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Information

Few words about the contents:

• geometrically exact beams (GEB)

• networks of GEB

• well-posedness (for C0
t (H1

x), C0
t (H2

x) or C1
x,t solutions)

• exponential stabilization, by means of a boundary feedback control (for one
beam and some networks)

• exact controllability of a nodal profile (for networks)

Notation for the cross product. For any u, ζ ∈ R3 we also write u× ζ as û ζ = u× ζ,
meaning that

û =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 ,
while u is recovered by means of the operator vec(·) acting on skew-symmetric
matrices as follows: vec(û) = u.
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What is a geometrically exact beam?

“Geometrically exact beam”
“Nonlinear Timoshenko beam”
“Geometrically nonlinear beam”

• X =

x
ζ2
ζ3


0

•e1

e2

e3

reference

•

•
before deformation

•
p(x, t)

• p = p+R

 0
ζ2
ζ3

•

•
at time t

Small strains BUT large motions.

linear constitutive law ← → nonlinear governing system
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The mathematical model 1.

Framework 1. The state is (p,R), expressed in some fixed coordinate system {ej}3j=1,

• centerline’s position p(x, t) ∈ R3

• cross sections’ orientation given by the columns bj of R(x, t) ∈ SO(3)

b3(x, t)

b1(x, t)b2(x, t)

p(x, t)
at time t

Set in (0, `)× (0, T ), the governing system reads (freely vibrating beam)[
∂t 0

(∂tp̂) ∂t

] [[
R 0
0 R

]
Mv

]
=

[
∂x 0

(∂xp̂) ∂x

] [[
R 0
0 R

]
z

]
given M(x),C(x) ∈ S6

++ the mass and flexibility matrices and Υc(x) ∈ R3 the
curvature before deformation, and where v, s depend on (p,R):

v =

[
Rᵀ∂tp

vec (Rᵀ∂tR)

]
and z = C−1

[
Rᵀ∂xp− e1

vec (Rᵀ∂xR)−Υc

]
.

Notation. Cross-product: û ζ = u× ζ and vec (û) = u

SO(3): rotation matrices. Sn++: positive definite symmetric matrices of size n.

looks like a
quasilinear

wave equation
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The mathematical model 2.

Framework 2. The state is y =

[
v
z

]
, expressed in the moving basis {bj}3j=1,

• linear and angular velocities v(x, t) ∈ R6

• internal forces and moments z(x, t) ∈ R6

Set in (0, `)× (0, T ), the governing system reads (freely vibrating beam)

[
M 0
0 C

]
∂ty −

[
0 I
I 0

]
∂xy −

 0
Υ̂c 0

ê1 Υ̂c
Υ̂c ê1
0 Υ̂c

0

 y = −


v̂2 0
v̂1 v̂2

0 ẑ1
ẑ1 ẑ2

0
v̂2 v̂1

0 v̂2

[Mv
Cz

]

denoting by v1, z1 and v2, z2 the first and last 3 components of v, z.

∂ty +A(x)∂xy +B(x)y = g(x, y).

Notation. Cross-product: û ζ = u× ζ and vec (û) = u

⇐
⇒
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The mathematical model 3.

Two frameworks:

1. GEB. Quasilinear
second-order
(Reissner ’81, Simo ’85)
‘Wave-like’

linked by a nonlinear transformation:

T : (p,R) 7−→
[
I6 0
0 C−1

]
Rᵀ∂tp

vec (Rᵀ∂tR)
Rᵀ∂xp− e1

vec (Rᵀ∂xR)−Υc

 = y

2. IGEB. Semilinear (quadratic)
first-order hyperbolic
(Hodges ’03)
‘Hamiltonian framework’ (Simo ’88)

6 / 23



The mathematical model for networks

The states are now (pi,Ri)i∈I and (yi)i∈I , with yi =

[
vi
zi

]
.

Transmission conditions at a multiple node n (where several beams meet):

• Rigid joint. Any two incident beams i, j remain attached to each other pi = pj
and without changing the respective angles between them RiR

ᵀ
i = RjR

ᵀ
j .

• Kirchhoff condition. In the fixed basis, the internal forces and moments exerted
by the incident beams at the node are balanced with the external load.

→ derive the corresponding transmission conditions for the IGEB model:

• Continuity of velocities. For any two incident beams i, j,[
Ri 0
0 Ri

]
vi =

[
Rj 0
0 Rj

]
vj

• Corresponding Kirchhoff condition. For qn the external load applied at the node
n, expressed in the body-attached basis,∑

incident beam i

τni

[
Ri 0
0 Ri

]
zi = qn

Boundary condition at a simple node n: for the incident beam i,

τni zi = qn, or vi = qn
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Well-posedness

Based on Li-Jin ’01 and Bastin-Coron ’16 and ’17:

• (yi)i∈I ∈
∏N
i=1 C

1([0, `i]× [0, T ];R12) semi-global in time

• (yi)i∈I ∈ C0([0, T ),
∏
i∈I H

k(0, `i;R12)) local in time, with qn = −Knvi
where Kn ∈ R6×6

Requires some properties of the transmission for the system in diagonal form
conditions.

Assumption 1

Let m ∈ {1, 2, . . .} be given. For all i ∈ I, we suppose that

• Ci,Mi ∈ Cm([0, `i]; S6
++);

• for Θi := (C
1/2
i MiC

1/2
i )−1, there exists Ui, Di ∈ Cm([0, `i];R6×6) such that

Θi = Uᵀ
i D

2
i Ui in [0, `i], where Di(x) ∈ S6

++ diagonal & consists of the square
roots of the eigenvalues of Θi(x), and Ui(x) is unitary.

i.e. enough regularity of Ci,Mi and the eigenvalues and

eigenvectors of (C
1/2
i MiC

1/2
i )−1.
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Well-posedness: inverting the transformation

Two frameworks:

1. GEB. Quasilinear
second-order
(Reissner ’81, Simo ’85)
‘Wave-like’

linked by a nonlinear transformation:

T :


R3 × SO(3) −→ R12

(p,R) 7−→
[
I6 0
0 C−1

]
Rᵀ∂tp

vec (Rᵀ∂tR)
Rᵀ∂xp− e1

vec (Rᵀ∂xR)−Υc

 =: y

2. IGEB. Semilinear (quadratic)
first-order hyperbolic
(Hodges ’03)
‘Hamiltonian framework’ (Simo ’88)
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Well-posedness: inverting the transformation

We do the presentation for a single beam.

The GEB model

[
∂t 0

(∂tp̂) ∂t

] [[
R 0
0 R

]
Mv

]
=

[
∂x 0

(∂xp̂) ∂x

] [[
R 0
0 R

]
z

]
in (0, `)× (0, T ) (1a)

(p,R)(0, t) = (f
p
, f

R
) t ∈ (0, T ) (1b)

z(`, t) = −Kv(`, t) t ∈ (0, T ) (1c)

(p,R)(x, 0) = (p
0
,R

0
)(x) x ∈ (0, `) (1d)

(∂tp,RW )(x, 0) = (p
1
, w

0
)(x) x ∈ (0, `), (1e)

and its IGEB counterpart

∂ty + A(x)∂xy + B(x)y = g(x, y) in (0, `)× (0, T ) (2a)

v(0, t) = 0 for t ∈ (0, T ) (2b)

z(`, t) = −Kv(`, t) for t ∈ (0, T ) (2c)

y(x, 0) = y
0
(x) for x ∈ (0, `). (2d)

(1)

(2)

• clamped at x = 0

• force opposing velocities applied at x = `

Notation: y =

[
v
z

]
.
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Well-posedness: inverting the transformation
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Theorem
Assume that (fp, fR) = (p0,R0)(0) holds with

M,C ∈ C1([0, `];R6×6)

R ∈ C2([0, `]; SO(3))

(p0,R0) ∈ C2([0, `];R3 × SO(3))

p1, w0 ∈ C1([0, `];R3)

y0 :=

[
I 0
0 C−1

]
(R0)ᵀp1

(R0)ᵀw0

(R0)ᵀ d
dx

p0 − e1
vec
(
(R0)ᵀ d

dx
R0
)
−Υc

 .
Then,
if there exists a unique solution y ∈ C1([0, `]× [0, T ];R12) to (2) with initial data y0

(for some T > 0),

=⇒ there exists a unique solution (p,R) ∈ C2([0, `]× [0, T ];R3 × SO(3)) to (1) with
initial data (p0,R0,p1, w0) and boundary data (fp, fR), and y = T (p,R).

link
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Well-posedness: inverting the transformation

The transformation T : E1 → E2 is well defined for

E1 =
{

(p,R) ∈ C2
(
[0, `]× [0, T ];R3 × SO(3)

)
: some constraints

}

E2 =
{
y ∈ C1

(
[0, `]× [0, T ];R12

)
: some constraints

}
.

last 6
equations

last 6 equations

(1)

(2)
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Well-posedness: inverting the transformation

Notation. v =

[
v1

v2

]
and s = Cz =

[
s1
s2

]
.

Idea of the proof.

• A solution y to (2) always belongs to E2 since we maintained the link between
the initial and boundary data of (1) and (2);

• T : E1 → E2 is bijective: let y =

[
v
z

]
∈ E2

• T (p,R) = y is equivalent to the linear PDE systems
∂tp = Rv1 in (0, `)× (0, T )

∂xp = R(s1 + e1) in (0, `)× (0, T )

p(0, 0) = p0(0).


∂tR = Rv̂2 in (0, `)× (0, T )

∂xR = R(ŝ2 + Υ̂c) in (0, `)× (0, T )

R(0, 0) = R0(0)

• Quaternions.

R = (q2
0 − 〈q , q〉)I3 + 2qqᵀ + 2q0q̂ ↔ q =

[
q0
q

]
, ‖q‖ ≡ 1

U(f) := 1
2

[
0 −fᵀ

f −f̂

] 
∂tq = U(v2)q in (0, `)× (0, T )

∂xq = U(s2 + Υc)q in (0, `)× (0, T )

q(0, 0) = qin.

Well-posedness: Lemma.

=⇒ provides (p,R), candidate to be solution (1);

• The rest of governing, boundary and initial conditions of (2) lead to those of (1);

• Uniqueness comes from that of (2) and bijectivity of T .

⇐
⇒ Equivalence:

Lemma.
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An illustration
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Exponential stabilization
via boundary feedback

Theorem
Suppose R ∈ C2([0, `]; SO(3)), Assumption 1 (m = 2), and K ∈ S6

++.
Then, there exist ε > 0, β > 0 and η ≥ 1 such that for any

‖y0‖H1 ≤ ε

satisfying the zero-order compatibility conditions, there exists a unique solution
y ∈ C0([0,+∞);H1(0, `;R12)) to (2), and

‖y(·, t)‖H1 ≤ ηe−βt‖y0‖H1 , for all t ≥ 0.

We use a quadratic Lyapunov functional L =
1∑

α=0

∫ `

0
〈∂αt y,Q∂αt y〉dx characterized by

Q = ρQP + w

[
0 C−

1/2(C
1/2MC

1/2)
1/2C

1/2

C−
1/2(C

1/2MC
1/2)

1/2C
1/2 0

]
.

Remark. In the diagonal system, the Lyapunov functional is characterized by

Q =

[
(ρ+ w)I6 0

0 (ρ− w)I6

]
QD.

QP (x), QD(x) are the matrices defining the beam energy.
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Exponential stabilization via boundary feedback

What kind of w and ρ?

Overall, one should find an increasing and nonnegative w ∈ C1([0, `]) and ρ > 0 s.t.

w(`) < χρ,
dw

dx
> η|w| in (0, `).

with χ, η > 0 depending on the feedback, Lyapunov functional, beam parameters.

w = q − q(0)
w− = ρ+ w

w+ = ρ− w

E.g., for any ρ > 0, with a, b such that E.g., with polynomial degree n large enough
0 ≤ a < b < (a+ χρ), for 2η` < n and χρ > 1

2n to be satisfied

q(x) = a+ e
−η(`−x)

x`
−1

(b− a) q(x) =
1

2n
+

(
1

2
+
η

n
(x− `)

)n
=: p

+
n (x)

x

ρ

0

0 `

w

cla
m
p
ed

feed
b
a
ck

x

w−

w+

ρ

0

0 `
cla

m
p
ed

feed
b
a
ck
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Exponential stabilization via boundary feedback

Using the transformation:

Choose the initial and boundary data of (1) in such a way that the corresponding data
for (2) fulfills the stability requirements.

Corollary

Exists a unique global in time solution (p,R) ∈ C2([0, `]× [0,+∞);R3 × SO(3)) to
(1) with decay in terms of velocities and strains.
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Exponential stabilization via boundary feedback

Networks:

x

ρ

0

0 `1

w1

fe
e
d
b
a
c
k

1
2

3

40 1

2

3

4

x

wi (i 6= 1)

0 `i

ρ

0

fe
e
d
b
a
c
k

Theorem
Suppose Assumption 1 (m = 2), Ri ∈ C2([0, `i]; SO(3)).

If K1 = 06 at the multiple node n = 1, and Kn ∈ S6
++ for all simple nodes n, then

the steady state y ≡ 0 of the IGEB network is locally H1 exponentially stable.

For single beam and network,

• quadratic nonlinearity ⇒ only local in time solution, and need at least H1
x spatial

regularity

• the linearized system is not homogeneous: hence the stabilization result is proved
not only by looking at the boundary/nodal conditions, but also by looking the
governing system.

For star-shaped networks, when trying to remove one control, we see the limitation of
just using the extended Lyapunov functional from the one beam case.
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Exact controllability of nodal profiles

Control of nodal profiles:

Square � are the “charged nodes”, where the state should meet some profiles
Triangles 4 are the “controlled nodes”.

Travelling time:

Let us denote the eigenvalues of Ai by {λki }12
k=1 (there are negative and positive

eigenvalues).

We may define, for any i ∈ I, the travelling time Ti > 0 by

Ti =

∫ `i

0

∣∣∣∣∣ min
k∈{1,...,12}

1

λki (x)

∣∣∣∣∣ dx;
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Exact controllability of nodal profiles
1

2

4

3

5

1 2

3

4
5

controls
nodal profiles

For t ∈ [T ∗, T ],

y1(0, t) = y1(t)

y2(0, t) = y2(t).

For t ∈ [0, T ],

z4(`4, t) = q4(t)

z5(`5, t) = q5(t).

Theorem (A-shaped network)

Suppose Ri ∈ C2([0, `i]; SO(3)) and Assumption 1 (m = 2). Then, for any

T > T ∗ > max {T1, T2}+ max {T4, T5}.
there exists ε0 > 0 such that for all ε ∈ (0, ε0), for some δ, γ > 0, and

(i) for all initial - boundary data satisfying the first-order compatibility conditions
and ‖y0

i ‖C1
x

+ ‖qn‖C1
t
≤ δ, and

(ii) for all nodal profiles y1, y2 ∈ C1([T ∗, T ];R12), satisfying ‖yi‖C1
t
≤ γ and the

transmission conditions at the node n = 1,

there exist controls q4, q5 ∈ C1([0, T ];R6) with ‖qi‖C1
t
≤ ε, such that the IGEB

network admits a unique solution (yi)i∈I ∈
∏
i∈I C

1([0, `i]× [0, T ];R12), which
fulfills ‖yi‖C1

x
≤ ε and

yi(0, t) = yi(t) for all i ∈ {1, 2}, t ∈ [T ∗, T ].

Constructive method of by Li and collaborators; notably here Zhuang ’18 and ’21.
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Exact controllability of nodal profiles

∂tyi + Ai∂xyi + Biyi = g(x, yi) ∂xyi + A
−1
i ∂tyi + A

−1
i Biyi = A

−1
i gi(·, yi)

Step 1 → Step 2 → Step 3 → Step 4
A
.C

.

A
.C

.

4 2 1
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3

p
ro
�
le

A.C.

A.C.

4 2 1

5

3

4 2 1

5

3

T

T ∗

T

t = 0

t

co
n
tr
o
l

co
n
tr
o
l

A.C.

A.C.

4 2 1

5

3

x (time)0

t (space)

`i

max{T4, T5}

Ti +max{T4, T5}

t
i (x)

i = 1, 2

x (space)0

t (time)

`3

max{T4, T5}

i = 3

x (time)0

t (space)

`i

Ti ti (x)

i = 4, 5

ti(x) = Ti + max{T4, T5} +

∫ x
0

min
1≤k≤12

1

λk
i
(ξ)

dξ, ti(x) = Ti +

∫ x
0

min
1≤k≤12

1

λk
i
(ξ)

dξ,
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Outlook

• Single beam:

• Leave the free beam setting (gravity, aerodynamic forces) and also apply
different boundary conditions (rotating beam). Need some work on the
transformation.
• Well-posedness and stabilization with Kelvin-Voigt damping. Relax the

smallness assumption on the initial data.

• Networks:

• More general junction conditions for networks of geometrically exact beams:
mass-spring junction.

N1

N2

N3

N4

N5

1

2

3

4

• Stabilization of star-shaped network: removing one control.
• Nodal profile control: theorem with general conditions sufficient for

obtaining nodal profile controllability for any network.
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