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Optimal Control

Optimal control aims at controlling a given system over a period of time
such that a certain goal is achieved.

The system can be mathematically described by ordinary differential
equations (ODEs), partial differential equations (PDEs), integral
equations, difference equations, etc.

We focus on some PDE-related optimal control problems.
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Conceptual Model

An optimal control problem with PDE constraints can be abstractly
represented as

min
u∈U,y∈Y

J(u, y), s.t. e(u, y) = 0,u ∈ Uad , y ∈ Yad ,

U and Y are Banach spaces, Uad ⊂ U and Yad ⊂ Y are closed convex
sets;
J : U × Y → R is the objective functional;
e(u, y) = 0 represents a PDE or a system of coupled PDEs;
the state variable y ∈ Y describes the state (e.g., temperature distribution)
of the considered system modeled by e(u, y) = 0;
the control variable u ∈ U is a parameter (e.g., source term) that shall be
adapted in an optimal way;
the control constraint u ∈ Uad and the state constraint y ∈ Yad describe
some physical restrictions and realistic requirements.
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State-of-the-Art

There are many works for theoretical analysis of the existence and
regularity of the optimal solution, numerical discretization schemes, and
applications perspectives (e.g., J. L. Lions 1971, J. L. Lions and R.
Glowinski 1994, F. Tröltzsch 2010, J. L. Lions, R. Glowinski and J. He
2008, M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich 2009, etc.).

We aim at algorithmic design for these problems.
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Challenges

From PDE perspectives

Models are generally complex, e.g., the coupling of PDEs with other
constraints.
Solving the involved PDEs is already not easy.
Results for PDEs (numerical scheme, error estimation, etc.) cannot
be extended directly.

From optimization perspectives

High dimensionality after discretization of PDEs, especially for
time-dependent cases.
Extremely ill-conditioned linear systems.
Theoretical obstacles (nonsmoothness, nonconvexity,
infinite-dimensional spaces, etc.).

Simply combining off-the-shelf PDE solvers and optimization algorithms
does not work. Specific structures and properties of the model should be
considered deliberately.
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Model

We focus on some PDE-constrained optimal control problems with
control constraints that can be unified as:

min
u∈U,y∈Y

1
2
‖y − yd‖2

Y +
α

2
‖u‖2

U + θ(u)

s.t. y = Su,

U and Y are proper function spaces, u ∈ U and y ∈ Y are called
the control variable and state variable, respectively;
the constant α > 0 is a regularization parameter;
the function yd is a given target;
S : U → Y is a solution operator associated with some linear PDEs
(e.g., elliptic equations and parabolic equations);
the nonsmooth convex function θ : U → R represents some
additional box or sparsity constraints on the control variable u.
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Quick Review for some Existing Methods

Semismooth Newton methods, e.g., K. Ito and K. Kunisch 2008, M.
Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich 2009.

Interior point methods, e.g., J. W. Pearson and J. Gondzio 2017.
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Our Recipe

Decoupling PDE and control constraints by some operator splitting
strategies, and solving the decoupled subproblems inexactly, while
guaranteeing the overall convergence rigorously.

Targets: easy to implement, appropriate accuracy for subproblems,
mesh-independent, rigorously guaranteed convergence.
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Outcomes

Inexact Uzawa algorithmic framework [Y. Song, X. Yuan, and H. Yue
2019].

Inexact alternating direction method of multipliers (ADMM) [R. Glowinski,
Y. Song, X. Yuan, and H. Yue 2021].

Some primal-dual hybrid gradient (PDHG) type methods [U. Biccari, Y.
Song, X. Yuan, and E. Zuaua 2021].
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An Elliptic Optimal Control Problem with Control Constraints

We consider the following elliptic optimal control problem with control
constraint:

min
y∈H1

0 (Ω),u∈L2(Ω)
J(y ,u) =

1
2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω) + θ(u),

where y and u satisfy the elliptic equation{
Ky = u in Ω,

y = 0 on Γ.

The domain Ω ⊂ Rd (d ≥ 1) is convex and bounded and its
boundary Γ = ∂Ω is Lipschitz continuous.
The given target yd ∈ L2(Ω).
K is a linear second-order elliptic operator.
θ(u) is the indicator function of the admissible set Uad :

Uad = {u ∈ L∞(Ω)|a ≤ u(x) ≤ b, a.e. in Ω} ⊂ L2(Ω),

where −∞ < a < b < +∞ are two given constants.
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Optimality Condition

We discretize the optimal control problem by the standard piecewise
linear finite element method.

The optimality condition for the discretized optimal control problem reads
as:  αM + ∂θ 0 M>

0 M −K>

M −K 0

 u
y
p

 3
 0

Myd
0

 ,

where K and M are discrete matrices associated with K and (·, ·)L2(Ω),
respectively; and ∂θ(u) is the sub-differential of θ.

Both K and M are symmetric and positive definite.
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A Nonlinear Saddle Point Problem

We first introduce

A =

(
αM 0
0 M

)
,B =

(
M −K

)
,w =

(
u
y

)
,

v = p, Θ(w) = θ(u), f =

(
0

Myd

)
, g = 0.

The discretized optimality condition can be reformulated as:(
A + ∂Θ B>

B 0

)(
w
v

)
3
(

f
g

)
.
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An Inexact Uzawa Algorithmic Framework

To solve the above nonlinear saddle point problem, we propose the
following inexact Uzawa algorithmic framework:{

wk+1 = (QA + ∂Θ)−1(QAwk − Awk − B>vk + f ),

vk+1 = vk + Q−1
B (Bwk+1 − g).

QA and QB are two symmetric positive definite preconditioners of A and
BA−1B> satisfying QA � A and QB � BA−1B>, respectively.

When QA = A and QB = 1
ω I, it reduces to the exact version.

The convergence and linear convergence rate can be rigorously proved
under mild conditions.

Above algorithmic framework is abstract and it becomes practical only
when the preconditioners QA and QB are chosen appropriately.
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Choices of QA and QB

To choose appropriate QA and QB, we start from considering the
application of the exact Uzawa method, i.e. QA = A and QB = 1

ω I(ω > 0):
0 ∈ ∂θ(uk+1) + αMuk+1 + M>pk ,

0 = Myk+1 − K>pk −Myd ,

0 = pk+1 − pk − ω(Muk+1 − K yk+1).

Numerical issues:

since M is not diagonal, uk+1 has no closed-form solution;
computing yk+1 requires the solution of a linear system which is
large dimensional especially for the fine discretization case;
to guarantee the convergence, it is required that
QB � S := BA−1B> = 1

αM + KM−1K> which implies that ω ≤ 1
ρ(S)

(order O(h2)) — leading to slow convergence.

Yongcun Song (FAU) Algorithms for Optimal Control Problems October 1, 2021 17 / 48



PDE-Constrained Optimal Control Problems with Control Constraints Department of Data Science

Choices of QA and QB

To choose appropriate QA and QB, we start from considering the
application of the exact Uzawa method, i.e. QA = A and QB = 1

ω I(ω > 0):
0 ∈ ∂θ(uk+1) + αMuk+1 + M>pk ,

0 = Myk+1 − K>pk −Myd ,

0 = pk+1 − pk − ω(Muk+1 − K yk+1).

Numerical issues:

since M is not diagonal, uk+1 has no closed-form solution;
computing yk+1 requires the solution of a linear system which is
large dimensional especially for the fine discretization case;
to guarantee the convergence, it is required that
QB � S := BA−1B> = 1

αM + KM−1K> which implies that ω ≤ 1
ρ(S)

(order O(h2)) — leading to slow convergence.

Yongcun Song (FAU) Algorithms for Optimal Control Problems October 1, 2021 17 / 48



PDE-Constrained Optimal Control Problems with Control Constraints Department of Data Science

Choices of QA and QB

To choose appropriate QA and QB, we start from considering the
application of the exact Uzawa method, i.e. QA = A and QB = 1

ω I(ω > 0):
0 ∈ ∂θ(uk+1) + αMuk+1 + M>pk ,

0 = Myk+1 − K>pk −Myd ,

0 = pk+1 − pk − ω(Muk+1 − K yk+1).

Numerical issues:

since M is not diagonal, uk+1 has no closed-form solution;

computing yk+1 requires the solution of a linear system which is
large dimensional especially for the fine discretization case;
to guarantee the convergence, it is required that
QB � S := BA−1B> = 1

αM + KM−1K> which implies that ω ≤ 1
ρ(S)

(order O(h2)) — leading to slow convergence.

Yongcun Song (FAU) Algorithms for Optimal Control Problems October 1, 2021 17 / 48



PDE-Constrained Optimal Control Problems with Control Constraints Department of Data Science

Choices of QA and QB

To choose appropriate QA and QB, we start from considering the
application of the exact Uzawa method, i.e. QA = A and QB = 1

ω I(ω > 0):
0 ∈ ∂θ(uk+1) + αMuk+1 + M>pk ,

0 = Myk+1 − K>pk −Myd ,

0 = pk+1 − pk − ω(Muk+1 − K yk+1).

Numerical issues:

since M is not diagonal, uk+1 has no closed-form solution;
computing yk+1 requires the solution of a linear system which is
large dimensional especially for the fine discretization case;

to guarantee the convergence, it is required that
QB � S := BA−1B> = 1

αM + KM−1K> which implies that ω ≤ 1
ρ(S)

(order O(h2)) — leading to slow convergence.

Yongcun Song (FAU) Algorithms for Optimal Control Problems October 1, 2021 17 / 48



PDE-Constrained Optimal Control Problems with Control Constraints Department of Data Science

Choices of QA and QB

To choose appropriate QA and QB, we start from considering the
application of the exact Uzawa method, i.e. QA = A and QB = 1

ω I(ω > 0):
0 ∈ ∂θ(uk+1) + αMuk+1 + M>pk ,

0 = Myk+1 − K>pk −Myd ,

0 = pk+1 − pk − ω(Muk+1 − K yk+1).

Numerical issues:

since M is not diagonal, uk+1 has no closed-form solution;
computing yk+1 requires the solution of a linear system which is
large dimensional especially for the fine discretization case;
to guarantee the convergence, it is required that
QB � S := BA−1B> = 1

αM + KM−1K> which implies that ω ≤ 1
ρ(S)

(order O(h2)) — leading to slow convergence.

Yongcun Song (FAU) Algorithms for Optimal Control Problems October 1, 2021 17 / 48



PDE-Constrained Optimal Control Problems with Control Constraints Department of Data Science

Choice of QA

First, consider the lumped mass matrix

W := diag(

∫
Ωh

φi (x)dx)n
i=1,

which satisfies W � M for any h > 0 (see e.g., [A.J. Wathen, 1987]).

Adding the proximal term α
2 ‖u − uk‖W−M to the objective function, the

u-subproblem is transformed to

min
u∈Rn

θ(u) +
α

2
‖u + W−1(

1
α

M>pk − (W −M)uk )‖2
W .

Since W is diagonal, we obtain

uk+1 = PUad (W−1((W −M)uk − 1
α

M>pk )).
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Choice of QA – Cont’d

For the second difficulty, we consider some iterative schemes that are
tailored for the system of linear equations.

We choose D = 2diag(M) and compute yk+1 via

yk+1 = yk − D−1(Myk − K>pk −Myd ),

which is essentially the application of the damped Jacobi iteration
method to the y-subproblem.

As a result, we can update yk+1 element-wisely, which is easy and
cheap to implement.
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Choice of QA – Cont’d

Preconditioner QA:

QA :=

(
αW 0

0 D

)
� A,

where

W := diag(
∫

Ωh
φi (x)dx)n

i=1 is the lump mass matrix satisfying
W � M [A. J. Wathen, 1987];
D = 2diag(M) � M since M is diagonally dominant.

Accordingly, we obtainuk+1 = PUad (W−1((W −M)uk − 1
α

M>pk )),

yk+1 = yk − D−1(Myk − K>pk −Myd ).
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Choice of QB

Note that the Schur complement S = 1
αM + KM−1K> can be written as

S = (K +
1√
α

M)M−1(K +
1√
α

M)> − 2√
α

K .

According to [J. W. Pearson and A. J. Wathen, 2012], S can be well
approximated by

PB := (K +
1√
α

M)M−1(K +
1√
α

M)> � S.

Theorem
Suppose that we approximate S by PB. Then, we can bound the eigenvalues
of P−1

B S as follows:

λ(P−1
B S) ∈ [

1
2
, 1],

which is independent of α and h.
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Choice of QB – Cont’d

For PB = (K + 1√
α

M)M−1(K + 1√
α

M)>, the matrix K + 1√
α

M is still
ill-conditioned especially for fine mesh sizes, due to the stiffness matrix
K whose condition number is of O(h−2).

The matrix K is discretized from the linear second-order elliptic operator
K, a spectrally equivalent approximation of K can be obtained by
performing one or more multi-grid sweeps.

Via the implementation of AMG V-circles, the matrix (K + 1√
α

M) is
implicitly approximated by a matrix, denoted by G.

Therefore we can choose QB as QB := τGM−1G>(τ > 0).
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Therefore we can choose QB as QB := τGM−1G>(τ > 0).
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Specifying the Inexact Uzawa Algorithmic Framework

With the choice of QA =

(
αW 0

0 D

)
and QB = τGM−1G> � PB � S,

we specify the inexact Uzawa algorithmic framework as
uk+1 = PUad (W−1((W −M)uk − 1

α
M>pk )),

yk+1 = yk − D−1(Myk − K>pk −Myd ),

pk+1 = pk + Q−1
B (Muk+1 − K yk+1).

No optimization subproblem or system of linear equations over fine
mesh is required to solve.

At each iteration, only compute the projection onto a simple admissible
set, a few AMG V-cycles, and some matrix-vector multiplications.
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Numerical Experiments

Setting-ups:

Stopping criterion:

max{ps,ds} ≤ tol ,

where the primal residual ps and dual residual ds are defined as:

ps = (‖uk − uk−1‖2 + ‖yk − yk−1‖2)
1
2 , and ds = ‖pk − pk−1‖.

Initial values: u = 0, y = 0 and p = 0.

The AMG V-circle is implemented based on the iFEM package with a
Jacobian smoother.
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Numerical Example

min
y∈H1

0 (Ω),u∈Uad

J(y ,u) = 1
2‖y − yd‖2 + α

2 ‖u‖
2

s.t.

{
−∆y = u in Ω,

y = 0 on Γ.

The domain Ω = (0,1)× (0,1), the constraint is 0.3 ≤ u(x) ≤ 1 and
α = 10−4;

The target functional yd = 4π2α sin(πx) sin(πy) + yr , where yr is the
solution of {

−∆yr = r in Ω,

yr = 0 on Γ,

with r = min
(
1,max

(
0.3,2 sin(πx) sin(πy)

))
;

The exact solution is u∗ = r .
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Numerical Example – Cont’d

Table: Numerical results with tol = 10−9.

h Iter CPU(s) eu(h) Order(u) ey (h) Order(y)

1/26 82 0.511972 5.3773×10−5 1.9937 9.6936 ×10−7 2.0076
1/27 82 1.242614 1.3438×10−5 2.0005 2.4253×10−7 1.9987
1/28 82 3.433469 3.3609×10−6 1.9994 6.6031×10−8 2.0000
1/29 82 16.899456 8.4238×10−7 1.9963 1.5157×10−8 2.0000
1/210 82 74.143923 2.1271×10−7 1.9856 3.7853×10−9 2.0015

Converging to a rather high-accuracy solution very fast.

The convergence is independent of the mesh size h.

The convergence order of eu(h) is approximately O(h2) and ey (h) is
O(h2) which validate the theoretical results eu(h) = o(h) (see [E. Casas
2007]) and ey (h) = O(h2) (see [R.S. Falk 1973]).
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Numerical Example – Cont’d
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Figure: Iteration error ‖u − u∗‖ and ‖y − y∗‖ (left), primal residual ps, dual
residual ds and objective function value (right).

Linear convergence rate is seen.
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Numerical Example – Cont’d

Figure: Numerical solution y and error y − yd with h = 1/64.

Figure: Numerical solution u and error u − u∗ with h = 1/64.
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Numerical Example – Cont’d

Comparison with the semismooth Newton method in [M. Porcelli, V. Simoncini
and M. Tani 2015].

Table: Numerical results of semismooth Newton methods (SSN)

Algorithm h No. of Newton Total GMRES CPU (s) ‖u − u∗‖L2(Ω)

2−6 6 55 0.73565 1.4671× 10−5

SSN 2−7 6 49 1.7944 3.6631× 10−6

2−8 6 47 6.7322 9.1543× 10−7

2−9 6 44 31.4861 2.2885× 10−7

2−10 6 42 224.9426 5.7213× 10−8

Table: Numerical results of the inexact Uzawa method

Algorithm h Total iteration No. CPU (s) ‖u − u∗‖L2(Ω)

2−6 71 0.4025 1.4669× 10−5

InUzawa 2−7 71 0.8067 3.6603× 10−6

2−8 71 2.6450 9.1274× 10−7

2−9 70 13.1539 2.2626× 10−7

2−10 70 55.051712 5.6967× 10−8
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Motivation

In a typical optimal control model, either boundary or internal locally
distributed controls are usually used; these controls are called additive
controls because they arise in model equations as additive terms.

Additive controls describe the effect of external added sources or forces
and they do NOT change the principal intrinsic properties of the system.

Additive controls are not suitable to deal with processes whose principal
intrinsic properties should be changed by some control actions.

Bilinear controls are necessary!
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Bilinear Controls

Bilinear controls, also known as multiplicative controls, enter the model
as coefficients of the corresponding PDEs.

Bilinear controls can change some main physical characteristics of the
system under investigation.

In the literature, bilinear controls have become an increasingly popular
topic and bilinear optimal control problems constrained by various PDEs
have been widely studied:

elliptic equations [A. Kröner and B. Vexler 2009];
convection-diffusion equations [A. Borzì, E. J. Park and M. Vallejos
Lass 2016];
parabolic equations [A. Y. Khapalov 2003];
the Schrödinger equation [K. Ito and K. Kunisch 2007];
the Fokker–Planck equation [A. Fleig and R. Guglielmi 2017].
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Model
We consider the following bilinear optimal control problem:{

u ∈ U ,
J(u) ≤ J(v), ∀v ∈ U ,

(BCP)

with the objective functional J defined by

J(v) =
1
2

∫∫
Q
|v |2dxdt +

α1

2

∫∫
Q
|y − yd |2dxdt +

α2

2

∫
Ω

|y(T )− yT |2dx ,

and y = y(t ; v) the solution of the following advection-reaction-diffusion equation

∂y
∂t
− ν∇2y + v · ∇y + a0y = f in Q, y = g on Σ, y(0) = φ.

Ω is a bounded domain of Rd with d ≥ 1 and Γ is its boundary;
Q = Ω× (0,T ) and Σ = Γ× (0,T ) with 0 < T < +∞;
yd ∈ L2(Q), yT ∈ L2(Ω), α1 ≥ 0, α2 ≥ 0, α1 + α2 > 0;
ν > 0 and a0 are constants; f ∈ L2(Q), g ∈ L2(0,T ; H1/2(Γ)), φ ∈ L2(Ω);
the set U of the admissible controls is defined by

U := {v |v ∈ [L2(Q)]d ,∇ · v = 0}.
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Model–Cont’d

The (BCP) problem was proposed in 1990s by Late Professor J. L. Lions
(1928-2001).

This model captures important applications in various areas, such as

bioremediation [N. Handagama and S. Lenhart 1998];
environmental remediation process [S. Lenhart 1995];
mixing enhancement of different fluids [W. Liu 2008].

To the best of our knowledge, no work has been done yet to develop
efficient numerical methods for solving such kind of bilinear optimal
control problems.
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Some Theoretical Results

There exists at least one optimal control u ∈ U for (BCP).

Let DJ(v) be the first-order differential of J at v and u an optimal control of
(BCP). The first-order optimality condition of (BCP) reads

DJ(u) = 0.

By some sophisticated manipulations, we have that
DJ(v) ∈ U ,∫∫

Q
DJ(v) · zdxdt =

∫∫
Q

(v − p∇y) · zdxdt ,∀z ∈ U ,

where y and p are obtained from v via the following two PDEs:

∂y
∂t
− ν∇2y + v · ∇y + a0y = f in Q, y = g on Σ, y(0) = φ,

and

−∂p
∂t
− ν∇2p − u · ∇p + a0p = α1(y − yd ) in Q, p = 0 on Σ, p(T ) = α2(y(T )− yT ).
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A Generic Conjugate Gradient Method

(a) Given u0 ∈ U .
(b) Compute g0 = DJ(u0). If DJ(u0) = 0, take u = u0; otherwise set w0 = g0.

For k ≥ 0, uk ,gk and w k being known, with the last two different from 0, one
computes uk+1,gk+1 and if necessary w k+1 as follows:

(c) Compute the stepsize ρk by solving the following optimization problem{
ρk ∈ R,

J(uk − ρk w k ) ≤ J(uk − ρw k ), ∀ρ ∈ R.

(d) Update uk+1 and gk+1, respectively, by

uk+1 = uk − ρk w k , and gk+1 = DJ(uk+1).

If DJ(uk+1) = 0, take u = uk+1; otherwise,
(e) Compute

βk =

∫∫
Q |g

k+1|2dxdt∫∫
Q |gk |2dxdt

,

and then update
w k+1 = gk+1 + βk w k .

Do k + 1→ k and return to (c).
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Difficulties to Implement the CG Method

Computation of the gradient DJ(v). Recall that
DJ(v) ∈ U ,∫∫

Q
DJ(v) · zdxdt =

∫∫
Q

(v − p∇y) · zdxdt ,∀z ∈ U .

where y and p are obtained from v by solving

∂y
∂t
− ν∇2y + v · ∇y + a0y = f in Q, y = g on Σ, y(0) = φ,

and

−∂p
∂t
− ν∇2p − u · ∇p + a0p = α1(y − yd ) in Q, p = 0 on Σ, p(T ) = α2(y(T )− yT ).

Computation of the stepsize ρk .{
ρk ∈ R,

J(uk − ρk w k ) ≤ J(uk − ρw k ),∀ρ ∈ R.
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∂y
∂t
− ν∇2y + v · ∇y + a0y = f in Q, y = g on Σ, y(0) = φ,

and

−∂p
∂t
− ν∇2p − u · ∇p + a0p = α1(y − yd ) in Q, p = 0 on Σ, p(T ) = α2(y(T )− yT ).

Computation of the stepsize ρk .{
ρk ∈ R,

J(uk − ρk w k ) ≤ J(uk − ρw k ), ∀ρ ∈ R.
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Gradient Computation–Cont’d

Introducing a Lagrange multiplier λ ∈ H1
0 (Ω) associated with the

constraint ∇ · z = 0 and then we have the following saddle point problem

(g, λ) ∈ [L2(Ω)]d × H1
0 (Ω),∫

Ω

g · zdx =

∫
Ω

f · zdx +

∫
Ω

λ∇ · zdx ,∀z ∈ [L2(Ω)]d ,∫
Ω

∇ · gqdx = 0,∀q ∈ H1
0 (Ω).

This is actually a Stokes type problem.

We advocate employing a preconditioned CG method inspired from [R.
Glowinski 2003] — leading to a nested CG method for solving (BCP).
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Stepsize Computation

For a given wk ∈ U , we replace the state y = S(uk − ρwk ) in J(uk − ρwk ) by

S(uk )− ρS′(uk )wk ,

which is indeed the linearization of the mapping ρ 7→ S(uk − ρwk ) at ρ = 0.

We thus obtain the following quadratic approximation of J(uk − ρwk ):

Qk (ρ) :=
1
2

∫∫
Q
|uk − ρwk |2dxdt

+
α1

2

∫∫
Q
|yk − ρzk − yd |2dxdt +

α2

2

∫
Ω
|yk (T )− ρzk (T )− yT |2dx ,

where yk = S(uk ) is the solution of the state equation associated with uk , and
zk := S′(uk )wk satisfies the following linear parabolic problem

∂zk

∂t
− ν∇2zk + wk · ∇yk + uk · ∇zk + a0zk = 0 in Q, zk = 0 on Σ, zk (0) = 0.

It is easy to show that the equation Q′k (ρ) = 0 admits a unique solution

ρ̂k =

∫∫
Q gk · wk dxdt∫∫

Q |wk |2dxdt + α1
∫∫

Q |zk |2dxdt + α2
∫

Ω |zk (T )|2dx
.
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Numerical Discretization

Time discretization

We employ a semi-implicit finite difference method, namely, we use
explicit advection and reaction terms and treat the diffusion term
implicitly.
Only a simple linear elliptic equation is required to be solved at
each time step.

Space discretization

Direct applications of standard finite element methods do not work.
We employ the Bercovier-Pironneau finite element pair (a.k.a.
P1-P1 iso P2 finite element) to approximate the control v and the
Lagrange multiplier λ.

With the above discretization schemes, we can obtain the fully discrete
version of (BCP) and derive the discrete analogue of our proposed
nested CG method.
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Numerical Experiments
Setting-ups:

Ω = (0,1)2 and T = 1.

α2 = 0, ν = 1 and a0 = 1.

y = et (−3 sin(2πx1) sin(πx2) + 1.5 sin(πx1) sin(2πx2)),

p = (T − t) sinπx1 sinπx2, and u = PU (p∇y),

f =
∂y
∂t
−∇2y + u · ∇y + y ,

φ = −3 sin(2πx1) sin(πx2) + 1.5 sin(πx1) sin(2πx2),

yd = y − 1
α1

(
−∂p
∂t
−∇2p − u · ∇p + p

)
, g = 0.

u is an optimal control.

Note u = PU (p∇y) has no analytical solution. We solve u = PU (p∇y)
by the preconditioned CG algorithm with h = 1

29 and ∆t = 1
210 , and use

the resulting control u as a reference solution.
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Numerical Experiments–Cont’d

The stopping criteria of the outer CG algorithm and the inner
preconditioned CG algorithm are respectively set as

∆t
∑N

n=1

∫
Ω
|gk+1

n |2dx

∆t
∑N

n=1

∫
Ω
|g0

n|2dx
≤ 5× 10−8, and

∫
Ω
|∇r k+1|2dx

max{1,
∫

Ω
|∇r0|2dx}

≤ 10−8.

Initial values: u0 = (0,0)> and λ0 = 0.

We denote by u∆t
h and y∆t

h the computed control and state, respectively.
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Numerical Experiments–Cont’d

Table: Results of the nested CG algorithm with different h and ∆t .

Mesh sizes IterCG MaxPCG ‖u∆t
h − u‖L2(Q) ‖y∆t

h − y‖L2(Q)

‖y∆t
h −yd‖L2(Q)

‖yd‖L2(Q)

h = 1
26 ,∆t = 1

27 443 9 3.7450×10−3 9.7930×10−5 1.0906×10−6

h = 1
27 ,∆t = 1

28 410 9 1.8990×10−3 1.7423×10−5 3.3863×10−7

h = 1
28 ,∆t = 1

29 405 8 1.1223×10−3 4.4003×10−6 1.0378×10−7

The outer CG algorithm converges fast and is robust with respect to
different mesh sizes.

The inner preconditioned CG algorithm converges within 10 iterations for
all cases and thus is efficient for computing the gradient.

The target function yd has been reached within a good accuracy. Similar
comments hold for the approximation of the optimal control u and of the
state y .
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Numerical Experiments–Cont’d

Figure: Computed state y∆t
h , error y∆t

h − y and y∆t
h − yd with h = 1

27 and
∆t = 1

28 (from left to right) at t = 0.5.
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Numerical Experiments–Cont’d

Figure: Computed control u∆t
h and exact control u (left, from top to bottom)

and the error u∆t
h − u (right) with h = 1

27 and ∆t = 1
28 at t = 0.5.
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Conclusions

It is generally nontrivial to find efficient numerical solvers for optimal
control problems with PDE constraints.

Specific structures and properties of the model should be considered
deliberately.

Operator splitting strategies are promising for various optimal control
problems.

In particular, numerical linear algebra techniques such as
preconditioning, matrix factorization, multigrid methods and Krylov
subspace methods are very important.
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