

Null Controllability for Population Dynamics with age, size Structuring and Diffusion

MINI WORKSHOP FAU DCN-AvH

SIMPORE Yacouba, University of Fada N'Gourma¹

¹Chair for Dynamics, Control, Machine Learning and Numerics Alexander von Humboldt Professorship 27/03/2023

Outline Motivation and description of age and size structured model Motivation

- 2.1 Motivation
- 2.2 Description of age and size structured model

3.1 Null controllability

OUTLINE

• Motivation and description of age and size structured model.

OUTLINE

- Motivation and description of age and size structured model.
- Observation and null controllability

OUTLINE

- Motivation and description of age and size structured model.
- Observation and null controllability
- Perspectives

1. Outline

2. Motivation and description of age and size structured model

- 2.1 Motivation
- 2.2 Description of age and size structured model

3.1 Null controllability

Motivation

 In this talk, we are interested of the null controllability of population dynamics with age, size Structuring and Diffusion. A population dynamics model that can describe cell growth and more precisely carcinogenic growth. Many authors have been interested in studying the well posedness of these models; but very few are interested in the control aspect.

Motivation

 In this talk, we are interested of the null controllability of population dynamics with age, size Structuring and Diffusion. A population dynamics model that can describe cell growth and more precisely carcinogenic growth. Many authors have been interested in studying the well posedness of these models; but very few are interested in the control aspect.

Figure: Tumor Growth: Imaging technology could better monitor tumor growth, drug effectiveness

Description of age and size structured model

$$\begin{cases} \frac{\partial y}{\partial t} + \frac{\partial y}{\partial a} + \frac{\partial (g(s)y)}{\partial s} - \Delta y + \mu(a,s)y = 0 & \text{in } \Omega \times (0,A) \times (0,S) \times (0,+\infty), \\ \frac{\partial y}{\partial \nu} = 0 & (x,a,s,t) \in \partial \Omega \times (0,A) \times (0,S) \times (0,\infty), \\ y(x,a,s,t) = y_i(x,s,t) & (x,s,t) \in \Omega \times (0,S) \times (0,\infty) \\ y(x,a,s,0) = y_0(x,a,s) & (x,a,s) \in \Omega \times (0,A) \times (0,S); \\ y(x,a,0,t) = 0 & (x,a,t) \in \Omega \times (0,A) \times (0,\infty). \end{cases}$$
(1

Here y(x, a, s, t) (carcinogenic cells) is a distribution of individuals of age a size s at time t and location $x \in \Omega$. A and S are respectively the maximal live expectancy and the maximal size, $\mu(a, s)$ natural death rate of individuals of individuals.

- 1. $\frac{\partial y}{\partial a}$ is the aging
- 2. $\frac{\partial y}{\partial s}$ is the growing
- 3. $\mu(a,s)y$ is the damping
- 4. $y_i(x, s, t)$, $i \in \{1, 2\}$ is the birth the rate, here we consider two type of birth rate.

4.1 $y_2(x, s, t) = \int_0^A \beta_2(a, s) y(x, a, s, t) da$, where β_2 is the fertility function;

4.2 $y_1(x, s, t) = \int_0^A \int_0^S \beta_1(a, \hat{s}, s) y(x, a, \hat{s}, t) dad\hat{s}$, where the fertility β_1 can mean the probability of an individual of age a and of size \hat{s} giving birth to an individual of size s.

Description of age and size structured model

According to Gleen Webb, if the mortality and fertility rates $\mu(a, s) = \mu_1(a) + \mu_2(s)$ and β_i are such that:

$$(\mathbf{H1}) : \begin{cases} \mu_1(a) \ge 0 \text{ for every } a \in (0, A) \\ \mu_1 \in L^1([0, a^*]) \text{ for every } a^* \in [0, A) \\ \int \\ 0 \\ \mu_1(a) da = +\infty \\ 0 \\ 0 \\ \end{bmatrix}, \quad (\mathbf{H2}) : \begin{cases} \mu_2(s) \ge 0 \text{ for every } s \in (0, S) \\ \mu_2 \in L^1([0, s^*]) \text{ for every } s^* \in [0, A) \\ \int \\ 0 \\ \mu_2(s) ds = +\infty \\ \end{bmatrix} \\ \begin{cases} \beta_i \in L^{\infty}, i \in \{1, 2\} \\ \beta_i \ge 0 \quad \text{a.e.} \quad i \in \{1, 2\}, \end{cases} \end{cases}$$

for any initial condition $y_0 \in K = L^2(\Omega \times (0, A) \times (0, S))$, the system (1) admits a unique solution.

Outline Motivation and description of age and size structured model

2.1 Motivation

2.2 Description of age and size structured model

3. Observation and null controllability

3.1 Null controllability

The Null controllability problem

 $\begin{cases} \frac{\partial y}{\partial t} + \frac{\partial y}{\partial a} + \frac{\partial (g(s)y)}{\partial s} - \Delta y + \mu(a,s)y = u\chi_{\Theta} & \text{in } \Omega \times (0,A) \times (0,S) \times (0,\infty), \\ \frac{\partial y}{\partial \nu} = 0 & (x,a,s,t) \in \partial \Omega \times (0,A) \times (0,S) \times (0,\infty), \\ y(x,0,s,t) = y_i(x,s,t) & (x,s,t) \in \Omega \times (0,S) \times (0,\infty), i \in \{1,2\} \\ y(x,a,s,0) = y_0(x,a,s) & (x,a,t) \in \Omega \times (0,A) \times (0,S); \\ y(x,a,0,t) = 0 & (x,a,t) \in \Omega \times (0,A) \times (0,\infty). \end{cases}$

where $\Theta = \omega \times (a_1, a_2) \times (s_1, s_2)$

1. u(x, a, s, t) is the control;

2. $\omega \times (a_1, a_2) \times (s_1, s_2) \subset \Omega \times (0, A) \times (0, S)$ is the support of the control;

3. Goal: To drive the solution to equilibrium at a given final time T > 0

 $y(.,.,.,T) \equiv 0$

(2)

The dual observation

Consider the adjoint system:

$$\begin{cases} \frac{\partial q}{\partial t} - \frac{\partial q}{\partial a} - \frac{\partial q}{\partial s} - \Delta q + \mu(a, s)q = q_i(x, s, t) & \text{in } \Omega \times (0, A) \times (0, S) \times (0, +\infty)i \in \{1, 2\}, \\ \frac{\partial q}{\partial \nu} = 0 & (x, a, s, t) \in \partial \Omega \times (0, A) \times (0, S) \times (0, \infty), \\ q(x, a, s, t) = 0 & \text{in } (x, s, t) \in \Omega \times (0, S) \times (0, \infty) \\ q(x, a, s, 0) = q_0(x, a, s) & \text{in } (x, a, s) \in \partial \Omega \times (0, A) \times (0, S); \end{cases}$$

with the following correspondence

$$q_1(x, s, t) = \int_0^S \beta_1(a, s, \hat{s})q(x, 0, \hat{s}, t)d\hat{s}$$
 matches with y_1 , and $q_2(x, s, t) = \beta_2(a, s)q(x, 0, s, t)$ matches with y_2

The question is whether:

$$\int_0^S \int_0^A \int_{\Omega} q^2(x, a, s, T) dx dads \le K_T \int_0^T \int_{\Theta} q^2(x, a, s, t) dx d\Theta.$$
(4)

(3)

Null controllability results

We denote by

$$T_1 = \max\{a_1 + S - s_2, s_1\}$$
 and $T_0 = \max\{S - s_2, s_1\}.$

Theorem

The null controllability result holds in

$$\omega \times (a_1, a_2) \times (s_1, s_2) \subset \Omega \times (0, A) \times (0, S)$$

with $T_0 < \min\{a_2 - a_1, \gamma\}$; provided the fertility rate is such that

 $\beta_i(a,.) \equiv 0 \text{ in } (0, a_1 + \gamma),$

and the time T is large enough as follows:

- 1. for the birth rate equal y_1 , $T > A a_2 + T_1 + T_0$ and
- 2. for the birth rate equal y_2 , $T > A a_2 + a_1 + S s_2 + s_1$.

See [Bic22][SIM22].

Graphical proof of the estimation of q(x,0,s,t)

As $\beta_i(a, .) \equiv 0$ in $(0, a_1 + \gamma)$, the first equation of the adjoint system become.

$$\frac{\partial q}{\partial t} - \frac{\partial q}{\partial a} - \frac{\partial q}{\partial s} - \Delta q + \mu(a, s)q = 0 \text{ in } \Omega \times (0, a_1 + \gamma) \times (0, S) \times (0, T).$$
(5)

 $T_0 < \min\{a_2 - a_1, \gamma\}$ we choose $a_2 = a_1 + \gamma$. And we need to estimate

q(x,0,s,t)

If $s \in (0, s_2, -a_1)$ and $t > \max\{a_1, s_1\}$ all the backward characteristics starting from (0, s, t) enters the observation domain and if $s \in (s_2-a_1, S)$ and $t > a_1+S-s_2$ (the green and blue lines), all the backward characteristics starting from (0, s, t) without the domain by the boundary s = S (red line) and then q(x, 0, s, t) = 0.

Proof of observability inequality: Estimation of q at finale time T

- 1. For the birth rate y_2 , we can split the section t = T by two section $U_1 = [0, A] \times [0, s_1 a_1] \times \{T\}$ and $U_2 = [0, A] \times [s_2 a_1, S] \times \{T\}$ and we use the previous estimation of q(x, 0, s, t) on $(0, s_2 a_1)$ and $(s_2 a_1, S)$ to obtain the observability inequality in time $T > A a_2 + S s_2 + a_1 + s_1$.
- 2. For the birth rate y_1 , we can not split the section t = T because the second member of the adjoint system is the sum of q(x, 0, s, t) with respect to the size variable given by q_1 then, we have the estimation of q_1 if $t > T_1$ and then observability inequality is true if $T > A a_2 + T_0 + T_1$.

Outline Motivation and description of age and size structured model

- 2.1 Motivation
- 2.2 Description of age and size structured model

3.1 Null controllability

Perspectives

• Extend the study to:

$$\frac{\partial y}{\partial t} + \frac{\partial y}{\partial a} + \frac{\partial (g(s)y)}{\partial s} - Ly + \mu(a,s)y = 0$$

where

$$Ly = \alpha(.)\Delta y - \nabla.(\chi(.)y)$$

• Modeling, control and simulation of tumour growth

Outline Motivation and description of age and size structured model

- 2.1 Motivation
- 2.2 Description of age and size structured model

3.1 Null controllability

[Bic22] S. Y. U. Biccari. "Controllability and Positivity Constraints in Population Dynamics with age, size Structuring and Diffusion". In: (2022).

[SIM22] U. B. SIMPORE Yacouba Yassine El gantouh. "Null Controllability for a Degenerate Structured Population Model". In: (2022).

