Memristor drift-diffusion systems for brain-inspired neuromorphic computing

Ansgar Jüngel

Technische Universität Wien, Austria https://www.tuwien.at/mg/asc/juengel

Introduction
 Drift-diffusion equations
 Degenerate drift-diffusion equations

Der Wissenschaftsfonds.

Analogy between synapse and memristor device

©Wang et al., Nanoscale Res. Lett. 2017

Ansgar Jüngel (TU Wien)

Memristor drift-diffusion systems

asc.tuwien.ac.at/ \sim juengel 1/19

Semiconductor devices

- Basic element in computer: semiconductor transistor
- 3 nm technology (2022): 48 nm contacted gate pitch → physical limits, leakage current
- Novel technologies needed!
- Neuromorphic computing: mimic neurobiological networks
- New concept by Mead (1990): memristor = nonlinear resistor with memory
- Pros: Ultra-low power consumption, nanosize, nonvolatile memory

Transistor number in microchips ©Karl Rupp

CWang et al., Nanoscale Res. Lett. 2017

Ansgar Jüngel (TU Wien)

Memristor drift-diffusion systems

asc.tuwien.ac.at/~juengel 2 / 19

Synapse - ion channel - electric circuit

Axon network:

- \rightarrow synapses \rightarrow ion channel
- \rightarrow memristors \rightarrow electric circuits
- \rightarrow novel brain-inspired algorithms
- ightarrow neuromorphic computing

© Quasar Jarosz at Wikipedia (top left), Adobe Stock (top right), Wang et al., nature electron. 2018 (left)

Neuromorphic computing

Neuromorphic chip = inspired by biological neural network in brain

- 2014 IBM TrueNorth: 1 million artificial neurons, 256 millions synapses
- 2017 Intel Loihi 1: 130,000 artificial neurons, 130 million synapses

©Intel Loihi 2 at Wikipedia

- 2021 Intel Loihi 2: 1 million artificial neurons, 120 millions synapses
- 2022 Stanford NeuRRAM: 3 million RRAM cells
- 2024 Hala Point: 1152 Loihi 2 processors, 1.15 billion neurons, 128 billion synapses, total 2600 Watt power consumption
- \rightarrow human brain: 86 billion neurons, 100 trillions of synapses, 25 Watt

Pros: Very low power 0.1 W, ultrasmall size, merges memory & computing

Cons: High production precision needed, incompatible with standard programming and data formats

Ansgar Jüngel (TU Wien)

Memristor drift-diffusion systems

Oxide-based memristor device

[©]Weng et al., nanomaterials 2023

- Oxide-based memristor = titanium dioxide film sandwiched between two metal electrodes (Strukov et al. 2008)
- $TiO_{2-x} = Ti$ oxide doped with oxide vacancies (loss of oxygen atoms)
- \bullet External electric field changes length of doped TiO_{2-x} region
- \bullet Open state: doped region has maximal length \rightarrow minimal resistance
- $\bullet\,$ Closed state: doped region has minimal length $\rightarrow\,$ maximal resistance

Overview

Introduction

- ② Drift-diffusion equations
- Object to the second second
- Output Section Numerical simulation

Memristor drift-diffusion equations

 $\partial_t n = \operatorname{div} J_n, \quad J_n = \nabla n - n \nabla V$ $\partial_t p = -\operatorname{div} J_p, \quad J_p = -(\nabla p + p \nabla V)$ $\partial_t D = -\operatorname{div} J_D, \quad J_D = -(\nabla D + D \nabla V)$ $\lambda^2 \Delta V = n - p - D + A(x) \quad \text{in } \Omega \subset \mathbb{R}^d, \ t > 0$

- Densities for electrons n, holes p, oxide vacancy D; electr. potential V
- Mixed boundary conditions: $\bar{n}, \bar{p}, \bar{V}$ on $\Gamma_{\rm Dir}$, no flux on $\Gamma_{\rm Neu}$
- No-flux boundary conditions for D on $\partial \Omega$

Mathematical difficulties:

- Non-fitting boundary conditions: Issues when integrating by parts
- Three species: Multiply eqs. by *n* and *p*, assume $\overline{n} = \overline{p} = 0$, fixed *D*

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}(n^{2}+p^{2})dx+\int_{\Omega}(|\nabla n|^{2}+|\nabla p|^{2})dx=\int_{\Omega}(n\nabla n-p\nabla p)\cdot\nabla Vdx$$
$$=-\frac{1}{2\lambda^{2}}\int_{\Omega}\underbrace{(n^{2}-p^{2})(n-p}_{\geq 0}-D+A)dx\leq C(A,D)\int_{\Omega}(n^{2}+p^{2})dx$$

Drift-diffusion equations: state of the art

Two species:

$$\begin{split} \partial_t n &= \operatorname{div} J_n, \quad J_n = \nabla n - n \nabla V \\ \partial_t p &= -\operatorname{div} J_p, \quad J_p = -(\nabla p + p \nabla V) \\ \lambda^2 \Delta V &= n - p - D(x) + A(x) \quad \text{in } \Omega \subset \mathbb{R}^3, \ t > 0 \end{split}$$

- Fick's diffusion law for charged particles: Nernst-Planck equations
- Semicond.: Van Roosbroeck 1950, Mock 1974, Gajewski-Gröger 1986

More than two species:

- Four-species system (drift only for n, p): Verri-Porro-Sacco-Salsa '18
 → use monotonicity argument
- Global existence of solutions in ℝ²: Bothe-Fischer-Saal 2014, Glitzky-Hünlich 1997/2005
- Global existence in ℝ³: Bothe-Fischer-Pierre-Rolland 2014 (no-flux/Robin boundary conditions)

Why are the restrictions necessary?

 Idea of Glitzky-Hünlich 1997: Hölder (2 < q ≤ q₀, q' = 2q/(q − 2)) & generalized Gagliardo-Nirenberg's inequality

$$\begin{split} &\int_{\Omega} n \nabla n \cdot \nabla V dx \leq \|n\|_{L^{q'}(\Omega)} \|\nabla n\|_{L^{2}(\Omega)} \|\nabla V\|_{L^{q}(\Omega)} \\ &\leq C \|n\|_{H^{1}(\Omega)}^{\theta} \|n\|_{L^{1}(\Omega)}^{1-\theta} \cdot \|\nabla n\|_{L^{2}(\Omega)} \cdot (1+\|n-p\|_{L^{2q/(q+2)}(\Omega)}) \\ &\leq \delta \|\nabla n\|_{L^{2}(\Omega)}^{1+(3d-2)/(d+2)} + C(\delta, n, p), \quad \delta > 0 \end{split}$$

where C depends on $L^1 \log L^1$ norm of n, p; $1 + \frac{3d-2}{d+2} \le 2 \Leftrightarrow d \le 2$ • Idea of Bothe et al. 2014: Use free energy and estimate

$$\int_{\Omega} \nabla (n - p - D) \cdot \nabla V dx = -\int_{\Omega} \underbrace{(n - p - D)}_{=\lambda^2 \Delta V} \Delta V dx$$
$$+ \int_{\partial \Omega} (n - p - D) \nabla V \cdot \nu dx$$

bounded if $\nabla V \cdot \nu$ can be controlled on $\partial \Omega \rightarrow$ no mixed b.c.!

Third idea: entropy method

$$\partial_t n = \operatorname{div}(\nabla n - n\nabla V), \quad \partial_t p = \operatorname{div}(\nabla p + p\nabla V)$$
$$\partial_t D = \operatorname{div}(\nabla D + D\nabla V), \quad \lambda^2 \Delta V = n - p - D + A(x)$$

Objective: Allow for any space dim. & mixed boundary conditions $(\bar{n}, \bar{p}, \bar{V})$

• Free energy = sum of thermodynamic entropies and electric energy:

$$H = \int_{\Omega} \left\{ n \left(\log \frac{n}{\overline{n}} - 1 \right) + p \left(\log \frac{p}{\overline{p}} - 1 \right) + D \left(\log D - 1 + \overline{V} \right) \right\} dx + \frac{\lambda^2}{2} \int_{\Omega} |\nabla (V - \overline{V})|^2 dx$$

• Free energy dissipation inequality: $\frac{dH}{dt} + \int_{\Omega} \left(n |\nabla (\log n - V)|^2 + p |\nabla (\log p + V)|^2 + D |\nabla (\log D + V)|^2 \right) dx \le C(\overline{n}, \overline{p}, \overline{V})$

• A priori estimates for n, p, D in $L^1 \log L^1(\Omega)$ and for V in $H^1(\Omega)$

$$|
abla \sqrt{n}| = rac{1}{2} \sqrt{n} |
abla \log n| \le C \sqrt{n} |
abla (\log n - V)| + C \sqrt{n} |
abla V| \in L^1(\Omega)$$

• Implies estimates for \sqrt{n} , \sqrt{p} , \sqrt{D} in $W^{1,1}(\Omega)$ only

Global existence of weak solutions

 $\partial_t n = \operatorname{div}(\nabla n - n\nabla V), \quad \partial_t p = \operatorname{div}(\nabla p + p\nabla V)$

 $\partial_t D = \operatorname{div}(\nabla D + D\nabla V), \quad \lambda^2 \Delta V = n - p - D + A(x)$

Theorem (Jourdana-AJ-Zamponi 2022)

Let T > 0, $\Omega \subset \mathbb{R}^d$ with $d \ge 1$, $\partial \Omega$ Lipschitz. $\Rightarrow \exists$ solution (n, p, D, V) $n, p, D \in L^{\infty}(0, T; L^1 \log L^1(\Omega)), \sqrt{n}, \sqrt{p}, \sqrt{D} \in L^2(0, T; W^{1,1}(\Omega)),$ $J_n, J_p, J_D \in L^1(0, T; L^1(\Omega)), V \in L^{\infty}(0, T; H^1(\Omega))$ If $d \le 2$ then $n, p, D \in L^{\infty}(0, \infty; L^{\infty}(\Omega)).$

- Problem: $\sqrt{n_k} \in W^{1,1}(\Omega)$ not sufficient for compactness
- Prove n_k ∈ W^{1,r}_{loc}(Ω) for r > 1 & apply Aubin-Lions compactness
 ⇒ subsequence of (n_k) converges strongly in L^s_{loc}(Ω) for 1 < s < r
- Theorem of de la Vallée-Poussin: (n_k) converges weakly in $L^1(\Omega)$
- Cantor diagonal argument: (n_k) converges strongly in $L^1(\Omega)$
- How to prove L^{∞} bounds for d = 3? Solution: degenerate equations

Overview

- Introduction
- ② Drift-diffusion equations
- Objective description of the second secon
- Output Section Numerical simulation

Degenerate drift-diffusion equations

$$\partial_t n = \operatorname{div}(\nabla n^{\alpha_n} - n\nabla V), \quad \partial_t p = \operatorname{div}(\nabla p^{\alpha_p} + p\nabla V)$$
$$\partial_t D = \operatorname{div}(\nabla D^{\alpha_p} + D\nabla V), \quad \lambda^2 \Delta V = n - p - D + A(x)$$

- Mixed Dirichlet–Neumann conditions $(\bar{n}, \bar{p}, \bar{V})$, no-flux cond. for D
- Electrons satisfy Fermi–Dirac statistics: $n = F_{1/2}(\mu)$
- Diffusion flux $J = n\nabla\mu$ with $n = \mu^{3/2}$ (high density regime) $\Rightarrow J = n\nabla n^{2/3} = \frac{2}{5}\nabla n^{5/3}$
- Motivates α_n , $\alpha_p > 1$; gain of regularity requires $\alpha_D > 1!$

Enthalpies and free energy:

$$h_n(n) = \frac{n(n^{\alpha_n - 1} - \bar{n}^{\alpha_n - 1})}{\alpha_n - 1}, \ h_p(p) = \frac{p(p^{\alpha_p - 1} - \bar{p}^{\alpha_p - 1})}{\alpha_p - 1}, \ h_D(D) = \frac{D^{\alpha_D - 1}}{\alpha_D - 1}$$
$$H = \int_{\Omega} \left(h_n(n) + h_p(p) + h_D(D) + \frac{\lambda^2}{2} |\nabla(V - \overline{V})|^2 \right) dx$$

Free energy estimate

 $\partial_t n = \operatorname{div}(\nabla n^{\alpha_n} - n\nabla V), \quad \partial_t p = \operatorname{div}(\nabla p^{\alpha_p} + p\nabla V)$ $\partial_t D = \operatorname{div}(\nabla D^{\alpha_D} + D\nabla V), \quad \lambda^2 \Delta V = n - p - D + A(x)$

• Free energy:

$$H = \int_{\Omega} \left(h_n(n) + h_p(p) + h_D(D) + \frac{\lambda^2}{2} |\nabla(V - \overline{V})|^2 \right) dx$$

• Free energy dissipation inequality: $c_j = lpha_j/(lpha_j-1)$

$$\begin{aligned} \frac{dH}{dt} &+ \int_{\Omega} \left(n |\nabla (c_n n^{\alpha_n - 1} - V)|^2 + p |\nabla (c_p p^{\alpha_p - 1} + V)|^2 + D |\nabla (c_D D^{\alpha_D - 1} + V)|^2 \right) dx \\ &+ \frac{\lambda}{2} \int_{\Omega} |\nabla (V - \bar{V})|^2 dx \le C(\bar{n}, \bar{p}, \bar{V}) \end{aligned}$$

• A priori estimates for $n, p, D \in L^1 \log L^1(\Omega)$ and $V \in H^1(\Omega)$

$$\|\nabla n^{\alpha_n - 1/2}\|_{L^2} \le C \underbrace{\|\sqrt{n}(\nabla(c_n n^{\alpha_n} - V))\|_{L^2}}_{\text{uniformly bounded}} + \underbrace{\|\sqrt{n}\|_{L^6}}_{???} \underbrace{\|\nabla V\|_{L^3}}_{???}$$

Uniform bounds

 $\begin{aligned} \|\nabla n^{\alpha_n - 1/2}\|_{L^2} &\leq C \|\sqrt{n} (\nabla (c_n n^{\alpha_n} - V))\|_{L^2} + \|\sqrt{n}\|_{L^6} \|\nabla V\|_{L^3} \\ \bullet \text{ Use Gagliardo-Nirenberg inequality:} \\ \|\sqrt{n}\|_{L^6} &\leq C \|\nabla n^{\alpha_n - 1/2}\|_{L^2}^{\theta_1} \|n\|_{L^{\alpha_n}}^{\theta_2} + C \|n\|_{L^{\alpha_n}} \\ \|\nabla V\|_{L^3} &\leq C \|n\|_{L^{3/2}} + C \leq C \|\nabla n^{\alpha_n - 1/2}\|_{L^2}^{\theta_3} \|n\|_{L^{\alpha_n}}^{\theta_4} + C \|n\|_{L^{\alpha_n}} \\ \bullet \text{ Insert in gradient estimate: } \theta_1 + \theta_3 < 1 \text{ iff } \alpha_n > 6/5 \\ \|\nabla n^{\alpha_n - 1/2}\|_{L^2} \leq C \|\nabla n^{\alpha_n - 1/2}\|_{L^2}^{\theta_1 + \theta_3} + C \end{aligned}$

• Yields uniform bounds for ∇n and $\partial_t n$ if $\alpha_n \leq 2$

Assumptions: $\frac{6}{5} < \alpha_n \le 2$ and $\|\nabla V\|_{L^3} \le C \|n\|_{L^{3/2}} + C$ (regularity)

Elliptic regularity: $\Delta V = f$ in Ω , $V = \overline{V}$ on Γ_{Dir} , $\nabla V \cdot \nu = 0$ on Γ_{Neu}

- Gröger 1994: $V \in W^{1,r}(\Omega)$ for some r > 2 in Lipschitz domains
- Shamir 1968: counterexample for $r \ge 4$ with smooth data
- Disser–Rehberg 2015: angle between Γ_{Dir} and $\Gamma_{\text{Neu}} \leq \pi \Rightarrow r > 3$

Existence of solutions

 $\partial_t n = J_n, \quad J_n = \nabla n^{\alpha_n} - n \nabla V$ and equations for p, D, V

Theorem (Jüngel-Vetter 2023)

Let
$$d = 3$$
, $\frac{6}{5} < \alpha_n \le 2$ and $V \in W^{1,3}(\Omega)$. Then \exists solution (n, p, D, V)
 $n^{\alpha_n}, p^{\alpha_p}, D^{\alpha_D} \in L^{\infty}(0, T; L^1(\Omega))$
 $n^{\alpha_n - 1/2}, p^{\alpha_p - 1/2}, D^{\alpha_D - 1/2} \in L^2(0, T; H^1(\Omega))$
 $J_n, J_p, J_D \in L^2(0, T; L^1(\Omega)), \quad V \in L^{\infty}(0, T; H^1(\Omega))$

Theorem (Jüngel-Vetter 2023)

•
$$\alpha_n > \frac{11+\sqrt{37}}{14} \approx 1.22, \ V \in W^{1,3}(\Omega): \ n \in L^{\infty}(0, T; L^q(\Omega)) \ \forall q < \infty$$

• $\alpha_n > \frac{11+\sqrt{37}}{14} \approx 1.22, \ V \in W^{1,r}(\Omega), \ r > 3: \ n \in L^{\infty}(0, T; L^{\infty}(\Omega))$

Proof: bootstrap $n \in L^1(\Omega) \to n \in L^{3/2}(\Omega)$ via linear difference equation $\to n \in L^{\gamma}(\Omega)$ uniformly in $\gamma \to n \in L^{\infty}(\Omega)$

Overview

Introduction

- Orift-diffusion equations
- Object of the second second
- Output State Numerical simulation

Numerical simulation

- Reduced model, Scharfetter-Gummel scheme, finite volumes, Newton
- Left: Applied potential causes mobile vacancies to drift, complete vacancy depletion at $x = L \rightarrow$ consistent with physical expectation
- Right: Sinusoidal applied voltage U_L(t), loop is fingerprint for memristor, indicates memory effect

Summary and perspectives

Summary:

- Memristor drift-diffusion eqs. represents synapse in neural network
- Global existence of weak solutions in any space dimension $d \ge 1$
- Boundedness for $d \leq 2$ (linear diff.) and d = 3 (degenerate diff.)
- Key ideas: free energy, local/global compactness, iteration arguments
- Numerical experiments for 1D memristors show hysteresis loop

Perspectives:

- Structure-preserving numerical schemes in two dimensions
- Couple memristor model with circuit equations
- Neural plasticity & self-learning in memristor circuits

© Jeong–Lu, IEEE Nanotec. Magazine 2018

Neuromorphic computing yields novel hardware approach for AI