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1. The cross Gramian of linear systems

Consider a stable linear time invariant (LTI) input-output system{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(1.1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, and y(t) ∈ Rp is the
output. A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n are constant matrices. In
general, such system is denoted by {A,B,C}.

The transfer function of system (1.1) is

H(s) = C(sI −A)−1B ∈ Rp×m,

which defines the relation between the output and input in frequency
domain.
{A,B,C} is square if m = p, and is called symmetric if its transfer

function is symmetric H(s) = HT(s).
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• Cross Gramian of the square system
For the system {A,B,C}, its controllability Gramian WC(T ) and

observability Gramian WO(T ) are defined as

WC(T ) =

∫ T

0
eAtBBTeA

Ttdt, WO(T ) =

∫ T

0
eA

TtCTCeAtdt.

For the square system {A,B,C}, the cross Gramian WCO(T ) is defined as

WCO(T ) =

∫ T

0
eAtBCeAtdt, (1.2)

for 0 < T ≤ ∞, which combines controllability and observability
information.
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• Cross Gramian of the non-square system
Because the above definition (1.2) of cross Gramian is not suitable for

non-square systems where m 6= p, recently, a strategy was developed to
calculate the cross Gramian for non-square systems, which converted the
topic to the cross Gramian of the so-called "average" SISO system. At
first, we partition B and C as

B =
[
b1 b2 · · · bm

]
, bi ∈ Rn×1,

CT =
[
cT1 cT2 · · · cTp

]
, cTj ∈ Rn×1,

where bi and cj (i = 1, 2, . . . ,m; j = 1, 2, . . . , p) individually represent the
i-th column of B and j-th row of C. Each combination of bi and cj
induces a SISO system {A, bi, cj}.
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Let

W i
C(T ) =

∫ T

0
eAtbib

T
i e

ATtdt, W j
O(T ) =

∫ T

0
eA

TtcTj cje
Atdt,

W ij
CO(T ) =

∫ T

0
eAtbicje

Atdt

be the controllability Gramian, observability Gramian and cross Gramian of
the (i, j)-th subsystem {A, bi, cj}, respectively. According to the partition,
these Gramians of the mp SISO subsystems relate to the full MIMO
Gramians as

WC(T )WO(T ) =
m∑
i=1

p∑
j=1

W i
C(T )W j

O(T ) =
m∑
i=1

p∑
j=1

W ij
CO(T )W ij

CO(T ).

Then, the cross Gramian WCO(T ) of the square system (m = p) satisfies

WCO(T ) =

m∑
i=1

W ii
CO(T ).
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The cross Gramian WX(T ) of the non-square system m 6= p is defined
as the sum of the cross Gramians of all mp SISO subsystems

WX(T ) =

m∑
i=1

p∑
j=1

W ij
CO(T ),

which yields the following representation:

WX(T ) =

m∑
i=1

p∑
j=1

∫ T

0
eAtbicje

Atdt

=

∫ T

0
eAt

m∑
i=1

p∑
j=1

bicje
Atdt

=

∫ T

0
eAt
( m∑
i=1

bi
)( p∑

j=1

cj
)
eAtdt.

Hence, this approximate cross Gramian WX(T ) is equal to the cross
Gramian of the SISO system {A,

∑m
i=1 bi,

∑p
j=1 cj}.
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2. Low-rank decomposition of the cross Gramian via
Legendre polynomials

The cross Gramian W ij
CO(T ) =

∫ T
0 eAtbicje

Atdt of the (i, j)-th
subsystem {A, bi, cj} can be interpreted as the integral of the product of
the system’s impulse response and its dual system’s impulse response.
These impulse responses are trajectories

ẋi(t) = Axi(t) + biδ(t)⇒ xiδ(t) = eAtbi,

żj(t) = ATzj(t) + cTj δ(t)⇒ zjδ(t) = eA
TtcTj ,

⇒W ij
CO(T ) =

∫ T

0
eAtbicje

Atdt =

∫ T

0
eAtbi(e

ATtcTj )Tdt =

∫ T

0
xiδ(t)(z

j
δ(t))

Tdt.

The state impulse responses can be computed approximately by the
Legendre polynomials.
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As a first step towards the approximation of the impulse response eAtbi,
we expand the state variable xiδ(t) in the subsystem {A, bi, cj} as the
following approximate form

xiδ(t) ≈
N−1∑
k=0

fi,kP̄k(t), (2.1)

where fi,k ∈ Rn (k = 0, 1, . . . , N − 1) are the Legendre coefficient vectors.
N is the desired approximation terms of the Legendre series. Let ui(t) in
{A, bi, cj} be the unit impulse function δ(t). After integration and
assuming zero initial condition, the state equation becomes

xiδ(t) = A

∫ t

0
xiδ(τ)dτ + bi. (2.2)

Substitute (2.1) into (2.2) and according to the properties of P̄i(t), we have
N−1∑
k=0

fi,kP̄k(t) =
T

2
Afi,0P̄0(t) +

N∑
k=1

T

2(2k − 1)
Afi,k−1P̄k(t)

−
N−2∑
k=0

T

2(2k + 3)
Afi,k+1P̄k(t) + bi.
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Equating the coefficients of P̄k(t) for k = 0, 1, . . . , N − 1, and ignoring
the term P̄N (t), we finally have

(I − T

2
A)fi,0 +

T

6
Afi,1 = bi,

− T

2(2k − 1)
Afi,k−1 + fi,k +

T

2(2k + 3)
Afi,k+1 = 0, k = 1, 2, . . . , N − 2,

− T

2(2N − 3)
Afi,N−2 + fi,N−1 = 0,

(2.3)
where I is an identity matrix. Thus, the coefficient vectors
fi,k (k = 0, 1, . . . , N − 1) satisfy the block tridiagonal linear system

I − T
2A

T
6A

−T
2A I T

10A

−T
6A I

. . .
. . . . . . T

2(2N−1)A

− T
2(2N−3)A I




fi,0
fi,1
...

fi,N−2

fi,N−1

 =


bi
0
...
0
0

 .
(2.4)
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Similarly, the coefficient vectors gj,k ∈ Rn (k = 1, 2, . . . , N − 1) for the
state impulse response of the dual SISO system {AT, cTj , b

T
i }

zjδ(t) = eA
Ttcj ≈

N−1∑
k=0

gj,kP̄k(t),

satisfy the following block tridiagonal linear system



I − T
2A

T T
6A

T

−T
2A

T I T
10A

T

−T
6A

T I
. . .

. . . . . . TAT

2(2N−1)

− TAT

2(2N−3) I




gj,0
gj,1
...

gj,N−2

gj,N−1

 =


cTj
0
...
0
0

 .
(2.5)
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Suppose that the coefficient vectors fi,k, gj,k (k = 0, 1, . . . , N − 1)
have been obtained by solving the block tridiagonal linear equations (2.4)
and (2.5). Then, it has∫ T

0
xiδ(t)(z

j
δ)

T(t)dt ≈
∫ T

0

N−1∑
k=0

fi,kP̄k(t)

N−1∑
k=0

gTj,kP̄k(t)dt.

According to the orthogonality of the shifted Legendre polynomials, it leads
to

W ij
CO(T ) =

∫ T

0
xiδ(t)(z

j
δ)

T(t)dt ≈
N−1∑
k=0

T

2k + 1
fi,kg

T
j,k = FiG

T
j ,

where Fi = [
√
Tfi,0,

√
T/3fi,1, · · · ,

√
T/(2N − 1)fi,N−1] ∈ Rn×N , and

Gj = [
√
Tgj,0,

√
T/3gj,1, · · · ,

√
T/(2N − 1)gj,N−1] ∈ Rn×N .
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As a result, the approximation to the cross Gramian WCO(T ) of the
square system (m = p) is

WCO(T ) =

m∑
i=1

W ii
CO(T ) ≈

m∑
i=1

FiG
T
i = FGT, (2.6)

where F =
[
F1 F2 . . . Fm

]
∈ Rn×mN ,

G =
[
G1 G2 . . . Gm

]
∈ Rn×mN .

Similarly, the cross Gramian WX(T ) of the non-square system has the
following low-rank decomposition

WX(T ) ≈ F̃ G̃T, (2.7)

where

F̃ = [
√
T f̃0,

√
T/3f̃1, · · · ,

√
T/(2N − 1)f̃N−1] ∈ Rn×N ,

G̃ = [
√
T g̃0,

√
T/3g̃1, · · · ,

√
T/(2N − 1)g̃N−1] ∈ Rn×N ,

and f̃i, g̃i ∈ Rn (i = 0, 1, . . . , N − 1) are obtained by replacing the right
terms bi and cj in (2.4) and (2.5) with

∑m
i=1 bi and

∑p
j=1 cj , respectively.
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3. Cross Gramian-based MOR for square systems

(2.6) is the low-rank decomposition of the cross Gramian WCO(T ) for
the square system (1.1). Then, we can use the low-rank square-root
method (LRSRM) to generate the ROM. Applying the SVD technique to
GTF , we obtain

GTF =
[
U1 U2

] [ Σ1 0
0 Σ2

] [
V1

T

V2
T

]
,

where Σ1 = diag{σ̃1, σ̃2, · · · , σ̃r} ∈ Rr×r is invertible,
Σ2 = diag{σ̃r+1, σ̃r+2, · · · , σ̃rN , 0, · · · , 0} with rN = rank(GTF ).
Construct the projection matrices Tr ∈ Rn×r and Sr ∈ Rr×n by

Tr = FV1Σ
− 1

2
1 , Sr = Σ

− 1
2

1 U1
TGT.

Obviously, it has SrTr = Ir.
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Then, we can get the resulted ROM of the square system {A,B,C} by{
ẋr(t) = Arxr(t) +Bru(t),

yr(t) = Crxr(t),
(3.1)

where Ar = SrATr, Br = SrB and Cr = CTr. According to the
square-root method, the smaller singular values are truncated. As a result,
for a given tolerance tol, the order r of the ROM is adaptively chosen by
the following indicator

δ̃ = 2

rN∑
j=r+1

σ̃j ≤ tol,

where {σ̃1, σ̃2, · · · , σ̃rN } is in decreasing order.
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Algorithm 1 Cross Gramian-based low-rank square root method for square
systems (CG-LRSRM(WCO))

Input: A,B,C, T,N, tol;
Output: ROM of order r: Ar, Br, Cr;
1. Compute the low-rank factors F and G from (2.4) and (2.5);
2. Compute the SVD: GTF = UΣV T, Ur = U(:, 1 : r), Vr = V (:, 1 : r),
and Σr = Σ(1 : r, 1 : r); r is adaptively chosen by given tolerance: δ̃ =
2
∑rN

j=r+1 σ̃j ≤ tol;

3. Compute projection matrices: Tr = FVrΣ
− 1

2
r , Sr = Σ

− 1
2

r Ur
TGT;

4. Construct the ROM: Ar = SrATr, Br = SrB, Cr = CTr.

The proposed reduction procedure can be described by Algorithm 1,
whose projection is a Petrov-Galerkin projection, where Sr and Tr are
different.
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The above reduction procedure may lead to numerical errors and
instabilities. To alleviate these shortcomings, a modified method is
presented, which was using a modification of the dominant subspaces
projection model reduction (DSPMR). The modified algorithm can be
described by Algorithm 2.

Algorithm 2 Cross Gramian-based DSPMR for square systems (CG-
DSPMR(WCO))

Input: A,B,C, T,N, tol;
Output: Ar, Br, Cr;
1. Compute low-rank factors F and G from (2.4) and (2.5);
2. Compute the SVDs: F = UFΣFV

T
F , G = UGΣGV

T
G ;

3. Choose r̃/2 ≤ k ≤ min{rF , rG}, r̃ is adaptively chosen by given
tolerance: δ̃ = 2

∑rN
j=r+1 σ̃j ≤ tol;

4. Compute the QR decomposition:
[
UF (:, 1 : k), UG(:, 1 : k)

]
= QR,

V = Q(:, 1 : r);
5. Construct the ROM: Ar = V TAV , Br = V TB, Cr = CV .
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4. Cross Gramian-based MOR for non-square systems

For the non-square systems where m 6= p, (2.7) is the low-rank
decomposition of the cross Gramian WX(T ). Then, we have the following
cross Gramian-based low-rank square-root method (LRSRM) (Algorithm 3)
for non-square systems.

Algorithm 3 Cross Gramian-based LRSRM for non-square systems (CG-
LRSRM(WX))

Input: A,B,C, T,N, tol;
Output: ROM of order r: Ar, Br, Cr;
1. Compute low-rank factors F and G of the SISO system {A,

∑m
i=1 bi,∑p

j=1 cj} from (2.4) and (2.5);
2. Compute the SVD: GTF = UΣV T, Ur = U(:, 1 : r), Vr = V (:, 1 : r),
and Σr = Σ(1 : r, 1 : r); r is adaptively chosen by given tolerance: δ̃ =
2
∑rN

j=r+1 σ̃j ≤ tol;

3. Compute projection matrices: Tr = FVrΣ
− 1

2
r , Sr = Σ

− 1
2

r Ur
TGT;

4. Construct the reduced model: Ar = SrATr, Br = SrB, Cr = CTr.
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Meanwhile, analogously to Algorithm 2, we also have Algorithm 4 based
on DSPMR for non-square systems.

Algorithm 4 Cross Gramian-based DSPMR for non-square systems (CG-
DSPMR(WX))

Input: A,B,C, T,N, tol;
Output: Ar, Br, Cr;
1. Compute low-rank factors F and G of the SISO system {A,

∑m
i=1 bi,∑p

j=1 cj} from (2.4) and (2.5);
2. Compute the SVDs: F = UFΣFV

T
F , G = UGΣGV

T
G ;

3. Choose r̃/2 ≤ k ≤ min{rF , rG}, r̃ is adaptively chosen by given
tolerance: δ̃ = 2

∑rN
j=r̃+1 σ̃j ≤ tol;

4. Compute the QR decomposition:
[
UF (:, 1 : k), UG(:, 1 : k)

]
= QR,

V = Q(:, 1 : r);
5. Construct the reduced model: Ar = V TAV , Br = V TB, Cr = CV .
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5. Numerical experiments

Example 1 (CD player): This example is a model of compact disc
(CD) player. The model describes the dynamics between the lens actuator
and the radial arm position of a portable CD player. This square system
has 120 states with two inputs and two outputs

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t).

Numerical results show that A is stable and A+AT < 0.
For this square system, two parameters in our proposed algorithms are

taken as N = 20 and T = 10. With tol = 10−10, the reduced order of
Algorithm 1 and 2 is adaptively determined as 34.
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The computational times to construct each ROMs and the stability are
listed in Table 5.1.

Table 5.1: Computational cost and stability of ROMs for Example 1

Method ROM size r Time (second) Ar Ar +AT
r

CG-LRSRM(WCO) 34 0.012 u N
CG-DSPMR(WCO) 34 0.013 s Y

CG-DS 34 0.022 s Y
BT 34 0.049 s N
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Figure 5.1: Impulse response of the first output for the first input of the original
system, and the relative errors ε of the ROMs for Example 1.

The impulse response of the first output for the first input of the original
system and the corresponding relative errors are shown in Figure 5.1.
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Figure 5.2: Hankel singular values of the ROMs in Example 1.

Figure 5.2 shows the first 25 HSVs of each ROMs.
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Example 2 (linear SI5O system): This example is a benchmark
problem coming from a discretization of a convective thermal flow problem.
The associated linear time-invariant system is given by{

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).

Some relevant quantities for the model are listed in Table 5.2.

Table 5.2: Some relevant quantities for Example 2.

Example No. Matrix dimension Non-zeros in A Non-zeros in E

1 9669 67391 9669

Note that A is negative definite while E is positive definite, so that the
resulting linear time-invariant system is stable.
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The computational times for constructing the ROMs by different
methods and the stability are reported in Table 5.3.

Table 5.3: Computational cost and stability of ROMs for Example 2

Method ROM size r Time (second) Ar Ar +AT
r

CG-LRSRM(WX) 6 35.74 s N
CG-DSPMR(WX) 6 35.75 s Y

CG-DS 17 25.65 s Y
BT 6 4094.18 s N
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Figure 5.3: The transient response of the third output y3(t) of the original system, and
the relative errors ε of the ROMs for Example 2.

Meanwhile, in Figure 5.3, the relative errors ε of the transient response for

each constructed ROMs with unit step function u(t) =

{
1, t ≥ 0,

0, t < 0,
are

plotted.
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Figure 5.4: Hankel singular values of the ROMs in Example 2.

Figure 5.4 shows the first 6 HSVs of each ROMs.
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