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1. Introduction

• Model order reduction (MOR)
Many engineering problems can be described by input-output systems.

A large-scale linear time-invariant (LTI) input-output system can be
formulated as {

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t),
(1.1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is a vector of inputs, and
y(t) ∈ Rp is a vector of outputs. A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n
are constant matrices. The transfer function of (1.1) is defined as

H(s) = C(sI −A)−1B.
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When modeling engineering systems, the resulting mathematical modes
(1.1) with high order are sometimes too expensive to simulate. It is
essential to reduce the dimension for computational purpose and obtain a
reduced-order model of the form{

˙̃x(t) = Ãx̃(t) + B̃u(t),

ỹ(t) = C̃x̃(t),
(1.2)

where x̃(t) ∈ Rr is the state vector with a drastically reduced state
dimension r � n. The smaller reduced system (1.2) should approximate
the input-output behavior of the original system (1.1) well.

In time domain, it is desired that for all feasible input functions u(t),

ỹ(t) ≈ y(t), for t ≥ 0.

With the help of the Laplace transformation, one can also state the
approximation problem in the frequency domain, e.g., via

H̃(iω) ≈ H(iω), for ω ∈ R,

where H(iω) and H̃(s) are the transfer functions of (1.1) and (1.2).
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• Balanced truncation (BT)
There exist different MOR technologies and here we focus on balanced

truncation (BT) MOR. The backbone of BT are the infinite controllability
Gramian P and observability Gramian Q of (1.1)

P =

∫ ∞
0

eAtBBTeA
Ttdt, (1.3)

Q =

∫ ∞
0

eA
TtCTCeAtdt, (1.4)

which are the unique solutions to the following two algebraic Lyapunov
equations:

AP + PAT +BBT = 0, (1.5)

ATQ+QA+ CCT = 0. (1.6)
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The Hankel singular values (HSVs) of (1.1) are the eigenvalues of the
product PQ, and they are system invariants under state space
transformations. The magnitude of the HSVs enables to identify states
that are weakly controllable and observable.

In BT this is achieved by first transforming (1.1) into a balanced
realization such that P = Q =

∑
= diag(σ1, · · · , σn). Then, truncating

all states corresponding to small values σj gives the reduced order model.
With exact Gramian factors, i.e., P = FFT, Q = GGT, BT is known

to always generate a stable ROM for which the error bound

‖ H̃(s)−H(s) ‖H∞= sup
ω∈R

(‖ H̃(s)−H(s) ‖2) ≤ 2
n∑

j=r+1

σj ,

holds.
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Solving above Lyapunov equations for the required Gramians is the
computationally most demanding part of BT. For large-scale systems one
therefore uses low-rank approximations of the Gramians instead, e.g.,

P ≈ FFT, Q ≈ GGT,

with low-rank solution factors F ∈ Rn×kp , G ∈ Rn×kq , rank(F ) = kp,
rank(G) = kq and kp, kq � n.

This strategy is backed up by the often numerically observed and
theoretically explained rapid eigenvalue decay of solutions of Lyapunov
equations which causes P,Q to have a small numerical rank. The
computation of the low-rank factors F,G can be done efficiently by some
numerical algorithms for solving large Lyapunov equations, such as
Alternating Direction Iteration method (ADI).

BT using low-rank factors F,G of the Gramians (1.5) and (1.6) is
illustrated in Algorithm 1, which called as low-rank square-root method
(LRSRM).
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Algorithm 1 Square-root balanced truncation with low-rank factors
(LRSRM)

Input: A,B,C, tol: tolerance for the approximation error of the ROM;
Output: ROM of order r: Ã, B̃, C̃;
1. Compute the low-rank factors F and G in (1.5) and (1.6);
2. Compute the SVD: GTF = UΣV T, Ur = U(:, 1 : r), Vr = V (:, 1 : r),
and Σr = Σ(1 : r, 1 : r); r is adaptively chosen by given tolerance: δ =
2
∑rN

j=r+1 σ̃j ≤ tol;

3. Construct projection matrices: Tr = FVrΣ
− 1

2
r , Sr = Σ

− 1
2

r Ur
TGT;

4. Construct the ROM: Ã = SrATr, B̃ = SrB, C̃ = CTr.
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2. Laguerre approximation of the matrix exponential
function

The i-th Laguerre polynomial is defined as follows

li(t) =
et

i!

di

dti
(e−tti), i = 0, 1, . . .

and the scaled Laguerre functions are defined as

φαi (t) =
√

2αe−αtli(2αt).

In frequency domain, the sequence of Laplace transforms of the scaled
Laguerre functions can be written as

Φα
i (s) = L(φαi (t)) =

√
2α

s+ α

(s− α
s+ α

)i
, i = 0, 1, . . .

The Laguerre functions are orthonormal over [0,∞)∫ ∞
0

φαi (t)φαj dt = δij .

Zhi-Hua Xiao (Yangtze University) Low-rank BT via Laguerre polynomials 2023.03 9 / 33



For Re(a) < 0, we have the Laguerre expansion

eat =

∞∑
k=0

akφ
α
k (t) t ≥ 0,

with the coefficients {ak}∞k=0 defined by

ak =

∫ ∞
0

eatφαk (t)dt =

√
2α

α− a

(a+ α

a− α

)k
= (−1)k

√
2α
(
a+ α

)k(
α− a

)−(k+1)
.

We now extend the above Laguerre expansion from eat to eAt. Then, if
A is stable, it has

eAt =

∞∑
k=0

Akφ
α
k (t),

with the coefficient matrices {Ak}∞k=0 satisfying

Ak = (−1)k
√

2α
(
αI +A

)k(
αI −A

)−(k+1)
,

and eAt can be optimally approximated in the L2 norm sense by truncating
above expansion as eAt ≈

∑N−1
k=0 Akφ

α
k (t).
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3. Low-rank BT of linear systems via low-rank Gramian
approximation

• Low-rank decomposition of the Gramians P,Q based on Laguerre
functions

First, we expand the matrix exponential function eAtB by a finite term
Laguerre functions as the following approximate form:

eAtB ≈
N−1∑
i=0

AiBφ
α
i (t),

where
Ai = (−1)i

√
2α
(
αI +A

)i(
αI −A

)−(i+1) ∈ Rn×n (i = 0, 1, . . . , N − 1)
are the Laguerre coefficient matrices. Then, it has

P =

∫ ∞
0

eAtBBTeA
Ttdt =

∫ ∞
0

(eAtB)(eAtB)Tdt

≈
∫ ∞
0

(N−1∑
i=0

AiBφ
α
i (t)

)(N−1∑
i=0

AiBφ
α
i (t)

)T
dt.
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According to the orthogonality of the Laguerre functions, we have

P ≈ FFT, (3.1)

where F =
[
A0B A1B · · · AN−1B

]
.

Similarity to the decomposition of P , the observability Gramian Q has
the following low-rank approximation form:

Q ≈ GGT, (3.2)

where G =
[
AT

0 C
T AT

1 C
T · · · AT

N−1C
T
]
. The Laguerre coefficient

matrices Ai can be calculated by the following recurrence formula:

A0 =
√

2α(αI −A)−1,

Ai =
[
(A+ αI)(A− αI)−1

]
Ai−1, i = 1, 2, . . . , N − 1.
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• The connection with the ADI iteration
The CF-ADI iteration for computing the low-rank factors ZjZT

j for the
solution P of the Lyapunov equation (1.5) is given by

z1 =
√
−2α1(A+ α1I)−1B, Z1 =

[
z1
]
,

βi =
(√−2αi+1√

−2αi

)
[I − (αi+1 + αi)(A+ αi+1I)−1],

zj = βj−1zj−1, Zj =
[
Zj−1 zj

]
, for j = 2, 3, . . . , N,

with CF-ADI parameters {α1, α2, . . . , αN}, Re{αj} < 0.
Assume that all CF-ADI parameters are the same as −α, then we have

z1 =
√

2α(A− αI)−1B = −A0B,

βi =
(√2α√

2α

)
[I + 2α(A− αI)−1] = (A+ αI)(A− αI)−1,

zj = βj−1zj−1 = (A+ αI)(A− αI)−1zj−1 = −Aj−1B, for j = 2, 3, . . . , N.

Therefore, except for the difference in the negative sign, the low-rank
factor F is the same as the low-rank approximation ZN of the CF-ADI
iteration with all parameters αj being the same as α.
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• Basic algorithm
According to the low-rank factors F and G, we can use the Algorithm 1

to generate the ROM. The reduction procedure can be described by
Algorithm 2.

Algorithm 2 Laguerre-Gramian-based LRSRM for linear systems (LG-
LRSRM(L))

Input: A,B,C,N, α, tol: tolerance for the approximation error of the
ROM;
Output: ROM of order r: Ã, B̃, C̃;
1. Compute the low-rank factors F and G from (3.1) and (3.2);
2. Compute the SVD: GTF = UΣV T, Ur = U(:, 1 : r), Vr = V (:, 1 : r),
and Σr = Σ(1 : r, 1 : r); r is adaptively chosen by given tolerance: δ =
2
∑rN

j=r+1 σ̃j ≤ tol;

3. Compute projection matrices: Tr = FVrΣ
− 1

2
r , Sr = Σ

− 1
2

r Ur
TGT;

4. Construct the ROM: Ã = SrATr, B̃ = SrB, C̃ = CTr.
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• The choice of the parameter α
The choice of the Laguerre parameter α directly affects the accuracy of

the approximation and stability of the ROM. According to the connection
with the CF-ADI, the Laguerre parameter α can be obtained by solving the
following minimax optimal problem

min
α>0

max
λ∈σ(A)

∣∣∣λ− α
λ+ α

∣∣∣, (3.3)

where σ(A) denotes the eigenvalues of A.

Algorithm 2 is a Petrov-Galerkin projection (Sr 6= Tr). The main
disadvantage is that it may lead to numerical errors and instabilities. To
alleviate such shortcoming, we use a modification of the dominant
subspaces projection model reduction (DSPMR) to modify the above
algorithm. The modified algorithm is given by Algorithm 3 as follows.
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Algorithm 3 Laguerre-Gramian-based DSPMR for linear systems (LG-
DSPMR(L))

Input: A,B,C,N, α, tol;
Output: Ã, B̃, C̃;
1. Compute low-rank factors F and G from (3.1) and (3.2);
2. Compute the SVDs: F = UFΣFV

T
F , G = UGΣGV

T
G ;

3. Choose r̃/2 ≤ k ≤ min{rF , rG}, r̃ is adaptively chosen by given
tolerance: δ = 2

∑rN
j=r+1 σ̃j ≤ tol;

4. Compute the QR decomposition:
[
UF (:, 1 : k), UG(:, 1 : k)

]
= QR,

V = Q(:, 1 : r);
5. Construct the ROM: Ã = V TAV , B̃ = V TB, C̃ = CV .
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An extension of the DSPMR method is called refined DSPMR. The
eponymous refinement is given by weighting factors 1/‖F‖F and 1/‖G‖F
which are selected as the Frobenius norm of the respective low-rank factors
for the controllability and observability Gramians. This normalization aims
to equilibrate the influence of controllability and observability which may be
skewed, i.e., due to different scaling of B and C. The corresponding
procedure is given by Algorithm 4 as follow.

Algorithm 4 Laguerre-Gramian-based refined DSPMR for linear systems
(LG-RDSPMR(L))

Input: A,B,C,N, α, r;
Output: Ã, B̃, C̃;
1. Compute low-rank factors F and G from (3.1) and (3.2);
2. Compute the SVD:

[
1
‖F‖F F

1
‖G‖F G

]
= UΣV T, S = U(:, 1 : r);

3. Construct the ROM: Ã = STAS, B̃ = STB, C̃ = CS.

Zhi-Hua Xiao (Yangtze University) Low-rank BT via Laguerre polynomials 2023.03 17 / 33



4. Low-rank BT of bilinear systems via low-rank Gramian
approximation

In this section, we extend the above approach from linear systems to the
following time invariant multi-input multi-output (MIMO) bilinear system ẋ(t) = Ax(t) +

m∑
i=1

Nix(t)ui(t) +Bu(t),

y(t) = Cx(t),

(4.1)

where t is the time variable, x(t) ∈ Rn is the state of the system, n is the
dimension of the state space. u(t) ∈ Rm and y(t) ∈ Rp are the input and
output functions, and ui(t) is the ith component of u(t).
A ∈ Rn×n, B ∈ Rn×m, C ∈ Rn×p, Ni ∈ Rn×n for i = 1, 2, . . . ,m, are
constant matrices.
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The controllability (P) and observability (Q) Gramians of bilinear
system (4.1) are defined as

P =

∞∑
i=1

∫ ∞
0
· · ·
∫ ∞
0

P̄iP̄
T
i dt1 · · · dti, (4.2)

Q =

∞∑
i=1

∫ ∞
0
· · ·
∫ ∞
0

Q̄iQ̄
T
i dt1 · · · dti, (4.3)

where
P̄1 = P1(t1) = eAt1B, Q̄1 = Q1(t1) = eA

Tt1CT,

P̄i = Pi(t1, . . . , ti) =
[
eAtiN1P̄i−1 eAtiN2P̄i−1 . . . eAtiNmP̄i−1

]
,

Q̄i = Qi(t1, . . . , ti) =
[
eA

TtiNT
1 Q̄i−1 eA

TtiNT
2 Q̄i−1 . . . eA

TtiNT
mQ̄i−1

]
.

They satisfy the following generalized algebraic Lyapunov equations:

AP + PAT +

m∑
i=1

NiPNT
i +BBT = 0,

ATQ+QA+

m∑
i=1

NT
i QNi + CTC = 0.
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According to (3.1), we have

P1 =

∫ ∞
0

P̄1P̄
T
1 dt1 =

∫ ∞
0

eAt1BBTeA
Tt1dt1 ≈ F1FT

1 ,

where F1 =
[
F1,0 F1,1 . . . F1,N−1

]
∈ Rn×Nm and

F1,0 =
√

2α(αI −A)−1B,

F1,j =
[
(A+ αI)(A− αI)−1

]
F1,j−1, j = 1, 2, . . . , N − 1.

Consider the first two terms in the series in (4.2), which are dependent on
the first two kernels of the Volterra series of the bilinear system

P2 =

∫ ∞
0

P̄1P̄
T
1 dt1 +

∫ ∞
0

∫ ∞
0

P̄2P̄
T
2 dt1dt2

≈ F1FT
1 + F2FT

2 ,

where F2 =
[
F2,0 F2,1 . . . F2,N−1

]
∈ Rn×N2m2

and

F2,0 =
√

2α(αI −A)−1
[
N1F1 N2F1 . . . NmF1

]
,

F2,j =
[
(A+ αI)(A− αI)−1

]
F2,j−1, j = 1, 2, . . . , N − 1.
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Then, for the truncated Gramian with the first l terms Pl of the bilinear
system, we have the following low-rank decomposition:

Pl =

l∑
i=1

∫ ∞
0
· · ·
∫ ∞
0

P̄iP̄
T
i dt1 · · · dti ≈ FFT , (4.4)

where F =
[
F1 F2 . . . Fl

]
, Fi =

[
Fi,0 Fi,1 . . . Fi,N−1

]
and

F1,0 =
√

2α(αI −A)−1B,

F1,j =
[
(A+ αI)(A− αI)−1

]
F1,j−1, j = 1, 2, . . . , N − 1

Fi,0 =
√

2α(αI −A)−1
[
N1Fi−1 N2Fi−1 . . . NmFi−1

]
,

Fi,j =
[
(A+ αI)(A− αI)−1

]
Fi,j−1, i = 2, 3, . . . , l.
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Similarity to the decomposition of Pl, the truncated observability
Gramian with the first l terms Ql of the bilinear system has the following
low-rank approximation form:

Ql =

l∑
i=1

∫ ∞
0
· · ·
∫ ∞
0

Q̄iQ̄
T
i dt1 · · · dti ≈ GGT , (4.5)

where G =
[
G1 G2 . . . Gl

]
, Gi =

[
Gi,0 Gi,1 . . . Gi,N−1

]
and

G1,0 =
√

2α(αI −AT)−1CT,

G1,j =
[
(AT + αI)(AT − αI)−1

]
G1,j−1, j = 1, 2, . . . , N − 1

Gi,0 =
√

2α(αI −AT)−1
[
NT

1 Gi−1 NT
2 Gi−1 . . . NT

mGi−1
]
,

Gi,j =
[
(AT + αI)(AT − αI)−1

]
Gi,j−1, i = 2, 3, . . . , l.
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Similar to the above LG-LRSRM and LG-DSPMR methods for linear
systems, the reduced bilinear model can be generated by the low-rank
factors F and G. The corresponding reduction methods are described by
Algorithm 5, Algorithm 6 and Algorithm 7, respectively.

Algorithm 5 Laguerre-Gramian-based LRSRM for bilinear systems (LG-
LRSRM(BL))

Input: A,B,C,Ni, N, l, α, tol: tolerance for the approximation error of
the ROM;
Output: ROM of order r: Ã, Ñi, B̃, C̃;
1. Compute the low-rank factors F and G from (4.4) and (4.5);
2. Compute the SVD: GTF = UΣVT, Ur = U(:, 1 : r), Vr = V(:, 1 : r),
and Σr = Σ(1 : r, 1 : r); r is adaptively chosen by given tolerance: δ =
2
∑rN

j=r+1 σ̃j ≤ tol;

3. Compute projection matrices: Tr = FVrΣ
− 1

2
r , Sr = Σ

− 1
2

r UrTGT;
4. Construct the ROM: Ã = SrATr, Ñi = SrNiTr, B̃ = SrB, C̃ = CTr.
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Algorithm 6 Laguerre-Gramian-based DSPMR for bilinear systems (LG-
DSPMR(BL))

Input: A,B,C,Ni, N, α, r;
Output: Ã, B̃, C̃, Ñi;
1. Compute low-rank factors F and G from (4.4) and (4.5);
2. Compute the SVDs: F = UFΣFVTF , G = UGΣGVTG ;
3. Choose r̃/2 ≤ k ≤ min{rF , rG}, r̃ is adaptively chosen by given
tolerance: δ = 2

∑rN
j=r+1 σ̃j ≤ tol;

4. Compute the QR decomposition:
[
UF (:, 1 : k), UG(:, 1 : k)

]
= QR,

V = Q(:, 1 : r);
5. Construct the ROM: Ã = VTAV, Ñi = VNiV, B̃ = VTB, C̃ = CV.
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Algorithm 7 Laguerre-Gramian-based refined DSPMR for bilinear systems
(LG-RDSPMR(BL))

Input: A,B,C,Ni, N, α, r;
Output: Ã, B̃, C̃, Ñi;
1. Compute low-rank factors F and G from (4.4) and (4.5);
2. Compute the SVD:

[
1

‖F‖F F
1
‖G‖F G

]
= UΣVT, S = U(:, 1 : r);

3. Construct the ROM: Ã = STAS, Ñi = STNiS, B̃ = STB, C̃ = CS.
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5. Numerical experiments

Example: Nonlinear Heat Transfer Model. In this example, a
bilinear model for a nonlinear heat transfer problem is constructed. The
physical system to be modeled in Figure 5.1 is the heat transfer along a 1D
beam with length L, cross sectional area S, and nonlinear heat conductivity
represented by a polynomial in temperature T (x, t) of arbitrary degree N

κ(T ) = a0 + a1T + · · ·+ aNT
N . (5.1)

Figure 5.1: The modeled beam with heat flux inputs and heat sink.

The right end of the beam (at x = L) is fixed at ambient temperature.
The model has two inputs: a time-dependent uniform heat flux u1(t) at the
left end (at x = 0) and a time-dependent heat source u2(t) distributed
along the beam.
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In our numerical simulation, the number of nodes of the original
nonlinear system is 100, yielding a bilinear system of dimension 10100 with
2 inputs and 1 output, taken as the first or the middle node in the
discretization. The computational times for constructing and simulating
ROMs by different methods and maximum relative errors are reported in
Table 5.1.

Table 5.1: Computational times and maximum relative errors of ROMs.

Method Order Time Relative error Speed up
Bilinear approximation system 10100 445.26 − −
LG-LRSRM(BL) 4 32.55 6.44× 10−2 13
LG-DSPMR(BL) 4 31.72 1.92× 10−1 14
LG-RDSPMR(BL) 4 33.44 1.88× 10−1 13
LRBT-TGrams 18 20.37 6.39× 10−3 21
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Figure 5.2: Transient responses of the nonlinear heat transfer model for the
temperature at the leftmost end for an input of 5 · 104W/m2, and the relative errors ε of
the ROMs with respect to the original system.

Figure 5.2 shows the steady state temperatures of the original nonlinear
heat transfer model at the leftmost of the beam for an input of
5 · 104W/m2, and the corresponding relative errors of these ROMs.
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Figure 5.3: Transient responses of the nonlinear heat transfer model for the
temperature at the middle of the beam for an input of 5 · 104W/m2, and the relative
errors ε of the ROMs with respect to the original system.

Figure 5.3 shows the steady state temperatures of the original nonlinear
heat transfer model at the middle of the beam for an input of
5 · 104W/m2, and the corresponding relative errors of these ROMs.
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Figure 5.4: Generalized Hankel singular values of the ROMs.

Furthermore, the approximate generalized HSVs of Algorithm 5 and
LRBT-TGrams are plotted in Figure 5.4.
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6. Conclusions

• A series of low-rank balanced truncation MOR algorithms for linear and
bilinear systems via Laguerre functions are presented.

• The proposed methods are much efficient due to that the low-rank
factors are constructed from a recurrence formula which is equivalent to
the CF-ADI iteration method.

• At the same time, our modified algorithms can produce stable ROMs
under certain conditions.

• Low-rank balanced truncation for time varying and nonlinear systems;

• Data-driven modeling and model order reduction of complex dynamical
systems;

• Model order reduction of structured network systems.
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