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Abstract

This report summarizes the research activities and results obtained during the internship in the Research

Center for Mathematics of Data in Erlangen. We present our progress on the application of Physics-Informed

Neural Networks (PINNs) to solve various forward and inverse problems in PDEs, where we take the well-

understood 1 dimensional wave equation as an example for numerical experiment and error analysis.

For forward problems (computing numerical solutions of given systems), we first establish a general

framework of PINNs- that are trained using the loss functions to respect the governing physic laws and

match the initial and boundary conditions. This model is able to solve the forward initial boundary valued

problem (IBVP), and has shown promising numerical results in different cases even in the extreme case of no

data. The requirement of accurate and fast prediction of numerical solutions is studied in two approaches:

1) Analyzing and evaluating the performance of the PINNs model by comparing its output to the analysis

solution and examining the training and validation error; 2) in parallel, we review various structure and

size of NN (number of nodes and layers) and investigate the required computational time, in order to

achieve a satisfying performance of our model. More complicated cases, e.g. mixed boundary conditions, or

degenerating wave equations, can be solved in the same framework.

For inverse problems, we generalize the PINNs algorithm to calculate the boundary control to realize

the null controllability of the system in a given finite time. Additionally, we combine the model-driven and

data-driven approach in solving the parameter identification problem.

This proposed PINNs methodology is an elegant and flexible way to include physical knowledge in

machine-learning algorithms and accelerate the approximation and accuracy when real data are used.

The results and numerical experiments presented in this report should lead to not only a deep theoretical

understanding (e.g. convergency and accuracy study) in the future, but also to a practical usage of PINNs

framework to solve both forward and inverse physical problems from real world applications.

Key Words

physics-informed neural networks, machine learning, wave equation, boundary controllability, parameter

identification
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1 Introduction and Main Results

Accurate and fast predictions of numerical solutions are of significant interest in many areas of science and

industry. On one hand, most theoretical methods used in the industry are the result of deriving differential

equations that are based on conservation laws, physical principles, and/or phenomenological behaviors for

a particular process. On the other hand, real-time capable methods and algorithms are required in modern

industrial applications. In the view of this, very recently, Physics-Informed Neural Networks (PINNs) architec-

tures, which combine the real data and the partial differential models (PDEs) together with a respective set of

boundary and initial conditions, have started to arise frequently in many areas of science and engineering

(see [17], [4], [2] and [9]) and emerged as a powerful tool for developing flexible PDE solvers (see NVIDIA [12]

and DeepXDE toolbox [5]).

While the focus of other methods employing neural networks for solving PDEs is on mitigating the curse

of dimensionality in high dimensions, the strength of PINNs lies in their flexibility in that they can be applied

to a great variety of challenging PDEs, whereas classical numerical approximations typically require tailoring

to the specifics of a particular PDE. e.g., strong nonlinearities, convection dominance or shocks.

The intrinsic Machine-Learning (ML) nature of PINNs enables huge speed-ups for simulations at infer-

ence time (i.e., after training) while the introduced physics ensures the conservation of the physical laws

behind the problem. For the sake of simplicity, we take the wave equation as a basic model, the behavior

of solution is well understood in theoretically and practically. Moreover, we mainly focus on revisiting the

classical PINNs framework for solving forward and inverse problems, and on generating a solver in Python

(see in our open-source on github: github.com/DCN-FAU-AvH/PINNs_wave_equation.)

The objectives and main results of this research internship is threefold.

• First, we revisit the classical PINNs framework for solving forward initial boundary valued problems,

and build a solver in Python.

– Establish the PINNs approach for solving the forward 1d wave equation with various boundary

conditions

– Evaluation on the performance of PINNs: Error analysis and Numerical experiment

– Closer look into the computational time and accuracy by changing the size or structure of NNs.

– Approximating the degenerating 1d wave equation with mixed boundary conditions via PINNs

• Secondly, we consider inverse problem addressed on the wave equation:

– Following the work done in [6], we consider the null controllability of the wave equation via the

PINNs and plot the desired boundary control numerically.

– Furthermore, we solve the parameter identification problem for one unknown parameter (the

speed of wave propagation) by a modified loss function, which measures the error on the real

data set. In this way, we combine the physics-driven loss and the data-driven loss in this toy

example.

• Thirdly, the numerical tools developed here are upload to the DCN-github as an open source for further

research in theoretical and practical way. See in github.com/DCN-FAU-AvH/PINNs_wave_equation.

The main work is realized in Python programming language. To solve the forward problems we compiled

the machine learning model of Physics-informed neural networks on two optimization algorithms "adam"
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and "L-BFGS-B" respectively. We compare the performance of the ML models compiled using only "adam"

algorithm and combined optimization algorithms ("adam"+"L-BFGS-B") respectively, by analyzing the

resulting outputs of each of these models, on the training set and comparing them to the true outputs of this

set. We investigate the performance of this PINNs framework on the training and validation set using the loss

function of our setting on the training set and the summation of the square loss between the predicted and

true output of a disjoint set from the training set respectively [16]. In order to solve the inverse problem we

employ "adam" optimization algorithm only.

The layout of the report follows as such:

Section 2-3 are devoted to the detailed work and results obtained on each of the above objectives. In section

4, we describe the extension and perspective of the PINNs In section 5, we summarize the activities during

the internship. And an overview of numerical results is listed in the Appendix.
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2 Forward problems of 1d Wave Equation: Approximating solution via Physics-

Informed Neural Networks

In this section, we introduce and revisit the classical PINNs framework for solving forward initial boundary

valued problems of one dimensional wave equation:

yt t (x, t )−a(x)yxx (x, t ) = 0, t > 0,0 ≤ x ≤ 1

with given initial data (y, yt )(0, x) = (y0(x), y1(x)),0 ≤ x ≤ 1. To be specific, in section 2.1 we take a(x) as a

positive constant function, which implies a classical linear wave equation with well-known analytic solution.

While in section 2.4 we extend our work to the model with static degenerating, i.e. a(x) = |x − x0|α with

positive constant α and fixed damage point x0 ∈ (0,1).

In the machine learning language, PINNs is composed of the following steps:

(1) design an artificial neural network y(t , x;θ) as a surrogate of the true solution y(t , x).

(2) build a training set that is used to train the neural network

(3) define an appropriate loss function which accounts for residuals of the PDE, initial, boundary, and

final conditions, and

(4) train the network by minimizing the cost function defined in the previous step.

The above algorithm for solving forward problems with various boundary conditions (Dirichlet or Neu-

mann type) and its realization will be shown in Sections 2.1 and 2.3. Once the surrogate model of the original

PDE system (i.e. PINN framework) is established, we evaluate the performance of PINNs by testing the error

and computational time, and try to improve the quality of PINN by changing the architecture of the NN (for

example: keep the size of NN ( N nodes), then make a shallow net (N nodes on one layer) or deep net (several

layers)) and also change the numbers of nodes in the NNs. The results are listed in the section 2.2.

2.1 PINN Algorithm for solving forward problems and its Realization.

2.1.1 Model: 1D wave equation with Dirichlet BC

Consider the following wave equation with the Dirichlet boundary conditions:

yt t (x, t ) = 4yxx (x, t ), 0 ≤ x ≤ 1, 0 < t < 2

y(0, t ) = 0, 0 ≤ t ≤ 2

y(1, t ) = 0, 0 ≤ t ≤ 2

y(x,0) = si n(πx), 0 < x < 1

yt (x,0) = 0, 0 < x < 1

(1)

The exact solution for y(x, t ) is given by si n(πx)cos(2πt ) [15]. In the following, we will introduce the PINN

framework to compute the numerical solution to the system (1).

2.1.2 PINN algorithm and loss function

Neural Network. To obtain y(x, t ) that solves (1) through PINN, we chose the structure of the neural network

to have two nodes in the input layer (x, t) = (x1, x2) and one node in the output layer which contains the

prediction for the value of y(x, t ) = y(x1, x2). There were four hidden layers included in the structure, where

each of them had 50 nodes.
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Figure 1: Neural Network structure

Here, we consider a deep feedforward neural network (DeepPDE) whose main goal is to approximate

some function, in our case y(x, t ) for any input (x, t ). This model is called feedforward because information

flows through the function being evaluated from (x, t ), through the intermediate computations used to define

y(x, t ), and finally to the output ŷ(x, t ) ≈ y(x, t ). There are no feedback connections in which outputs of the

model are fed back into itself [7].

The general structure of this neural network consists of d +1 input channels x = (x, t ) ∈Rd+1 and a scalar

output ŷ(x, t ;θ). In our case, d = 1.

To be specific, the solution ŷ(x, t ;θ), which corresponds to the output of the neural network, is constructed

as described in [6], mainly:
input layer: N 0(x) = x = (x, t ) ∈Rd+1,

hidden layers: N ℓ(x) =σ(W ℓN ℓ−1(x)+bℓ) ∈RNℓ , ℓ= 1, ...,L−1, with L = 4, and

output layer: ŷ(x ;θ) =N L(x) =W LN L−1(x)+bL ∈R
(2)

where:

• N ℓ: Rdi n →Rdout is the ℓ layer with Nℓ nodes,

• W ℓ ∈ RNℓ×Nℓ−1 and bℓ ∈ RNℓ are the weights and the biases and θ = {W ℓ,bℓ}ℓ=1,...,L=4 are the parame-

ters of our neural network, and

• σ is an activation function which acts component-wise. In our implementation, we consider

σ(s) = t anh(s) for s ∈R.

Training dataset. The general training set τ of this model is selected in the interior domain τi nt ⊂ (0,1)×(0,2)

and on the boundaries τx=0 ⊂ {0}×[0,2], τx=1 ⊂ {1}×[0,2], τt=0 ⊂ (0,1)×{0}. Thus τ= τi nt ∪τx=0∪τx=1∪τt=0.

The training set we used consisted of 300 samples {(xi , ti ); y(xi , ti )}300
i=1, where y(xk , tk ) is the solution of (1) at

(xk , tk ). 200 training samples were chosen from (0,1)× (0,2) and the rest was taken from the boundary of the

domain. The following plot shows the training samples (x, t ):

Loss function. The loss function we needed to minimize during the training process is expressed as

the summation of the square of the difference pertaining to each of the equations in (1) that the prediction

7



PINN Dania Sana

(a) Training set (b) Test set

Figure 2: Training dataset and Test dataset

should satisfy. This condition we pose on this model, enables us to find the optimal parameters of the neural

network. In other words, given the input (xi , ti ), let y(xi , ti ) and ŷ(xi , ti ) be the true solution of (1) and the

output of the neural network respectively. The loss function used for training the NN with parameter θ is

given by

L(θ;τ) = Li nt (θ;τi nt )+Lx=0(θ;τx=0)+Lx=1(θ;τx=1)+Lt=0(θ;τt=0)+Lpar
t=0 (θ;τt=0), (3)

where

Li nt (θ;τi nt ) = 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷt t (xi , ti )−4ŷxx (xi , ti ))|2, (4)

Lx=0(θ;τx=0) = 1

|τx=0|
∑

(xi ,ti )∈τx=0

|ŷ(xi , ti )|2, (5)

Lx=1(θ;τx=1) = 1

|τx=1|
∑

(xi ,ti )∈τx=1

|ŷ(xi , ti )|2, (6)

Lt=0(θ;τt=0) = 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷ(xi , ti )− si n(πxi )|2, (7)

Lpar
t=0 (θ;τt=0) = 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷt (xi , ti )|2. (8)

Thus, the optimal parameters θ∗ of the neural network satisfy

θ∗ = argmin
θ

L(θ;τ). (9)

2.1.3 Numerical realization and solution plotting

We apply the above loss function (3) on the training samples (part of the domain and boundary, see 2a), and

we get the blue line in Figure 3, which implies the train loss function decreases w.r.t the training time.

At the same time, we calculate the loss function

L(θ;τtest ) = Ltest ,i nt (θ;τtest ,i nt )+Ltest ,x=0(θ;τtest ,x=0)+Ltest ,x=1(θ;τtest ,x=1)+
+Ltest ,t=0(θ;τtest ,t=0)+Lpar

test ,t=0(θ;τtest ,t=0)
(10)
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Figure 3: Train and test loss (by adam and L-BFGS-B optimization algorithms)

on the test samples. The testing set is denoted as Let τtest ={(x̂k , t̂k ); ŷk }300
k=1 = τtest ,i nt ∪τtest ,x=0 ∪τtest ,x=1 ∪

τtest ,t=0, where τtest ,i nt and the other sets denote the test samples inside the domain and on the boundary

respectively (see Figure 2b). The value of (10) is plotted in orange line shown in Figure 3.

The combined adam and L-BFGS-B optimization algorithms. The number of steps in the Figure 3

(known also as number of epochs) indicates the number of iterations used to train the model, thus the

number of times the network weights are updated. We can clearly see in Figure 3 that the train loss decreases

when the number of such iterations increases. Interestingly, we observe that the plot for the test loss does not

follow this pattern. The test loss starts to decrease when increasing the number of steps from 0 to around

1000, then it increases slowly until it sharply drops. This drop happens because I combine two optimization

algorithms adam [10] and L-BFGS-B (Limited-memory- Broyden–Fletcher–Goldfarb–Shanno algorithm) [18]

respectively. The second one simulates fast convergence. The combined adam and L-BFGS-B optimization

algorithms are employed as the optimization algorithm to enhance both global search and local tuning.

The whole training process consists initially of 8000 iterations of the adam optimizer with 0.001 learning

rate (LR) and iterations of L-BFGS-B optimizer until the loss converges to a small tolerance [14]. For smooth

and regular solutions of a PDE system, the L-BFGS optimizer can find a better solution with a small number

of iterations compared to the adam optimizer, due to second-order accuracy as opposed to adam, which

is first-order accurate but in general more robust [8]. When we used only adam optimizer to compile the

model, I did not obtain this stiff drop but a more graduate one. However, the performance of this model was

worse. Figure 4 shows the behaviour of the train/test loss of the model when using only adam optimizer.

Figure 5a shows the best trained result of the training samples (obtained in the step when the train and test

loss have the smallest value) when using only adam optimizer. We can clearly see that this plot is far from

predicting the true value of the training samples. Figure 5b however, shows the best prediction of the training

samples when using both algorithms. This prediction seems much more reasonable and similar to the true

solution in Figure 6.
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Figure 4: Train and test loss(adam optimizer only)

(a) Best trained result; adam optimizer only (b) Best trained result; adam and L-BFGS-B optimizers

Figure 5: Best trained result by two kinds of algorithms

The solution plotting. The following plots show the exact solution and the PINN resulting solution of

this wave equation:

Figure 6: PINN and exact solution

Figure 7 displays the difference between the exact and PINN state. We see that the difference of these

states equals mostly zero, which suggests a reasonable match between these two states.
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Figure 7: Difference between the PINN-predicted and exact solution

2.2 Evaluation on the performance of PINNs

2.2.1 Error analysis and computational time

The training error provides insight of how well the predicted outputs of the training inputs fit the training

outputs, i.e., how the model performs in the training set. The training error is given by:

T E = L(θ∗;τ),

where L(θ∗;τ) is defined in (3) with θ∗ as in (9). Figure 8 shows how the training error changes when

increasing the number of the training samples. It shows that increasing the number of training samples

increases the training error. This result is not a surprise because the more training samples, the more difficult

is for the model to suit them all, which yields a greater training error.

Figure 8: Training error

Error on a validation set, however, enables us to judge the performance of the machine learning model

in a set of data other than the training set. Even if the model works very well on training data (the training

error is negligible), this error is necessary to determine whether this model can be applied on any input data

and still yield valid results. To find this error of our machine learning model (PINN), we used the validation

set approach [16]. If T = {(xi , ti ; yi )} denotes the set of all available data, this approach suggests that T is

randomly split into two disjoint sets T1 (training set) and T2 (validation set). The error on the validation set is

then given by:

EGE = 1

|T2|
∑

(xi ,ti ;yi )∈T2

L(yi , ŷ(xi , ti )) (11)

11
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ŷ(xi , ti ) is the value predicted by PINN for (xi , ti ) and L is the square loss. Let us now see how this quantity

changes when increasing the number of training samples:

Figure 9: Error on a validation set

Figure 9 shows that this error decreases initially when the number of training samples increases from 6 to

66. This should not be a surprise since in this way, the model learns more from the training samples and

it generalizes better. However, we observe that the error is nearly 0 even for 66 training samples, which is

a relatively small set. The error continues to be constantly negligible when the size of the training set increases.

Computational time. Increasing the number of training samples comes with computational costs. The

code execution was extremely slow when considering a lot of training samples (it even exceeded one hour!).

The following plot demonstrates this fact (time is given in seconds). We consider 8 different training samples

with size 6, 12, 24, 48, 96, 192, 384, and 768 respectively. Our goal was to see how the computational time

changes when increasing the size of the training set by a factor of two. We can see that the larger the difference

between the size of training sets, the more compilation time is needed. One can see that the compilation

time fails to increase by a factor of two. Moreover, the larger the difference between the size of the training

sets, the more compilation time is needed.

Figure 10: Computational time

Test error vs. computational time. The plot which shows the dependence of the test error from the

computational time needed, enables us to analyze in more detail the performance of our machine learning

12
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model. We aim to develop a model which can be executed in a reasonable time and performs well (test loss is

small). We used 300 training samples, 250 testing samples (inside the domain) and 10000 epochs to obtain

the Figure 11.

Figure 11: Test loss vs. computational time

Figure 11 shows that initially the decrease of the test loss is accompanied by an increase in computational

time. However, we notice that this pattern disrupts and even though the model requires more time to be

executed, the test loss appears to be nearly constant.

2.2.2 Discussion on the best structure of NNs.

We change the structure of the neural network to see how this influences the resulting performance of our

model. The following results are obtained when the structure of the neural network is 4× [50] (four hidden

layers with 50 nodes each), 2× [100] (two hidden layers with 100 nodes each), 10× [20] (10 hidden layers with

20 nodes each), and 4× [100] (4 hidden layers with 100 nodes each).

Figure 12: Test loss vs. computational loss

We can see from Figure 12 that the neural networks with the same number of nodes ([20]×10, [100]×4,

[50]×4) follow almost the same pattern: the test loss sharply decreases when more computations are needed,

until it reaches a constant negligible test loss even when the computational time increases. However, for

13
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the neural network with 400 nodes ([100]×4), the initial test loss is the smallest, but more time is required

to obtain it. This should be intuitively clear since the neural network structure is more complex and thus

more computations are required to acquire its optimal parameters. Nevertheless, we can see that the test loss

reaches a constant low value which is the same as the one reached by the other neural network structures, One

may claim that increasing the complexity of the structure of the neural network needs more computational

time, however it does not necessarily improve the predictive performance of the model.

2.2.3 Discussion on the number of nodes in the neural network.

In order to determine how the number of nodes in the neural network influences the performance of our

model, we consider eight different NN structures with 10, 30, 50, 80, 100, 150, 200, and 300 nodes respectively

to compile the model and obtain the test loss. Figure 13 shows how the test error changes when increasing

the number of iterations (i.e., the computational time) in these eight different NN settings.

Figure 13: Test loss vs. computational time: differnt number of nodes

Our model performed very badly when the number of nodes was 80 or 100 because the test error does not

converge to 0 but oscillates. We notice a better performance of the model, when we increase the number of

nodes to be 200 and 300, because the test error of the model, after 30000 epochs reaches a constant negligible

value. However, this improved performance, comes with computational costs. We clearly see that the NNs

with 200 and 300 nodes require more time to be trained and compiled compared to the other chosen NNs

structures. We can see how these NNs structures act on the training set through the following plots. Based

on our previous observations, we would expect that NNs with number of nodes 200 and 300, yield better

predictions of this set, letting the plot of the best trained results be more similar to the true outcome of the

training set shown in 6.
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(a) Neural network structure: 10 nodes, 2 layers (b) Neural network structure: 30 nodes, 6 layers

(c) Neural network structure: 50 nodes, 10 layers (d) Neural network structure: 80 nodes, 10 layers

(e) Neural network structure: 100 nodes, 10 layers (f ) Neural network structure: 150 nodes, 15 layers

Figure 14: Best trained result: NN with 10, 30, 50, 80, 100, and 150 nodes

15
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(a) Neural network structure: 200 nodes, 4 layers (b) Neural network structure: 300 nodes, 6 layers

Figure 15: Best trained result: NN with 200 and 300 nodes

2.3 Extension: Approximating 1d wave equation with Neumann BC

Let us now consider the following wave equation with Neumann boundary conditions:

yt t (x, t ) = 4yxx (x, t ), 0 < x < 1, 0 < t < 2

yx (0, t ) = 0, 0 ≤ t ≤ 2

yx (1, t ) = 0, 0 ≤ t ≤ 2

y(x,0) = si n(πx), 0 < x < 1

yt (x,0) = 0, 0 < x < 1

(12)

For the given input (x, t ), y(x, t ) that solves (12) is the output of the neural network equipped with two nodes

in the input layer (x, t ), one node in the output layer (value of y(x, t )) and four hidden layers where each of

them has 50 nodes. We let the number of epochs of this model be 30000.

Training dataset. The general training set τ1 of this model is selected in the interior domain τi nt1 ⊂
(0,1)× (0,2) and on the boundaries τx=01 ⊂ {0}× [0,2], τx=11 ⊂ {1}× [0,2], τt=01 ⊂ (0,1)× {0}. Thus τ= τi nt1 ∪
τx=01 ∪τx=11 ∪τt=01 . The training set we used consisted of 800 samples {(xi , ti ); y(xi , ti )}800

i=1 where y(xk , tk ) is

the solution of (1) at (xk , tk ) found by a PDE solver Python offers. 500 training samples were chosen from

(0,1)× (0,2) and the rest was taken from the boundary of the domain. The plot 16 shows the training samples

((x, t ); y(x, t )) we used.

Loss function. Similarly to the above example, the loss function is expressed as the summation of the

square of the difference corresponding to each of the equations in (12). Namely, given input (xi , ti ) let ŷ(xi , ti )

and θ be the prediction (output) and parameters of the neural network respectively. We acquire the following
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Figure 16: Best trained result

loss functions that we need to minimize:

Li nt1 (θ;τi nt1 ) = 1

|τi nt1 |
∑

(xi ,ti )∈τi nt1

|ŷt t (xi , ti )−4ŷxx (xi , ti ))|2, (13)

Lx=0(θ;τx=01 ) = 1

|τx=01 |
∑

(xi ,ti )∈τx=01

|ŷx (xi , ti )|2, (14)

Lx=11 (θ;τx=11 ) = 1

|τx=11 |
∑

(xi ,ti )∈τx=11

|ŷx (xi , ti )|2, (15)

Lt=01 (θ;τt=01 ) = 1

|τt=01 |
∑

(xi ,ti )∈τt=01

|ŷ(xi , ti )− si n(πxi )|2, (16)

Lpar
t=01

(θ;τt=01 ) = 1

|τt=01 |
∑

(xi ,ti )∈τt=01

|ŷt (xi , ti )|2. (17)

The loss function used for training is:

L(θ;τ1) = Li nt1 (θ;τi nt1 )+Lx=01 (θ;τx=01 )+Lx=11 (θ;τx=11 )+Lt=01 (θ;τt=01 )+Lpar
t=01

(θ;τt=01 ) (18)

The optimal parameters θ∗ of the neural network satisfy θ∗ = argminθ L(θ;τ1). The train and test loss

of this model are shown in the figure 17, where we notice that after a certain number of steps, the value

of the test loss drops sharply. As analyzed previously, this happens because we use adam and L-BFGS-B

optimization algorithms where the second one simulates fast convergence.

The PINN predicted solution y(x, t ) is plotted in Figure 18.
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Figure 17: Train and test loss

Figure 18: PINN-predicted solution to wave equation with Neumann boundary conditions

2.4 Approximating degenerating 1d wave equation yt t −a(x)yxx = 0 via PINN and FDM

In this section, we investigate the behavior of solution to the degenerating wave equation with mixed

boundary conditions (Dirichlet and Neumann):

yt t (x, t ) = a(x)yxx (x, t ), 0 ≤ x ≤ 1, 0 < t < 2

y(0, t ) = 0, 0 ≤ t ≤ 2

yx (1, t ) = 0, 0 ≤ t ≤ 2

y(x,0) = sin(πx
2 ), 0 ≤ x ≤ 1

yt (x,0) = 0, 0 ≤ x ≤ 1,

(19)

where the a(x) contains a degeneration at fixed point x = 0.5. In this linear case, the static degeneration is

provided by the a special type of coefficient a(x) = |x − x0|α,α ≥ 0, where α = 0 refers to no degeneration,

while α= 1,α= 2 mark weak and strong degeneration, respectively (see [1],[11] and [3]). These three cases

are investigate in the following 3 subsections, and we observe that in the strong degeneration case (i.e. α= 2),
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the solution is not wave-like crossing the degeneration point x = 0.5.

In the experiment, we choose the training set (τ= τi nt ∪τx=0 ∪τt=0 ∪τt=2) to include the interior of the

domain (τi nt ⊂ (0,1)× (0,2)) and the boundary of it (τx=0 ⊂ {0}× (0,2), τt=0 ⊂ (0,1)× {0}). The loss function

we need to minimize to be able to find the optimal parameters of the neural network is given as:

L = 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷt t (xi , ti )−a(xi )ŷxx (xi , ti ))|2 + 1

|τx=0|
∑

(xi ,ti )∈τx=0

|ŷ(xi , ti )|2 + 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷt (xi , ti )|2+

+ 1

|τx=1|
∑

(xi ,ti )∈τx=1

|ŷx (xi , ti )|2 + 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷ(xi , ti )− si n(πxi /2)|2 + 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷ(xi , ti )− y(xi , ti )|2.

2.4.1 No degeneration: a(x) ≡ 4

We used 1400 uniformly distributed training samples (800 inside the domain and 600 on the boundary);

we let the structure of NN be as in 1. Initially we use adam optimization algorithm (LR=0.001) for 7000

epochs and then L-BFGS-B until the train/test losses converge to a small tolerance. The output ŷ(x, t ) of the

neural network which approximates the solution y(x, t ) of 19 is shown in Figure 19 (a). Figure 19 (b) shows

the numerical solution y(x, t) of 19 solved by FDM in Matlab. We can see that the PINNs output for y(x, t)

follows the same pattern as the compared numerical solution of y(x, t ), which means that our PINNs model

is successful in solving (19).

(a) PINNs solution (b) FDM solution

Figure 19: Solution of the degenerating wave equation: a(x) ≡ 4

2.4.2 Weak degeneration: a(x) = 8|x − 1
2 |

For this case, we used the same algorithms and NN structure but a higher number of training samples: 3000

uniformly distributed training samples respectively (2000 inside the domain and 1000 in the boundary of the

domain). The PINNs solution y(x, t) of 19 is displayed in Figure 20 (a). We can see that the pattern of this

solution is very similar to the true value of y(x, t ), shown in Figure 20 (b).

2.4.3 Strong degeneration: a(x) = 16|x − 1
2 |2

We used 3000 uniformly distributed training samples (2000 inside the domain and 1000 in the boundary of

the domain) and the same NN structure and optimization algorithms as in the previous example. The PINNs

output that approximates the solution y(x, t ) of 19 is plotted in Figure 21 (a). We see that this solution follows

almost the same pattern as the true solution y(x, t ) of 19, displayed in 21 (b).
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(a) PINNs solution (b) FDM solution

Figure 20: Solution of the degenerating wave equation: a(x) ≡ 8|x − 1
2 |

(a) PINNs solution (b) FDM solution

Figure 21: Solution of the degenerating wave equation: a(x) = 16|x − 1
2 |2
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3 Inverse problems of 1d wave equations solved by PINNs

In this section, we invest the first step to solve inverse problems arising in PDEs. In section 3.1, we follow

the work done in [6], and consider the null controllability of the wave equation via the PINNs and plot the

desired boundary control numerically. The work done here can be easily extended to other types of PDEs. In

section 3.2, we solve the parameter identification problem for one unknown parameter (the speed of wave

propagation) by a modified loss function, which measures the error on the real data set. In this way, we

combine the physics-driven loss and the data-driven loss in this toy example.

3.1 The null boundary controllability for wave equation

In this part, we ask: can we find a boundary control u to drive the solution from given initial data to final data

(taken as 0)? Mathematically, you are facing the following null controllability problem (which is over-posed,

you can not solve by classical numerical solver).

yt t (x, t ) = 4yxx (x, t ), 0 < x < 1, 0 < t < 4

y(0, t ) = 0, 0 ≤ t ≤ 4

y(1, t ) = u(t ), 0 ≤ t ≤ 4

y(x,0) = sin(πx), 0 < x < 1

yt (x,0) = 0, 0 < x < 1

y(x,T ) = 0, 0 < x < 1

yt (x,T ) = 0, 0 < x < 1

(20)

3.1.1 The PINNs algorithm for solving controllability problem

We select the training set (τ= τi nt∪τx=0∪τt=0∪τt=4) to include the interior of the domain (τi nt ⊂ (0,1)×(0,4))

and the boundary of it (τx=0 ⊂ {0}× (0,4), τt=0 ⊂ (0,1)× {0}, τt=4 ⊂ (0,1)× {4}).

For the given controllability problem as (20), the loss function we need to minimize is given as:

L = 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷt t (xi , ti )−4ŷxx (xi , ti ))|2 + 1

|τx=0|
∑

(xi ,ti )∈τx=0

|ŷ(xi , ti )|2 + 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷ(xi , ti )− si n(πxi )|2+

+ 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷt (xi , ti )|2 + 1

|τt=4|
∑

(xi ,ti )∈τt=4

|ŷ(xi , ti )|2 + 1

|τt=4|
∑

(xi ,ti )∈τt=4

|ŷt (xi , ti )|2.

To obtain PINNs output that approximates the solution y(x, t) of the system 20, we used 1700 training

samples (1000 in the interior of the domain and 700 in the boundary of it). We compiled the model under

two algorithms adam (10000 epochs) and L-BFGS-B. The structure of the NN we utilized is displayed in 1.

3.1.2 Dirichlet control function u(t) traced by PINNs

We know that u(t ) = y(1, t ) from 20. In order to plot u(t ), we select 40000 equidistant t values as ti that lie in

the segment [0,4] and obtain the PINNs output for the inputs (1, ti )40000
i=1 . We implement these mathematical

steps in Python and obtain the Figure 23 representing the desired control function u(t ) to realize the null final

state of the system. By this contrstuctive method, we can similarly design the Neumann or Robin controls.
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Figure 22: The PINNs solution ŷ(x, t )

Figure 23: Control function u(t ) = y(1, t )

3.2 Parameter identification problem

Physics-informed neural networks offer an effective approach to solve the inverse PDE problems, such

as parameter Identification problem in different types of PDEs. Navier-Stokes equations are of particular

importance in applied mathematics, since they they may be used to model the weather, ocean currents,

water flow in a pipe and air flow around a wing. It has been shown that PINNs framework can correctly

identify the unknown parameters of 2D-Navier-Stokes equation, even when the training data was corrupted

with noise [13]. This result motivates us to use PINNs to discover λ that satisfies (1):

yt t (x, t ) =λyxx (x, t ), 0 < x < 1, 0 < t < 2

y(0, t ) = 0, 0 ≤ t ≤ 2

y(1, t ) = 0, 0 ≤ t ≤ 2

y(x,0) = si n(πx), 0 < x < 1

yt (x,0) = 0, 0 < x < 1

(21)
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3.2.1 Discovering parameter in wave equation via PINN: the physics-driven loss and the data-driven loss

We selected 1800 training points 1000 of which were uniformly distributed inside the domain (0,1)× (0,2).

We chose 200 equally distanced points at each of the boundaries x=0, x=1, t=0, and t=2 of the domain. Let

τi nt and τx=0 ∪τx=1 ∪τt=0 ∪τt=2 be the training sets inside the domain and in the boundary of the domain

respectively. We set the initial value of λ to be 1. The neural network, builds upon this fact and in our

implementation, we consider 6000 epochs (known as the number of times the network weights are updated).

Let ŷ(xi , ti ) be the output of the neural network with the given input (xi , ti ). We choose the structure of our

neural network be as in 1 in all the following implementations. The adam optimization algorithm finds the

optimal parameters of the neural network with the available value of λ. We consider λ to change at every

epoch and the model finds the optimal value of it, with the available NN parameters, that minimizes the loss

function given below:

L=
1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷt t (xi , ti )−λŷxx (xi , ti ))|2 + 1

|τx=0|
∑

(xi ,ti )∈τx=0

|ŷ(xi , ti )|2 + 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷt (xi , ti )|2 +

+ 1

|τx=1|
∑

(xi ,ti )∈τx=1

|ŷ(xi , ti )|2 + 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷ(xi , ti )− si n(πxi )|2 + 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷ(xi , ti )− y(xi , ti )|2.

This initial value of λ even though small, enables that the λ predictions from the model nearly reach its true

value after 3000 epochs.

Even though we chose a very small initial value of λ, the model was successful in predicting the true value

of λ after exactly 3000 epochs illustrated in Figure 24.

Figure 24: Predicted vs. true values of λ (λ0 = 1; weights of the loss=[1, 1, 1, 1, 1, 1])

The solution of the inverse problem generates the best found value of λ to be 3.99. We aim to see how this

new model with this λ predicts the input data and compare it to the exact solution of our wave equation in 1.

To better interpret the accuracy of the model let us observe the difference between these two states:

Figure 26 suggests that the performance of our model is acceptable, by showing that the difference

between the two states in Figure 25 is included in the interval [-0.02, 0.02] units. We clearly see from Figure 26

that only small regions of the difference amount to 0.02 or -0.02. We conclude that our developed machine

learning model performs well with a negligible difference between the exact and PINNs predicted states.

It is important to see how our model performs on the training input and compare it to the true result. Figure
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Figure 25: PINN and exact solution (λ0 = 1; weights of the losses=[1, 1, 1, 1, 1, 1])

Figure 26: Difference between two states (λ0 = 1; weights of the losses=[1, 1, 1, 1, 1, 1])

27 shows that it can indeed work well in this set. We see that the outputs in the two below pictures follow the

same pattern.

Figure 27: PINN and exact solution of the training set (λ0 = 1; weights of the losses = [1, 1, 1, 1, 1, 1])

We can even see the difference between the true and PINNs predicted outcomes in the following plot:
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Figure 28: Difference of the results of the training set

Similar to Figure 26, the difference between the exact and PINNs outputs on the training set lies in the interval

[-0.02, 0.02], where the majority of these differences is negligible. We can therefore say, that the model has a

satisfying performance on the training data.

We let λ update in every epoch with λ0 = 1. We obtain therefrom the separate losses for our model at the

end of each epoch with the updated value of λ=λk for k = 0,1, ...,#epochs = 60000 as below:

LPDE = 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷt t (xi , ti )−λk ŷxx (xi , ti ))|2, (22)

Lx=0 = 1

|τx=0|
∑

(xi ,ti )∈τx=0

|ŷ(xi , ti )|2, (23)

Lt=01 =
1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷt (xi , ti )|2, (24)

Lx=1 = 1

|τx=1|
∑

(xi ,ti )∈τx=1

|ŷ(xi , ti )|2, (25)

Lt=02 =
1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷ(xi , ti )− si n(πxi )|2, (26)

Ltrain = 1

|τi nt

∑
(xi ,ti )∈τi nt

|ŷ(xi , ti )− y(xi , ti )|2. (27)

Figure 29 shows the value of each of these individual losses at a particular iteration step used to train the

model (epoch):

We can see that each of these losses converges to 0 after a certain number of epochs. This can provide

justification on why our model is successful in solving the inverse problem, as well as in approximating

almost the exact output on any given data as shown Figure 24 and 25 respectively.

3.2.2 Adaptive Loss-Weighting

In this section, we aim to improve the performance of our model by increasing the weight on the last

component of the loss function in 22.

The weights of the loss function: [1, 1, 1, 1, 1, 6]; λ0 = 1

Let us consider another example, where λ changes every one epoch and we let its initial value to be 1. We

changed the weights in the loss function components and obtained therefrom the new loss function that

we needed to minimize, putting a greater weight on the last component which is the summation over the

training set of the square difference between the true output value of y and its prediction from our neural
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Figure 29: Predicted vs. true values of λ (λ0 = 1)

network ŷ :

L = 1× 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷt t (xi , ti )−λŷxx (xi , ti ))|2 +1× 1

|τx=0|
∑

(xi ,ti )∈τx=0

|ŷ(xi , ti )|2 +1× 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷt (xi , ti )|2+

+1× 1

|τx=1|
∑

(xi ,ti )∈τx=1

|ŷ(xi , ti )|2 +1× 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷ(xi , ti )− si n(πxi )|2 +6× 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷ(xi , ti )− y(xi , ti )|2

The following plot illustrates the predicted values of λ:

Figure 30: Predicted vs. true values of λ (λ0 = 1), weights=[1, 1, 1, 1, 1, 6]

Our PINNs model finds the best value of λ to be 4.0. Figure 30 shows that the predicted values of λ nearly

reach its true value after 2000 epochs. Figure 24 shows however that this is achieved after approximately 2700

epochs. Moreover, when using equal weights in the loss function as in the first example, we obtained the best

predicted value of λ to be 3.99, whereas this model can reach a perfect prediction of λ equal to its true value.

Let us know analyze the performance of this developed model by comparing its output of the input data (x, t )

to the true value of y(x, t ) that satisfies 12.
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Figure 31: PINN and exact solution; loss weights=[1, 1, 1, 1, 1, 6]

The following plot which shows the difference between these two states enables us to better reason about

the choice of this model:

Figure 32: Difference between two states; loss weights=[1, 1, 1, 1, 1, 6]

Figure 32 shows that the difference between the exact result and PINNs predicted output lies in the range [-

0.005, 0.010] where only negligible regions of the difference plot touch the boundary of this interval. Moreover,

we can see that this difference equals 0 in the majority of its surface. Figure pertaining to the same selection

of weights, shows however that this difference lies in the segment [-0.02, 0.02], where a smaller surface show

a difference of 0. From these arguments, we conclude that this weights’ selection improved the predictive

performance of our model. Let us see how this model predicts the output of the training input data:
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Figure 33: PINN predicted and exact solution of the training set; loss weights=[1, 1, 1, 1, 1, 6]

Figure 34: Difference of the results of the training set; loss weights=[1, 1, 1, 1, 1, 6]

Figure 34 shows that the model performs well on the training sample, indicating that the exact results

and PINNs predicted outputs on the majority of the training samples coincide. We can see that only a few

points touch the boundaries of the interval [-0.01, 0.01].

We conclude this section by summarizing in a plot the individual losses of this model outlined in 22.

Figure 35: Separate loss functions; loss weights=[1, 1, 1, 1, 1, 6]
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Figure 35 shows that each of these losses converge to 0 after some number of epochs. We can even see that

this pattern is very similar to the Figure 29 which means that both models work well and fulfill the goal of

PINNs.

The weights of the loss function: [0.1, 0.1, 0.1, 0.1, 0.1, 3]; λ0 = 1 We now consider another setting for our

model with λ0 = 1 and the following loss function:

L = 0.1× 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷt t (xi , ti )−λŷxx (xi , ti ))|2 +0.1× 1

|τx=0|
∑

(xi ,ti )∈τx=0

|ŷ(xi , ti )|2 +0.1× 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷt (xi , ti )|2+

+0.1× 1

|τx=1|
∑

(xi ,ti )∈τx=1

|ŷ(xi , ti )|2 +0.1× 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷ(xi , ti )− si n(πxi )|2 +3× 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷ(xi , ti )− y(xi , ti )|2

Figure 36 shows the predicted values of λ:

Figure 36: Predicted vs. true values of λ (λ0 = 1), weights=[0.1, 0.1, 0.1, 0.1, 0.1, 3]

We can clearly from Figure 36 that our model finds a very good λ approximation (3.99) of its true value

(4.0) after less than 10000 epochs (around 7000 to be precise). The first example we analyzed (with equal

loss weights), however, shows that this result can be reached after 3000 epochs (Figure 24), which requires

more compiling time. Moreover, we can see that the λ predictions from this model coincide with its true

value after exactly 20000 epochs. The second example we examined (with the loss weights [1, 1, 1, 1, 1, 6])

shows nevertheless that the predicted λ value equals its true value after approximately 45000 epochs which

is computationally more expensive.

The following plots show the exact solution, PINNs predicted solution and their difference to enable a

better analysis of the model performance:

Figure 38 shows that the difference between the PINNs predicted and exact state is almost included in

the interval [-0.005, 0.005] units which suggests that the two resulting outputs differ here less than in our two

previous cases (see Figures 26 and 32)
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Figure 37: PINN and exact solution; loss weights=[0.1, 0.1, 0.1, 0.1, 0.1, 3]

Figure 38: Difference between two states; loss weights=[0.1, 0.1, 0.1, 0.1, 0.1, 3]

The PINNs and the true output of the training samples input as well as their difference are plotted below:

Figure 39: PINN predicted and exact solution of the training set; loss weights=[0.1, 0.1, 0.1, 0.1, 0.1, 3]

Similarly to our previous two examples (see Figures 27 and 33), the predictive performance of this model
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Figure 40: Difference of the results of the training set; loss weights=[0.1, 0.1, 0.1, 0.1, 0.1, 3]

on the training sample is satisfying, since the difference of the exact and PINNs predicted outputs on this

sample, differ negligibly.

The individual loss components of this model are shown below:

Figure 41: Separate loss functions; loss weights=[0.1, 0.1, 0.1, 0.1, 0.1, 3]

Figure 41 shows that each of the loss components of our loss function converges to 0 after some epochs.

However, it is interesting to notice that this plot does not show any initial oscillations of any of the components,

like the one of LPDE in Figures 29 and 35 of our previous models. We can conclude that this model performs

well, even when we use less epochs, which saves compiling time.

The weights of the loss function: [1, 1, 1, 1, 1, 1]; λ0 = 3.8 We select the initial value of λ to be 3.8, which

is quite near its true value. We set the number of epochs to be 60000. We let the loss function we need to

minimize be:

L = 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷt t (xi , ti )−λŷxx (xi , ti ))|2 + 1

|τx=0|
∑

(xi ,ti )∈τx=0

|ŷ(xi , ti )|2 + 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷt (xi , ti )|2+

+ 1

|τx=1|
∑

(xi ,ti )∈τx=1

|ŷ(xi , ti )|2 + 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷ(xi , ti )− si n(πxi )|2 + 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷ(xi , ti )− y(xi , ti )|2.

Figure 42 displays the values of λ predicted by our model at the end of each epoch.

The best value of the predicted λ is found to be 4.0, exactly as its true value after approximately 52000

epochs. Figure 43 shows the exact and the PINNs predicted output of our PDE, under the conditions of this
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Figure 42: Predicted vs. true values of λ (λ0 = 3.8); loss weights=[1, 1, 1, 1, 1, 1]

developed model.

Figure 43: PINN and exact solution

Roughly speaking, the PINN state of Figure 43 nearly coincide with the Exact state. However, similar to or

previous approaches, we plot also the difference between these two states as shown in Figure 44.

Figure 44: Difference between two states
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We see from Figure 44 that the difference between two states is generally negligible, included in the

interval [-0.01, 0.02] indicating a satisfying predictive performance of our model. Moreover, we notice that

the greatest part of the surface indicates that the difference between two states is 0, i.e., the two states

mostly coincide. Next, we can judge the predictive performance of our model on the training set through the

following plots which display the exact and PINNs predicted output as well as their difference (see Figures 45

and 46 respectively).

Figure 45: PINN predicted and exact solution of the training set; loss weights=[1, 1, 1, 1, 1, 1]

We can infer from Figure 46 that the difference between these the exact and PINNs predicted states on the

training set is negligible; mostly around 0 and reaches its highest value of 0.02.

Figure 46: Difference of the results of the training set; loss weights=[1, 1, 1, 1, 1, 1]
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The individual loss components of the loss function we used, are shown in Figure 47:

Figure 47: Separate loss functions; loss weights=[1, 1, 1, 1, 1, 1]

Each of the loss components converges to 0 after 50000 epochs. Moreover, exactly after 52000 epochs our

model could predict the true value of λ (see Figure 42). We arrive in the conclusion that this model has a

satisfying performance which is reached when a high number of epochs is used (50000). This fact makes it in

particular computationally costly.

The weights of the loss function: [1, 1, 1, 1, 1, 6]; λ0 = 3.8 Motivated from the first three examples, we

now analyze whether increasing the weight on the last loss component can lower the computational time of

our model and still yield meaningful results. We consider λ0 = 3.8 and let the loss function be:

L = 1× 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷt t (xi , ti )−λŷxx (xi , ti ))|2 +1× 1

|τx=0|
∑

(xi ,ti )∈τx=0

|ŷ(xi , ti )|2 +1× 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷt (xi , ti )|2+

+1× 1

|τx=1|
∑

(xi ,ti )∈τx=1

|ŷ(xi , ti )|2 +1× 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷ(xi , ti )− si n(πxi )|2 +6× 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷ(xi , ti )− y(xi , ti )|2

Figure 48 shows the predicted values of λ at the end of every epoch. We can clearly observe that the exact

value of λ (4.0) is predicted after exactly 36000 epochs, which is already an improvement compared to the

higher number of epochs required in the previous example (around 52000; see Figure 42).

Figure 48: Predicted vs. true values of λ (λ0 = 3.8); loss weights=[1, 1, 1, 1, 1, 6]
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Figure 49 shows the PINNs predicted and exact output for this model. Figure 50, which displays the

difference between the exact and PINNs state, suggests that this model works very well, since the greatest

part of this difference is green (indicating a value of 0; i.e., te two states mostly coincide). A good performance

of the model is noticed also on the training set, where the difference between the exact and PINNs predicted

outputs amounts generally to 0 (see Figure 52).

Figure 49: PINN and exact solution

Figure 50: Difference between two states

The PINNs and the true output of the training samples input as well as their difference are plotted below:

Figure 53 shows the individual loss components we used in the loss function of this model: We can see

that the loss components converge to 0 (and stay in that range constant) after 30000 epochs. The same

performance could be achieved by the previous model after 50000 epochs, requiring therefore more time.

We can conclude that this model (with the selection of weights as indicated in the top) is computationally

cheaper and outputs valid results; thus recommended.
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Figure 51: PINN predicted and exact solution of the training set; loss weights=[1, 1, 1, 1, 1, 6]

Figure 52: Difference of the results of the training set; loss weights=[1, 1, 1, 1, 1, 6]

Figure 53: Separate loss functions; loss weights=[1, 1, 1, 1, 1, 6]

The weights of the loss function: [1, 1, 1, 1, 1, 1]; λ0 = 0.05 We finally aim that our Machine Learning

model performs well on solving the inverse problem, even though the initial value of λ is far from its true
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value, 0.05 respectively. We integrate the following loss function in our model:

L = 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷt t (xi , ti )−λŷxx (xi , ti ))|2 + 1

|τx=0|
∑

(xi ,ti )∈τx=0

|ŷ(xi , ti )|2 + 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷt (xi , ti )|2+

+ 1

|τx=1|
∑

(xi ,ti )∈τx=1

|ŷ(xi , ti )|2 + 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷ(xi , ti )− si n(πxi )|2 + 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷ(xi , ti )− y(xi , ti )|2.

Figure 54 shows the predicted values of λ for each epoch. We ca see that the model fails to predict the exact

value of λ, even though we used a high number of epochs (60000). However, the resulting predictions seem

to very slowly approach the true value.

Figure 54: Predicted vs. true values of λ (λ0 = 0.05), weights=[1, 1, 1, 1, 1, 1]

Figure 55 shows that the developed model with the best value of λ it could find, can not infer properly

the solution of 1. We ca clearly see that PINN state is far from a meaningful and valid result. Moreover, 56

shows that the difference between the PINNs predicted and exact output is actually quite big compared to

our previous cases, resulting in a worse prediction performance.

Figure 55: PINN and exact solution; λ0 = 0.05, loss weights=[1, 1, 1, 1, 1, 1]

We can now analyze the performance of this model on the training set we used. Figure 57 shows that the

pattern the PINNs outputs on the training set is quite different from the one of the exact outputs on this set.
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Figure 56: Difference between two states

Figure 58 shows that the difference between these two states on the training set is quite big compared to our

previous models. We can therefore conclude that this model performs quite badly on the training set as well.

Figure 57: PINN predicted and exact solution of the training set;λ0 = 0.05, loss weights=[1, 1, 1, 1, 1, 1]

Figure 58: Difference of the results of the training set;λ0 = 0.05, loss weights=[1, 1, 1, 1, 1, 1]
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Since our model does not perform well, we would expect that the loss components of it, do not converge

to 0. We need therefore, to analyze each of these components, so that we can adapt the weights in the loss

function properly and enable better predictions. Figure 59 shows the individual losses as a function of the

epochs.

Figure 59: Separate loss functions; loss weights=[1, 1, 1, 1, 1, 1]

We can see that Ltr ai n is far from converging to 0. In the next section, we increase the weight on this

component so that the model focuses on minimizing in particular this loss. We obtain therefrom a model

with a better performance.

The weights of the loss function: [1, 1, 1, 1, 1, 6]; λ0 = 0.05 We let λ0 = 0.05 and increase the weight of

the last loss component such that we get the following loss function that we need to minimize:

L = 1× 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷt t (xi , ti )−λŷxx (xi , ti ))|2 +1× 1

|τx=0|
∑

(xi ,ti )∈τx=0

|ŷ(xi , ti )|2 +1× 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷt (xi , ti )|2+

+1× 1

|τx=1|
∑

(xi ,ti )∈τx=1

|ŷ(xi , ti )|2 +1× 1

|τt=0|
∑

(xi ,ti )∈τt=0

|ŷ(xi , ti )− si n(πxi )|2 +6× 1

|τi nt |
∑

(xi ,ti )∈τi nt

|ŷ(xi , ti )− y(xi , ti )|2

Below, we can see the predicted value of λ resulting at the end of each epoch:

Figure 60: Predicted vs. true values of λ (λ0 = 0.05), loss weights=[1, 1, 1, 1, 1, 6]

The model achieves to predict the exact value of λ after 25000 epochs. In this regard, this model performs
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better than the previous one, where the true value of λ could not be predicted even after 60000 epochs (see

Figure 54), Figure 61 shows the PI ad exact state of the points in the domain. We can see that their patterns

are quite similar. Moreover, Figure 62 suggests that the difference between these states is negligible (included

i the segment [-0.015, 0.005]) compared to the previous result (see Figure 56)

Figure 61: PINN and exact solution

Figure 62: Difference between two states

40



PINN Dania Sana

Figures 63 and 64 enable us to analyze the performance of this model on the training set. We can see

that it performs quite well: the PINN predicted and exact outputs on the training sample differ negligibly as

shown in Figure 64 (included in the segment [-0.015, 0.005]).

Figure 63: PINN predicted and exact solution of the training set; loss weights=[1, 1, 1, 1, 1, 6]

Figure 64: Difference of the results of the training set; loss weights=[1, 1, 1, 1, 1, 6]
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We expect that increasing the weight on Ltr ai n enables Ltr ai n converge to 0. Te following plot supports

our claim: we can see that all the individual losses converge to 0, which suggests that our model works very

well. We could infer this fact also from our above arguments: the true value of λ was found after 25000

epochs; the PINNs and exact state nearly coincide, the model predictions of the outputs on the training set

differed negligibly from the exact outputs.

Figure 65: Separate loss functions; loss weights=[1, 1, 1, 1, 1, 6]
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4 Internship Activities

This internship was organized by FAU Research Center for Mathematics of Data and lasted for three months

(15.06.2022-14.09.2022). I worked remotely for the first and last two weeks and arrived in Erlangen on 1st

of July where I stayed for the whole months of July and August. My first day at FAU was really wonderful! I

had the chance to meet many Math Phds, Postdocs and also my supervisor Dr. Yue Wang. I felt integrated

into their community! I was also very satisfied to have my own office, which helped me work focused and

productive.

My learning experience on this topic started with the reading of the article [6] which offered a proper

introduction and fundamental concepts in the field of PINNs. I was based on the codes presented in this

article, to conduct my own realizations and obtain the above-described analysis and results. An important

role in my work, played the open source of the deepxde library in Python that I use in all my realizations [5]

respectively. I started applying the framework of PINNs to an easy example, that of solving the wave PDE

system of equations shown in 1 whose true solution is known. I also applied this framework to solve the

degenerating wave equation in 19 and the controllability problem in 20. I was assigned another task that

could be solved using PINNs such as finding the solution of the inverse problem in 21.

I had the opportunity to meet the staff of Fraunhofer Institute for Integrated Circuits IIS in Erlangen who was

working with PINNs to solve their applied math problems. We had weekly meetings to deliver relevant results

in this field and help each other conceive better accuracy and performance of our models. I presented my

findings and my progress made on this topic within each week.

5 Conclusions

We obtained some important results, while analyzing the simple 1d wave equation regarding the performance

of our PINNs framework, the role of the structure of the neural network, the computational time needed to

execute the model when varying some of its components. We can summarize our findings in the following

points:

• The ML model performed better (in solving the simple 1d wave equation 1), when we compiled it using

two optimization algorithms ("adam"+"L-BFGS-B") than when we only used "adam" algorithm. (See

Figures 5, 3, and 4)

• The training error of ML model (used to solve the 1d wave equation in 1) mostly increased when the

size of the training set increases. (See Figure 8)

• The summation of the square loss between the PINNs output and true output of y(x, t) in 1 on the

validation set as in 11 decreases when the size of the training set increases, however it stays constantly

negligible when more than 70 training sample were used. (See Figure 9)

• The more training samples used to train the ML model, the more time is needed to compile/execute

the developed model. (See Figure 10)

• We used many NN structures (to solve the forward 1d wave equation) where each of them had different

number of nodes (we let the number of nodes range from 10 to 300). The NN with 300 nodes resulted

in the best model performance (test loss converged to 0) and in the most computationally expensive

one (see Figures 13 and 15).

• When solving the inverse problem in 21 to obtain the value of λ, we noticed that increasing the weight

of the last component on the loss function of 21 which expresses the summation of the square loss
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between the true and PINNs predicted output on the training set, resulted in a better and faster

predictive performance of the model (see Figures 24, 30, and 36).
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Appendix

Here is an overview of numerical results related to this report, and is public on the

https://github.com/DCN-FAU-AvH/PINNs_wave_equation,

where you can donwnload the code of

Physics-informed neural network (PINN)

• solving forward problems

– Wave_equation.py solves the 1d wave equation with Dirichlet Boundary conditions.

– Wave_equation_otherBC solves the 1d wave equation with Neumann boundary conditions.

– train_error_val_error_time.py displays the train error/validation error/computational time-size

of training set dependencies

– test_loss_time.py shows the test error-computational time dependency for a specific structure of

neural network

– all_together_loss_time.py shows the test error-computational time dependency for different

structures of neural networks.

– changing_nodes_test_loss.py shows the test error-computational time dependency for neural

network structures with different numbers of nodes

– first_case_no_damage.py solves the degenerating 1d wave equation when a(x) ≡ 4

– second_case_damage.py solves the degenerating 1d wave equation when a(x) = 8|x −0.5|
– third_case_double_damage.py solves the degenerating 1d wave equation when a(x) = 16|x−0.5|2

• solving inverse problems

– control.py solves the null controllability problem of the 1d wave equation

– inverse_problem.py solves the parameter identification problem of the 1d wave equation
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