +2¢q" + 2907 <+ q= {q] ;lall =1 Lemma.
Lo T ra =U(v2)q in (0,€) x (0, T)
ug) =1 7] sa =U(sz + Te)a in (0, x (0,7)
2 f f
q(0,0) = qjn-

Well-posedness: Lemma.

= provides (p,R), candidate to be solution (1);
e The rest of governing, boundary and initial conditions of (2) lead to those of (1);

e Uniqueness comes from that of (2) and bijectivity of 7.
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An illustration

Centerline’s position p through time

8p = Ruy in (0,£) x (0,T)
8.p = R(s1 +e1) in (0,£) x (0,T)
p(0,0) = p°(0).

R = Rvy
9:R = R(32 +
R(0,0) = R°(0;

{

® Quaternions.
R— (@ - (0.l + 2007 + 2007« a=[%], Jall =1
o

b

-f

Solution  ,
(p,R) to (1) |

. o7 dia=U(v2)a
Initial position of Uf) =

enterline p° a(0,0) = Qin-

9zq=U(s2+YTc)q in (0,€) x

Solve.for' Translate to
centerline's rotation
position p(z, t) matrices
(%) Rz t)
* T(p,R)=yis equivalerwthe linear PDE systei

£) x (0,T)
Eos £) x (0,T)
)

in (0,£) x

Initial
conditions

Solution y = [U] to
Initial z
conditions
of (1)

~ 03

inear veoci Ang
[ a

0 0 0 0
U1 >3 21 23

Solve fg

Mowerts

22

CEEEEEER
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Exponential stabilization
via boundary feedback

Suppose R € C2([0,£];SO(3)), Assumption 1 (m = 2), and K € S | .
Then, there exist e > 0, B > 0 and n > 1 such that for any

1yl < e

satisfying the zero-order compatibility conditions, there exists a unique solution
y € CO([0,+00); H(0,4;R'2)) to (2), and
NyCo )l g < me=PHy0 | s for all t > 0.

1 ‘
We use a quadratic Lyapunov functional £ = Z / 08y, QO y)da characterized by
a=0"0

=_ P, 0 C-'/2(C'/sMC'2)'/2C
Q=pQ" +w |:Cfl/2(cl/zMCl/2)l/2C1/2 0 :

Remark. In the diagonal system, the Lyapunov functional is characterized by

@= [(p +0w)16 (p *(:U)Ib‘} Q”.

QP (x), QP (x) are the matrices defining the beam energy.
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Exponential stabilization via boundary feedback

What kind of w and p?

Overall, one should find an increasing and nonnegative w € C1([0,£]) and p > 0 s.t.

dw .
w(l) < xp, — >nlw| in (0,4).
dz
with x,n > 0 depending on the feedback, Lyapunov functional, beam parameters.
] = ] =
3 z 3 g w-=p+tuw
w=q—q(0) ‘Lg___.z i s i
w 3 i w4 =p—w
M
. !t
E.g., for any p > 0, with a, b such that E.g., with polynomial degree n large enough
0<a<b< (a+xp) for 2n¢ < n and xp > 2% to be satisfied
1 1 "
a(@) = a+e " Pat (b - a) 4@ =5+ (34 2@-0)" =ri@
2 2 n

)1t ) +b

L=
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Exponential stabilization via boundary feedback

Using the transformation:

Choose the initial and boundary data of (1) in such a way that the corresponding data
for (2) fulfills the stability requirements.

Corollary

Exists a unique global in time solution (p,R) € C2([0, ] x [0, +00); R3 x SO(3)) to
(1) with decay in terms of velocities and strains.

B
E E = =i
B E S =
P

e F §
ED

effect of
feedback
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Exponential stabilization via boundary feedback

Networks:

Suppose Assumption 1 (m = 2), R; € C2%([0, £;];SO(3)).
If K1 = 0g at the multiple node n =1, and K,, € SiJr for all simple nodes n, then
the steady state y = 0 of the IGEB network is locally H' exponentially stable.

For single beam and network,

e quadratic nonlinearity = only local in time solution, and need at least H} spatial
regularity

e the linearized system is not homogeneous: hence the stabilization result is proved
not only by looking at the boundary/nodal conditions, but also by looking the
governing system.

For star-shaped networks, when trying to remove one control, we see the limitation of
just using the extended Lyapunov functional from the one beam case.
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Exact controllability of nodal profiles

Control of nodal profiles:

Square [J are the “charged nodes”, where the state should meet some profiles
Triangles A are the “controlled nodes”.

N HH B0

Travelling time:

Let us denote the eigenvalues of A; by {)\f}}cil (there are negative and positive
eigenvalues).

We may define, for any i € Z, the travelling time 7; > 0 by

£;
ne |
0

1
min
ke{l,...,12} ,\f(z)

dzx;
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Exact controllability of nodal profiles

For ¢ € 0,7]

24(ls,t) = qu(t)
nodal profiles z5(€s,t) = g5(t)
For t € [T*.T]. controls
y1(0,4) =3, (t)
42(0,t) =T (t)-

Theorem (A-shaped network)
Suppose R; € C?([0,¢;];SO(3)) and Assumption 1 (m = 2). Then, for any
T >T* > max{T1,T>} + max {Ty,T5}.

there exists g > 0 such that for all € € (0,eq), for some §,v > 0, and

(i) for all initial - boundary data satisfying the first-order compatibility conditions
and ||y llc1 + llanllcy <6, and

(ii) for all nodal profiles g,y € C*([T*, T]; R?), satisfying [:llca < v and the
transmission conditions at the node n = 1,

there exist controls q4,qs € C([0, T]; R®) with ||ql||ctl < e, such that the IGEB

network admits a unique solution (y;)iez € [1;c7 C1 ([0, 4] x [0,T]; R12), which

fulfills ||yl||c% <€ and

yi(0,t) =7y, (t) forallie{1,2},te [T* T).
Constructive method of by Li and collaborators; notably here Zhuang '18 and '21.
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Exact controllability of nodal profiles

Ovyi + A azy@+Bzyz =9(z,vi) zyz+A atyz"l'A Bzyz =A; gi('vyi)

S N

Stepl — Step2 — Step3 — Step4

Ir

-

=T

1
t=0
t (time)
i=3
T (time) 0 by 7 (space) O 7 (time)
i(2) = Ty + max{Ty, T5} + : :

t;(z) = max{Ty, L t(e) =Ty ,
475 0 158212 ) s i@ o 10212 o) e
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Outlook

e Single beam:

e Leave the free beam setting (gravity, aerodynamic forces) and also apply
different boundary conditions (rotating beam). Need some work on the
transformation.

e Well-posedness and stabilization with Kelvin-Voigt damping. Relax the
smallness assumption on the initial data.

o Networks:

e More general junction conditions for networks of geometrically exact beams:
mass-spring junction.

e Stabilization of star-shaped network: removing one control.
e Nodal profile control: theorem with general conditions sufficient for
obtaining nodal profile controllability for any network.
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Thank you for your attention!
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