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Control and Stabilization of Linear System

Consider the system

d

dt
z(t) = Az(t) + Bu(t), z(0) = z0 ∈ Z . (1)

• Stabilization: lim
n→∞

‖z(t)‖ = 0.

• Feedback: u(t) = Kz(t).

• Closed-loop system:
d

dt
z(t) = (A + BK )z(t)

.
= Az(t).
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Stability of closed-loop system
Finite system: A ∈ M(n, n), z(t) = eAtz0.

Infinite system: A generates a C0 semigroup of contractions on H.

Definition

eAt is

• logarithmically stable of order β if

‖eAtA−1‖ ≤ C

[log(t + 1)]β
, t →∞.

• polynomially stable of order β if

‖eAtA−1‖ =
C

(t + 1)β
, t →∞.

• exponentially stable if there are constants M, ω > 0 such that

‖eAt‖ ≤ Me−ωt , t ≥ 0.
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Damping mechanism
• Type : viscous damping, Boltzmann damping, Kelvin-Voigt

damping, thermal damping...
• Position: global, local.

Wave equation with global viscous damping

{
wtt −∆w + awt = 0 in (0,∞)× Ω,

w = 0 on (0,∞)× Γ,

The semigroup exponentially stable [Chen, Fulling. etc, 1991]

Wave equation with global Kelvin-Voigt damping

{
wtt − div(∇w + a∇wt) = 0 in (0,∞)× Ω,

w = 0 on (0,∞)× Γ,

The semigroup is analytic and exponentially stable [Russell, Huang,
1988], [Chen, Liu and Liu, SICON, 1998]), [B.Z.Guo, J.M.Wang and
G.D.Zhang,ZAMP, 2010].
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Wave equation with local viscous damping

{
wtt −∆w + a(x)wt = 0 in (0,∞)× Ω,

w = 0 on (0,∞)× Γ,

where a(x) =

{
b(x) ≥ 0, x ∈ Ω1,

0, x ∈ Ω2,

• Exponentially stable under Geometrical Control Condition [Bardos,
Lebeau and Rauch, 1993]

• Logarithmically stable if damping subdomain is arbitrary [X.Fu,
2009,2011)
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Wave equation with local Kelvin-Voigt damping{
wtt − div(∇w + a(x)∇wt) = 0 in (0,∞)× Ω,

w = 0 on (0,∞)× Γ,

• 1-d, a = 1 on Ω1 and a = 0 on Ω2 ⇒ Non-exponentially stable
[Chen, Liu and Liu, 1998].

• a(·) ∈ C 2, a ≥ 0, GCC ⇒ Exponentially stable [Liu and Rao,
2004].

• wave-heat transmission system ⇒ Non-exponentially stable
[Rauch, Zhang and Zuazua,2005], [Zhang and Zuazua, 2007].
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These results reveals that too strong control could destroy the property
of the system, such as exp. stability. Stability and Regularity of wave
equation with local K-V damping depends on

• location of the damping

• smoothness of the material coefficient near the interface

Problem:

• How about the case a(·) ∈ C (Ω)\C 2(Ω)??

• The relationship between a(·) and stability, regularity of the
semigroup?
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Theorem

Let Ω ⊂ RN be a bounded convex connected domain with partition
Ω = Ω1 ∪ Ω2 and a = 1 on Ω1 and a = 0 on Ω2.

(i) The semigroup is not exponentially stable.

(ii) If ∂Ω1 and ∂Ω2 are convex curvilinear polygons or curved plane
polyhedrons, Γ1, γ 6= ∅ and (m · ν2)|Γ2 ≤ 0, where m(x) = x − x0,
x0 ∈ lR2 or lR3. Then, the semigroup is polynomially stable with
order 1

2 .

(ii)’ If ∂Ω = Γ1, ∂Ω2 = γ, Γ1 and γ are of C 2 class, then the semigroup
is polynomially stable with order 1.

[Q.Z.,Nonal.Anal.RWA,2017], [Q.Z.,ZAMP,2018], [Z.Han,K.Yu,Q.Z.,
ZAMM, 2022]
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Wave equation with local K-V damping with or without GCC

Theorem

Let Ω ⊂ RN be a bounded convex connected domain with partition
Ω = Ω1 ∪ Ω2. If a(·) ∈ C∞0 (Ω) is nonnegative and supp a 6= ∅, then the
semigroup is logarithmically stable of order 4

5 .

[L.Robbiano, Q. Z.]
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String with local K-V damping

 wtt(t, x) = [wx(t, x) + a(x)wt,x(t, x)]x , x ∈ (−1, 1)
w(t,−1) = w(t, 1) = 0, t ∈ R+

w(0, x) = w0(x), wt(0, x) = v0(x),
(2)

where the damping coefficient function a(x) satisfies a(x) = 0 for
x ∈ [−1, 0], a(x) > 0 for x ∈ (0, 1], and for α > 0,

lim
x→0+

a(x)

xα
= k > 0 (H)

Previous results:

• If a(·) satisfies (H) with some α = 0. then the semigroup of system
(2) is polynomially stable with order 2 [Z. Liu and B. Rao, 2005]

• If a(·) satisfies (H) with α > 1, then the real part of the eigenvalues
of system (2) is unbounded below [M. Renardy, 2004].
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Theorem

Suppose that a(·) satisfies (H) with some α ≥ 0. Then,

(i) For 0 < α < 1, the semigroup of system (2) is polynomially stable of
order 1

1−α

(ii) For α ≥ 1, the semigroup is exponentially stable.

(iii) For α > 1, the semigroup is eventually differentiable.

α value Regularity Stability

(1,∞) eventually differentiable exponentially stable
1 no smoothing exponentially stable

(0, 1) no smoothing polynomially stable of order 2−α
1−α

0 no smoothing optimal polynomially stable of order 2

[K.Liu,Z.Liu,Q.Z., ESIAM,COCV,2017], [Z.Liu,Q.Z.,SICON,2016],
[Z.Han,Z.Liu,Q.Z.,ZAMM,2022],
[M.Ghader,R.Nasser,A.Wehbe,MMAS,2021]
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Lemma
Let A : D(A) ⊂ H → H generate a bounded C0-semigroup etA on Hilbert
space H. Assume that iω ∈ ρ(A), ∀ ω ∈ R. Then

(i) (Pazy) etA is differentiable for t > t0 > 0 ⇔

ρ(A) ⊃ Θς,b = {λ ∈ C : Reλ ≥ ς − b ln |Imλ|}

sup
λ∈Θς,b,Reλ<0

|Imλ|−1‖(λI − A)−1‖L(H) <∞.

(ii) (Huang-Prüss) etA is exponentially stable ⇔

lim
ω∈R,|ω|→∞

‖(iωI − A)−1‖L(H) <∞.

(iii) (Borichev-Tomilov) etA is polynomially stable of order 1
β
⇔

lim
ω∈R,|ω|→∞

|ω|−β
∥∥(iωI − A)−1

∥∥
L(H)

<∞.

(iv) (Batty-Duyckaerts) etA is logarithmically stable of order 1
β
⇔

lim
ω∈R,|ω|→∞

e−c |ω | β∥∥(iωI − A)−1
∥∥
L(H)

<∞.
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Lemma

Let x
α
2 y ′ ∈ L2(0, 1) satisfy y(1) = 0. Assume that δ ≥ α− 2 when

α > 1 and δ > −1 when 0 ≤ α < 1. Then there exists positive constant
C , independent of y , such that∫ 1

0

xδ|y(x)|2dx ≤ C

∫ 1

0

xα|y ′(x)|2dx . (3)

Lemma

Assume ε > 0 be arbitrary, function y satisfies x
1+ε

2 y ′ ∈ L2(0, 1) and
y(1) = 0. Then for any δ ≥ −1 + ε, there exists positive constant C ,
independent of y , such that∫ 1

0

xδ|y(x)|2dx ≤ C

∫ 1

0

x |y ′(x)|2dx . (4)

[V.D.Stepanov,Siberian Math.J.,1987], [M.Renardy,2004],
[Z.Liu,Q.Z.,SICON,2016]
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Abstract system with local damping

Consider an abstract system of second order equation:{
utt + Lu + But = 0, t > 0,

u(0) = u0, ut(0) = u1,
(5)

where L : D(L) ⊂ H0 → H0 is a self-adjoint, positive, densely defined,
linear (unbounded) operator with compact resolvent. B is nonnegative.

Example:
utt −∆u + b1(x)ut − div (b2(x)∇ut) = 0 in (0,∞)× Ω,

u = 0 on (0,∞)× ∂Ω,

u(0) = u0, ut(0) = u1 in Ω,

where b1, b2 ≥ 0.



Background Wave with local Kelvin-Voigt damping Abstract system with local damping

The energy function is

E (t) =
1

2
(‖ut‖2 + ‖L 1

2 u‖2).

and it is dissipated according to the following law:

d

dt
E (t) = −〈But , ut〉.

When damping operator B is positive and B ∼ Lα with α ∈ R, the
associated C0 semigroup eAt is

1 analytic for 1
2 ≤ α ≤ 1,

2 of Gevrey class of order δ > 1
2α for 0 < α < 1

2 ,
3 not differentiable for α = 0,
4 exponentially stable for 0 ≤ α,
5 polynomially stable with optimal decay rate 1

2|α| for α < 0

([G. Chen, D.L. Russell, Q. Appl. Math. 1981], [S.Chen, R.Triggiani,
Pac. J.Math. 1989], [S. Chen, R. Triggiani, Proc. Am. Math. Soc.
1990], [F. Huang, Acta Math. Sci. 1985], [F. Huang, SICON,
1988], [F. Huang, K. Liu, Ann. Differ. Equ. 1988], [K. Liu, Z. Liu, JDE
1997], [Z.Liu, J. Yong, Adv. Differ. Equ. 1998], [Z.Liu, Q. Zhang,
ZAMP, 2015], etc.)
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Question: If the the influence of the dissipative operator B is not
enough, one can expect a weaker decay rate.

� Assume that the spectrum of L consists in a sequence of distinct
eigenvalues {λk}k≥1, with the least eigenvalue λ1 > 0, numbered in an
increasing order and λk → +∞ as k →∞, each eigenvalue λk having
multiplicity mk ≥ 1.

� We assume the operator B satisfies{
B : H1

.
= D(L

1
2 )→ H−1

.
= (H1)′ is bounded and self-adjoint,

〈Bφ, φ〉 ≥ 0, ∀φ ∈ H1.
(H1)
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Previous results:

• Strong stability.
[S.Chen, K. Liu, Z. Liu, SIAM J. Appl. Math.,1999]

• Exponential stability:

dU

dt
= A1U(t) + B1U(t) for t > 0.

where A∗1 = −A1, compact resolvent,

inf{|µj − µk | : j , k = 1, 2, 3, . . . , j 6= k} = γ > 0. (*)

‖B1φ‖ ≥ δ > 0, for any unit eigenfunction φ of A1. (**)

[G. Chen, S. A. Fulling, F. J. Narcowich, S. Sun, SIAM J. Appl.
Math, 1991]
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Main Results

We can reformulate abstract second order system in a semigroup setting
on the Hilbert space

H .
= H1 × H0,

(U1, U2)H = (L
1
2 u1, L

1
2 u2) + (v1, v2), ∀ Ui = (ui , vi ) ∈ H, i = 1, 2.

Define an unbounded linear operator A : D(A) ∈ H→ H by{
A(u, v) = (v , −Lu − Bv),

D(A) = {(u, v) ∈ H | v ∈ H1, Lu + Bv ∈ H0} .

Then, the abstract system of second order can be written as a first-order
linear evolution equation on the space H:

dU

dt
= AU(t) for t > 0, U(0) = U0 .

= (u0, u1) ∈ H.

A generates a C0 semigroup of contractions on H.
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Theorem.

Assume that (H1) holds. Let k0 ≥ 1 be an integer, γ1 ≥ 0, γ2 ∈ R.
Suppose that

λ∗
.

= inf
k≥1

λk
λk+1

> 0, (H2)

λk−1

λk − λk−1
+

λk+1

λk+1 − λk
≤ C λγ1

k , ∀ k ≥ k0. (H3)

βk
.

= min
{
〈Bφ, φ〉 | φ ∈ N(L− λk I ), ‖φ‖ = 1

}
> 0, ∀ k ≥ k0. (H4)

λγ2

k ≤ Cβk , ∀ k ≥ k0. (H5)

Set m
.

= max{3− 2γ2 + 4γ1, 1 + 4γ1}. Then for all (u0, u1) ∈ D(A), the
solution eAt(u0, u1) to the abstract system (5) satisfies

‖eAt(u0, u1)‖H ≤
C

t
1
m

‖(u0, u1)‖D(A), ∀ t ≥ 1. (6)

[O.Kavian,Q.Z.,JMAA,2022]
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Application I: Wave Equation with Local Damping
Consider

utt −∆u + a(x)(−∆)θut = 0 in (0,∞)× Ω,

u = 0 on (0,∞)× ∂Ω,

u(0) = u0, ut(0) = u1 in Ω,

(7)

where 0 ≤ θ ≤ 1 is a real number,

Ω = (0, L1)× · · · × (0, LN) ⊂ RN , Lj > 0, 1 ≤ j ≤ N. (8)

Assume function a(·) = χΩ0 and

Ω0 = (`, `+ δ)× (0, L2)× · · · × (0, LN), 0 ≤ ` < `+ δ ≤ L1. (9)
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Corollary

Let domains Ω, Ω0 be defined by (8) and (9) and satisfy

L2
i

L2
j

∈ Q for 1 ≤ i < j ≤ N. (10)

Then, the solution of (7) satisfies

‖(u(t), ut(t))‖H ≤
C

t
1

7−2θ

‖A(u0, u1)‖H, ∀ t ≥ 1,

where H = H1
0 (Ω)× L2(Ω).
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Corollary

Let domains Ω, Ω0 satisfy (8), (9) and

L2
i

L2
j

is an algebraic number of degree greater or equal to 2. (11)

The solution of (7) satisfies

‖(u(t), ut(t))‖H ≤
C

t
1

11−2θ+ε

‖A(u0, u1)‖H, ∀ t ≥ 1.
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Application II: Euler-Bernoulli Beam with Local Damping

Consider
utt + ∂xxxxu + a(x)(∂xxxx)θut = 0 in (0,∞)× (0, π),

u(0) = uxx(0) = u(π) = uxx(π) = 0 in (0,∞),

u(0) = u0, ut(0) = u1 in (0, π),

(12)

where 0 ≤ θ ≤ 1 is a real number, function a(·) = χ(`,`+δ) with
0 ≤ ` < `+ δ ≤ π. Set

H0 = L2(0, π), H1 = H2(0, π) ∩ H1
0 (0, π),

and operators

Lu = ∂xxxxu, D(L) =
{

u ∈ H1 | u ∈ H4(0, π), uxx(0) = uxx(π) = 0
}
,

Bu = a(x)(∂xxxx)θu, D(B) = H2(0, π) ∩ H1
0 (0, π).

Then L is a selfadjoint, positive operator with a compact resolvent. B
satisfies condition (H1).
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Corollary

Assume that a(·) = χ(`,`+δ). Then the solution of (12) satisfies

‖(u(t), ut(t))‖H ≤
C

t
1

4−2θ

‖A(u0, u1)‖H, ∀ t ≥ 1,

where H = H1 × H0.
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