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© The Euclidean case
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e Concentration limit on RN
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Intuition — fleas jumping on a mattress |
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Intuition Deriving the equation

Intuition — fleas jumping on a mattress Il

G(y, X)M

X y

G(y, x) accounts for the probability that the fleas will jump to y from x.

If G(y,x) = J(d(x,y)) = equal movement in every direction

If, for example, G(y,x) > G(x; y) for x <y, we obtain a drift to the right.
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How many fleas run away from x?

u(x) = number of fleas at point x.

/ G(y, x)u(x)dy fleas running away from x
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How many fleas are coming to x?

u(y) = number of fleas at point y.

/ G(x, y)u(y)dy fleas comming in x
R
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The evolution equation

o) = [ Gleulen)dy = [ Grou(e )y xe Ryt 0

u(0, x) = up(x), xeR
(NLTR)
If we further have that G is a dissipative kernel, i.e.,

/[ny y,x)]dy =0, Vx € R,

the equation is more compact:

oOru(t, x) = /R G(x, y)[u(t,y) — u(t,x)]dy, xeR,t>0

(NLTR2),
u(0, x) = up(x), xeR
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Concentrating the jumps |

G(y,x) = H(x—y)
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Concentrating the jumps Il
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The transport equation

In the limit: drift effect = transport equation:
Oru(t, x) = —aoxu(t, x)

a= _/]RH(X)XdX
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The Euclidean case Non-local convection-diffusion

Non-local convection-diffusion on RV

[lgnat & Rossi, 2007] — convection-diffusion equation on RV
() = [ Hy=R(ul) = ey

+ [ B=[u(e ) — ey xeRY >0
RN

u(0, x) =uo(x), xe RN

(1)

fr)=1d9"tr.qg>1

Jis a radial function, G is not radial.
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The Euclidean case Non-local convection-diffusion

Concentrating the kernels on RV

Dot (£ ) = /R N2 (y_x> (u(t,y) — u(t, x))dy

€

4 /RNe—N—lﬁ <y;X> [Au(t,y)) — Au(t,x)]dy, xe RN t>0;

| u°(0, x) =uo(x), xe RN

(2)
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The Euclidean case Concentration limit on RV

Convergence to a local problem on RV

{ Oru(t, x) = AjAu(t,x) + Vi Au)(t,x) - X ,x€ RN t>0

u(0, x) = up(x) ,x€RN
A= [ DI
= — X)X X
J 2N RN
Xe=— G(x) x dx € R constant vector.
RN

Essential property for the convergence:

[Gly — %) — G(x— y)ldx=0,Vy € RV
RN
i.e. G(x,y) = G(y—x) is a dissipative kernel,
the L2 norm of the solution decreases in time.
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L3 GGy PR T BT
The Hyperbolic space |

The half-space model

1
gij(x) = 2 0i-
N

V= x3Vf, div(Y)= x\dive (%Y>, Af= xydive <XN12Vef>-

/ fx)dpu(x / f(X

Geodesics:

@ vertical lines

@ half-circles centred and perpendicular on the ground
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L3 GGy PR T BT
The Hyperbolic space Il

Figure: A geodesic through x in the half-space model, tangent to V
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The hyperbolic case Non-local convection diffusion

Non-local convection-diffusion problem on hyperbolic space

Oru(t, x) = (d(x ) (u(t, y) = u(t, x))dply)

J
HN
+/ G(x y) fu(t, y)) = Alu(t, )l du(y), xeHY, t>0;
HN

x € HV.

(4)

\U(O7X) ZUO(X)7
Both J~~ J: and G ~~ G, are concentrated as ¢ — 0 to obtain:

{ut(t, x) = AjAu(t, x) — div(fu(t)) X¢)(x), xe HN,t>0;
u(0, x) = wup(x), xe HN.

where A; > 0 and X¢ is a bounded C! vector field.
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Dissipative kernels on the hyperbolic space
Construction of a dissipative kernel on H" |
Aim:
| [663) = Gy 9ldn(x) = 0.y € "

Definition (Geodesic flow)

(x V) € THV
7x,v be the unique geodesic s.t. v(0) = x, 7/(0) =

y =1 U(t), W= (1)

Pe(x, V) = (v, W)
If t=1, |V| = d(x,y). In this case, V., := V accounts for (y — x).

epr( Vx,y) =Yy
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The hyperbolic case Dissipative kernels on the hyperbolic space

Construction of a dissipative kernel on HN I

Remark

d)l(X? VX7,V) = (y7 _VyyX)

This relation accounts for

(y=—x)=—(x—v)

We define

G(Xa )/) = G(X7 Vx,y)
G: THN — [0, 00)

G(®(x, V) = G(x, V), Vt € R.
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The hyperbolic case Dissipative kernels on the hyperbolic space

G is a dissipative kernel

E(X7 VX7y) = E(y’ - V}’:X)

Proposition

/ [Gx.y) — Gly:)ldpu(x) = 0. ¥y € HY

Proof idea.

[ L6~y = Gl Vyldu(x) = 0

equivalent to

/ [G(y, ~V) — Gly, V)]
T, HN

Joxp, (V)] @V =0
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Dissipative kernels on the hyperbolic space
Concentrating the kernel G

Ge(x,y) =e N1 G (X, ivx,y)
Still invariant to the geodesic flow.
Particular case: G compactly supported around the diagonal of HV x HV:
d(x,y) > M= G(x,y) =0

G(x, V) =0, if [V > M
d(x,y) >eM= G.(x,y) =0
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The hyperbolic case Concentration limit on HN

Non-local non-linear convection-diffusion on HV

up € LN N L°(HN), Ar)=|A9" r, g> 1.

() =2 [ () () - e ()aut)

+ /H Gl [ (69) ~ A (e )] dnly), £ 0,x€ Y,
U (0, x) =up(x), xe HN.
(NLCD)
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The hyperbolic case Concentration limit on HN

Local non-linear convection-diffusion on HV

{ut(t, x) = AjAu(t, x) — div(fu(t)) Xe)(x), xeHN, t>0; (LCD)

u(0, x) = up(x), x e HN,

Aj= %I - J(IX)|xPdx  Xg(x) = _/I'X]HIN G(x, W) Wdu(W)
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The hyperbolic case Concentration limit on HN

Concentration limit for convection-diffusion on HV

Theorem

Under some integrability constraints on J and G, the sequence (u°)z>o of
solutions of (NLCD) converges weakly in L%([0, T] x HN) for every T > 0

to the unique distributional solution of (LCD) with the same initial data
up.
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The hyperbolic case Compactness result on Riemannian manifolds

Compactness result on Riemannian manifolds |

Inspired from [Ignat & Ignat & Stancu-Dumitru, 2015] — Euclidean case.

M is a N-dimensional, complete, connected Riemannian Manifold.
J:]0,00) — [0,00) bounded away from zero in a neighbourhood of 0.
(f)e=0 a bounded sequence in L2([0, T] x M) satisfying:

e | I (T 480 ) - (10 Pl < K < o0
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The hyperbolic case Compactness result on Riemannian manifolds

Compactness result on Riemannian manifolds ||

Then
Q If ¥ — win L2([0, T], L2(M)), then:

u e L2([0, T], HY(M))

T
| Ivete) e < i
@ If DC M open, bounded and

|0t || i2(10, 71,1-1(p)) uniformly bounded in e >0

then (F).>0 converges strongly in L2([0, T] x D) on a subsequence,
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The hyperbolic case Compactness result on Riemannian manifolds

Further directions of research

@ Study the convergence of u°* — u in other LP or Sobolev norms.

@ Study the long-time asymptotic behaviour of the difference

1U(E) = u(O)] Loy

U is the solution of the non-local convection-diffusion equation with
initial data ug and some fixed J and G.

u is the solution of the local convection-diffusion equation with the
same initial data and the corresponding A; and Xg.
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The hyperbolic case Compactness result on Riemannian manifolds
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