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Talk outline

1. Motivation + summary (of analysis & modeling strategy).
2. General overview of epidemic modeling strategies.

3. Mathematical details of our proposal.

4. Results.

5. Some insights about the new personalized medicine era.



Motivation

Our modeling goals are two-fold:

1 Develop a mathematical tool to estimate and monitoring the current epidemic state,
e.g., seroprevalence estimations.

1. Reconstruct the latent dynamic of COVID-19 infections in Spain with the aims:
2.1 Understanding the past to improve the future.

2.2 Create a formal tool to guide personalized epidemiological interventions, e.g.,
local lown-downs.



Analysis goals

Answer the following epidemiological questions:

e What was the spread of the virus in the first wave in different regions of Spain
like?. For example, when did the peak of infections occur?. How many infected
people were there in Spain at the end of the lockdown policies?.

e Using a longer time frame, until March 1, 2021, how were the overall dynamics
of SARS-CoV-2 in the Spanish population as a whole?. For example, the
healthcare situation was critical in October of 2020, and there were discussions
about applying a national lockdown; What could be the real epidemiological
situation at that time?.

e Given that, from a theoretical point of view, we can reconstruct the dynamics of
infections with our model, how was the actual day-to-day capacity to detect new
cases in Spain?.



Summary of modeling strategy

e Inverse problem approach using mortality records.

e We assume that the dynamic of infections following the next probabilistic model
(Markov chain model that incorporates dynamic non-homogeneous Poisson

process)
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Each patient belong to states Z,, Z,, Z5, R |, have an individual probability of infections
R (1) ~ Poisson(m(t)). m(r) is a parametric function, e.g. Inverse logistic function.



Summary of modelling strategy
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General overview of epidemic modeling strategies

e Mechanism models.
o Compartmental models: Break down the population into a number of discrete
“compartments".
o Agent-based models: individual-based model.
e Phenomenological models:
o Direct regression models.
o Time series models.



Mechanism models

Susceptible (S) l:> Infectious (1) I:> Removed (R)

2.1. Specification of the Susceptible-Infectious—-Removed Model

We use 5(1), I(t) and R(t) to denote the time-course subpopulation sizes (i.e. the number of individuals)
distributed into each of the three compartments at a given time t, where t is continuous. Clearly,
S(0)+I(t)+R(t)=N,t = 0, where N is the total population size, which is a fixed constant. The starting time is
denoted as t=0. The rates of change among these subpopulations are represented by a system of ODEs:

s ﬁS(t)I(t)
dt o N )
dI(t S()I(t
= () 1)
dR(t)
@ ’YI(tL

with 8> 0 and y > 0 and initial conditions S(0)>0, I(0)>0, R(0) > 0 and S(0)+I(0)+R(0)=N. Because at a
given time t, the constraint S(¢)+I(t)+R(t)=N implies dS(t)/dt+dI(t)/dt+dR(t)/dt=0, which is satisfied by the
SIR in Equation (1), these three ODEs define a dynamic system of three deterministic functional
trajectories over time, including the susceptible trajectory S(t), the infectious trajectory I(t) and the
recovered trajectory R(t) for £ = 0. This SIR dynamic system is well posed in the sense that non-negative
initial conditions lead to non-negative solutions of the three functional trajectories. These trajectories
collectively demonstrate the evolutionary mechanism of an infectious disease.
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Mechanism models
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Abstract
Abstract e

B R R ~ R . . Large-scale testing is considered key to assess the state of the current COVID-19 pan-
Simulating the spread of infectious diseases in human communities is critical for
predicting the trajectory of an epidemic and verifying various policies to control demic. Yet, the link between the reported case numbers and the true state of the pandemic
the devastating impacts of the outbreak. Many existing simulators are based on

compartment models that divide people into a few subsets and simulate the dy- remains elusive. We develop mathematical models based on competing hypotheses regard-

namics among those subsets using hypothesized differential equations. However, ing this link, thereby providing different prevalence estimates based on case numbers, and
these models lack the requisite granularity to study the effect of intelligent policies
that influence every individual in a particular way. In this work, we introduce a validate them by predicting SARS-CoV-2-attributed death rate trajectories. Assuming that

simulator software capable of modeling a population structure and controlling the
individuals were tested based solely on a predefined risk of being infectious implies the

disease’s propagation at an individualistic level. In order to estimate the confi-
dence of the conclusions drawn from the simulator, we employ a comprehensive absolute case numbers reflect the prevalence. but turned out to be a poor predictor, consis-
probabilistic approach where the entire population is constructed as a hierarchi-
cal random variable. This approach makes the inferred conclusions more robust tently overestimating growth rates at the beginning of two COVID-19 epidemic waves. In

against sampling artifacts and gives confidence bounds for decisions based on the
simulation results. To showcase potential applications, the simulator parameters
are set based on the formal statistics of the COVID-19 pandemic, and the outcome ing the percent-positive rate as a more robust indicator of epidemic dynamics, however we
of a wide range of control measures is investigated. Furthermore, the simulator is -

used as the environment of a reinforcement leaming problem to find the optimal find it is subject to a saturation phenomenon that needs to be accounted for as the number
policies to control the pandemic. The obtained experimental results indicate the
simulator’s adaptability and capacity in making sound predictions and a successful

contrast, assuming that testing capacity is fully exploited performs better. This leads to us-

of tests becomes larger.
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henomenological models
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Delta density method

Consider the task of estimating the density functien _fy'_l /|7, , using an instance-based
approach. Kemnel density estimation and kernel regression use smoathing kemels to produce
flexible estimates of the density of a random variable (e.g.. f)-m I) and the conditional
expectation of one random variable given the value of ancther (e.g., ]E[}’H_l__r | ;. !])‘
respectively; we can combine these two methods to obtain estimates of the conditional density
of one random variable given another. One possible approach would be to use the
straightforward estimate

. M YO T B )
g p ) = A==l 1 Tl M1 1T
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where {1..5} is the set of fully observed historical training seasons, and I'tand 0*1-T are
smoothing kemnels describing similarity between “input” trajectories and between “output”
trajectories, respectively. However, while basic kernel smoothing methods can excel in low-
dimensional settings, their performance scales very poorly with growing dimensionality. During
most of the season, neither Yy ;nor Y4 7is low-dimensional, and the current season’s
observations are extremely unlikely to closely match any past ¥} ; or ¥}, ;. This, in turn, can
lead to kernel density estimates for i1 7 based almost entirely on the single season s with the
closest ¥ , when conditioning on Y;_y and excessively narrow density estimates for Y, 1
even without conditioning on Yy ;. So, instead of applying kernel density estimation directly, we
first break the task down into a sequence of low-dimensional sub-tasks. We avoid the high-

dimensional output problem by chaining together estimates of fay, r,,,foreachufromt+1to
T. where AY,, = Y, - Y,._: estimating these single-dimensional densities requires relatively little
data. However, this reformulation exacerbates the high-dimensional input problem since we are
conditioning on ¥;_,, ¢, which can be considerably longer than Y; , We address the high-
dimensional input problem by approximating ﬂu'" ¥, ., with f;:—;,n‘, where R is some low-
dimensional vector of features derived from ¥y _,_y. Smoothing kernel methods are used to
approximate the conditional density functions using data from past seasons.

We use two sets of choices for the approximate conditional density function and summary
features to form two versions of the method

> Markovian delta density: approximates the conditional density of AY), given Yy, 1 with
its conditional density given just the previous (real or simulated) observation, ¥,

r
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Our probabilist model

2.1. Model elements

Suppose that 2 = {0,1, - -, n} is the set of days under study. Consider the

following random processes whose domain is defined on 2.

S (t): Number of people susceptible to become infected on day .

& (t): Number of infected individuals who are incubating the virus on day ¢.

F (t): Number of infected people who have passed the theoretical
incubation period and who: i) don’t show symptoms or ii) symptoms are
mild on day ¢.

&3 (t): Number of infected people who have passed the incubation period

and do show moderate or severe symptoms on the day ¢.
% (t): Number of recovered cases which are still able to infect on the day ¢.

> (t). Number of recovered cases that are not able to infect anymore on the
day ¢.

.# (t): Number of deaths on day ¢.

11/°



ur probabilist model

"

Used references

Transition Random variable

I, = I, | Gamma(5.807.0.948) Lauer, Grantz, Bi, Jones, Zheng, Meredith, Azman, Reich and Lessler (2020); Abdel-Salam and Mollazehi (2020)

T, = 1, | Gamma(5.507.0045) Tauer et al. (2020); Abdel-Salam and Mollazehi (2020)

I, - R, Uni farm(5. 10)

I, - R, Uni form(9. 14) Abdel-Salam and Mollazehi (2020)

Movel et al. (2020); Salje, Kiem, Lefrancq, Courtejoie, Bosetti, Paireau, Andronico, Hoze, Richet, Dubost et al. (2020)
I =M Gammal6.67.2.55) Abdel-Salam and Mollazehi (2020)
Verity et al. (2020b)
. Bi, Wu, Mei, Ye, Zou, Zhang, Liu, Wei, Truelove, Zhang et al. (2020
RitEe Ui form 714 Ehrr;g:mn et al. (2019) ¢ ( ‘

Table 1
Random variables of the time of each transition
Coefficient | Value Used references
P ix Day (2020); Michiura, Kobayashi, Miyama, Suzuki, Jung, Hayashi, Kincshita, Yang, Yuan, Akhmetzhanoy and Linten (2020]
Tabata. Imai, Kawano, lkeda, Kodama, Mivashi, Obinata, M gaki, Sato, Suzuki, Ito, Uwabe and Tamuwra [ zumoto, Kagaya, Zarebski and Chowell (2020)
Rajger, Le and Quek (2020); Fauci, Lane and Redfield ]
¥} 006 Verity, Okell et al. (20 Kishore, Niehus, de Salazar, C Lipsitch and Leung (2020)
M. e _Acosta, van Raalte and My 20

Table 2
Probability of each transition
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Stochastic Model implementation

2.3. Stochastic Model implementation

Our model does not have a closed-form solution. Therefore, in a real-world setting,
it is necessary to use statistical simulation methods to approximate specific
population characteristics of the stochastic process as quantile functions. Also, we
must fit some parameters of the model to characterize the behaviour of the study
population. For this purpose, we use a sample of the deceased patients

{.#, s, -, M} along the set of days & = {1, -+, s}.

Next, we suppose that our model (A7) is dependent on a vector of parameters

8= (8,,6:) € R" x R™ (with p; + p» = p), where 6, is a vector of dimension p,,
defined in beforehand, and ¢, must be estimated from the sample. Furthermore, let
us assume that the initial state of the system is characterized by

F = (5(0),.4 (0),.7 (0),.5(0),2 (0), % (0),.#(0)) € N" and

T =(F(0),%(0),F(0),7 (0),F(0),F(0)) € N™ x .- x N, . has the
number of elements for each compartment of the model on day 0. 7 also contains
the amount of remaining days to complete the transition they are in for each
individual in the initial state, being m a natural number that represents the
maximum number of registered days.

To simplify the notation, for each day t € %, we denote the average dead trajectory
by the function Mean (8, 6,,.%, F) (t).

The next step is to estimate #,. To do this, we propose to solve the following

optimization problemz

b =arg min 331, W (A — Mean (61,6;, 7, 7) (i), (2)
,ESCRM?
where w = (w!,---,w") is a weighted vector that can help to improve model

estimation. Examples of these weights may be:

W =M Y orwt = (1) [ (7 1)) (=1, 9).
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Model uncertainity with Conformal Inference
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Conformal Simulation Prediction Intervals

Y = m(X) + ¢ with E(e1 X) = 0.

e Symmetrical random error
e Exchangeability

Below, we introduce the specific mathematical detail of the used conformal simulation bands that can
handle heterocedastic noise. First, suppose that 6 = (8,, 92) is the optimal parameter configuration, where
0, was estimated according to methodology proposed in the Section 2.3. Then,

i

. Define the conformal score Score; = max, g

. Calculate the quantile g, = arg min, g+

Perform B = 10000 simulation of the model M (6, 92, S.7T) and evaluate the mean square error
metric (RSS). R&S* and M0, 92, S.T) (s =1, ..., B), denote the results for iteration s of mean
square error and the estimation of mortaly records in the simulation model respectively.

. Let Sel = {ie(l,...,B}: R3S < Rss(mm)l- the set of index of simulation with the lesser or

equal 1000 value of RSS estimations. RS‘S“OOO) denote the element 1000, considering the order
sample of {RS‘S“ }il.

. Using the subsample of death simulation trajectories { M'(0),, 92, S.T)}ieser- estimate pointwise

the standart deviation (1), V1 € ©.

w it (1) > 0, Vi € Sel. Otherwise
E

Score; is equal to 0.

1000
1{ Score <t ; istri
{M > a}, with @ = 0.95, to guarantee distri-

2 3 3 1
butional intervals that cover a confidence level 0?080%.

. Define foreach € ©, the confidence interval predictionas [M (0, (—:’2, S, 7")(1)7:*7(!)51”,ﬁ(u’;’1 . @2, S, T+

&5(1)q, ). where H(B‘] s 92, S, T') denote the simulation mean that correspond with our given mortality
estimations.

. Finally, to build confidence bands for the rest of the stochastic process that makes up our epidemic

model, we must select simulation trajectories that lead to the mortality outcome falling within the
mortality band calculated in step 6).

15
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Black-Box Optimization techniques

¢ Obtain the best model parameter only sampling.
e CMAES: model derivative free-optimization solver.

e Probabilist generalization of EM-algoritm.




Modeling Strategies

e First wave, no reliable information, two scenarios:

o Optimistic: Fatalities reported.
o Pessimistic: Double Fatalities reported.

e National analysis with an excess of mortalities



Galicia Results
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Basque Country a

2500 —— Observed total fatalities 0.113%
2000 0.091%
1500 0.068%
1000 0.045%
500 0.023%
B 0.000%
200, Ohserved day fatalties oo
100 - 0.005%
0.004%

. 0.003%

4 0.002%

0.001%
0.000%
300000 === Infected population 13.588%
200000 9.050%
-
100000 4.529%
y

0——/ 0.000%
120000 === Infected. incubation (1) 5.435%

- =~ Infected, mild/asymptomatic (12)
—— - Infected, symptomatic (13) —

Recovered, infectious (R1)
- A

80000 3.624%
60000 ! - 2718%
40000 1.812%

TRasliag osoen

20000

°% = o 0 1 2 ® 0 13 2 C000%
Mar Apr
2020

= Observed total fatalities

15000 0.225%
10000 0.150%
5000 0.075%
0 0.000%

800 0.012%

-~ Observed daily fatalities

0.009%

0.006%

bt

LY 0.003%
-'. o

0.000%
=== Infected population
1500000 o —==—m 22511%
1000000 15.007%
500000 7.504%
0 0.000%
1000000 ==~ Infected, incubation (1) 15.007%
Infected, mild/asymptomatic (12)
-==- Infected, symptomatic (13)
800000 Recovered, infectious (R1) 12.006%

At
A

600000 9.004%

400000 6.003%

200000 3.001%

nd Madrid Results

1¢

/7



Spain Results
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valuate Testing Capacity in Spain
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What novelties provide our model?

e Our framework is general and can handle non-parametric distribution or complex
structures.

e Our optimization strategy is valid in these cases.

¢ In more complex model extensions, we use machine learning techniques to
accelerate Black-Block Optimization strategies.

e From a modeling point of view, we use daily mortality records as the source of
information that increases the difficulty of model identification.



Personalized medicine as motivation of
methodological research

Monitoring real epidemic situations with our model and optimize therapeutical
strategies with machine learning techniques

ARTICLE W) Check for updates

Real-time prediction of COVID-19 related mortality
using electronic health records

Patrick Schwab® '™ Arash Mehrjou 23 sonali Parbhoo?, Leo Anthony Celi®®, Jurgen Hetzel”8,
Markus HoferB, Bernhard Schélkopf?? & Stefan Bauer® 29

Coronavirus disease 2019 (COVID-19) is a respiratory disease with rapid human-to-human
transmission caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Due to the exponential growth of infections, identifying patients with the highest mortality
risk early is critical to enable effective intervention and prioritisation of care. Here, we present
the COVID-19 early warning system (CovEWS), a risk scoring system for assessing COVID-
19 related mortality risk that we developed using data amounting to a total of over 2863 years
of observation time from a cohort of 66 430 patients seen at over 69 healthcare institutions.
On an external cohort of 5005 patients, CovEWS predicts mortality from 78.8% (95%
confidence interval [Cl]: 76.0, 84.7%) to 69.4% (95% Cl: 57.6, 75.2%) specificity at sen-
sitivities greater than 95% between, respectively, 1 and 192h prior to mortality events.
CovEWS could enable earlier intervention, and may therefore help in preventing or mitigating
COVID-19 related mortality

20



The new era of personalized medicine

e Precision medicine seeks to maximize the quality of health care by individualizing
the healthcare process to the uniquely evolving health status of each patient

¢ Precision medicine is formalized as a treatment regime that comprises a sequence
of decision rules, one per decision point, which map up-to-date patient information
to a recommended action.

Stage-1 treatment Intermediate outcome Stage-2 treatment
(6-8 cycles) (6 months)

l l l
-~ Rituximab
CR/PR ' @

_~ CHoP Observation
SD/PROG/REL —————  G-CSF
Baseline @
St - Rituximab
CRIPR @ K
R-CHOP servation
SD/PROG/REL —————  G-CSF

@: Randomization



Fréchet analysis in diabetes

Density
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Fréchet analysis can help to prescription exercise
doses in general populations!
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Local structures: Biclustering algoritms for new
subtypes of patients

Kernel Biclustering algorithm in Hilbert Spaces

the date of receipt and acceptance should be inserted later

Abstract Biclustering algorithms partition data and covariates simultaneously, pro-
viding new insights in several domains, such as analyzing gene expression to discover
new biological functions. This paper aims to establish a new model-free biclustering
algorithm in abstract spaces using the notions of energy distance (ED) and the
maximum mean discrepancy (MMD) —two distances between probability distribution
in a separable Hilbert space and capable of handling complex data as curves or
graphs. The proposed method can learn more general and complex cluster shapes
than most existing literature approaches, usually focused on detecting mean and vari-
ance differences or other particular geometries shapes according to specific parametric
distributions. Despite, the biclustering configurations of our approach are constrained
to create disjoint structures at the datum and covariate levels, results are similar
to state-of-the-art methods in their optimal scenarios, assuming a proper Kernel
choice, outperforming them when cluster differences are concentrated in higher-order
moments. Qur approach has been tested in several situations that involve simulated
and real-world datasets. Finally, new theoretical consistency results are established
using some tools of the theory of optimal transport.



Patient heterogeneity and causality

e Bertrand Russell (in 1926-1927) that went along the lines "Probability is amongst
the most important science, not least because no one understands it".

e "If it were not for the great variability among individuals, medicine might as well
be a science and not an art." Sir William Osler, The Principles and Practice of
Medicine 1892.
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