A Multiscale Inverse Problem approached via Homogenization

Carlos Conca & Vicente Ocqueteau

Trends in Mathematical Sciences a FAU MoD & FAU DCN-AvH Conference

Inverse Problems

A general inverse problem

- A heat-conducting material in Ω ⊂ ℝ^d that varies on a fine scale
 ε > 0 is represented by its conductivity tensor, say A^ε(x), x ∈ Ω.
- Stimulated by *f*, it reaches a temperature $u^{\varepsilon}(t, x)$, solution to

$$(P) \begin{cases} \frac{\partial u^{\varepsilon}}{\partial t} - \operatorname{div}(A^{\varepsilon}(x)\nabla u^{\varepsilon}) = f & \text{in} \quad (0,T) \times \Omega \\ u^{\varepsilon} = 0 & \text{on} \quad (0,T) \times \partial \Omega \\ u^{\varepsilon}(0,\cdot) = u_0 \in L^2(\Omega) \end{cases}$$

Inverse Problem

To determine $A^{\varepsilon} = A^{\varepsilon}(x)$ from measurements of the flux of u^{ε} on $\partial\Omega$ and the knowledge of $u^{\varepsilon}(\theta, \cdot)$ at a given time $\theta \in (0, T)$.

Source to flux" map

$$\left(\begin{array}{c} \Lambda_{A^{\varepsilon}} \colon L^{2}(0, T; H^{-1}(\Omega)) \longrightarrow L^{2}(0, T; H^{-1/2}(\partial\Omega)) \\ f \mapsto \Lambda_{A^{\varepsilon}} f = \left. A^{\varepsilon} \nabla u^{\varepsilon} \cdot \hat{n} \right|_{\partial\Omega \text{ or } \Gamma_{0} \subseteq \partial\Omega} \end{array} \right)$$

Practical constraints

 Only a subregion ω ⊆ Ω can be accessed to locate heat sources, where ω is a given open subset of Ω, and hence

f will be assumed to be compactly supported in ω

- Fluxes A^ε∇u^ε · n̂ can only be measured over a subset of the boundary, say Γ₀; Γ₀ being an open subset of ∂Ω, |Γ₀| > 0.
- What will be measured or known is actually

 $A^{\varepsilon} \nabla u^{\varepsilon} \cdot \hat{n} |_{\Gamma_0}$

All of our analysis of the IP will be carried out with (RHS)'s

 $f \in \mathcal{C}_0^\infty((0, T) \times \omega)$

Existence & regularity of the solution of (P) A. Pazy (1983), D. Gilbarg & N.S. Trudinger (2nd ed. 2001)

By semi-group theory, (P) has a unique solution

 $u^{\varepsilon} \in \mathcal{C}([0,T];L^{2}(\Omega)) \cap \mathcal{C}((0,T);H^{2}(\Omega) \cap H^{1}_{0}(\Omega)) \cap \mathcal{C}^{1}((0,T),L^{2}(\Omega))$

Let $N \in \mathbb{N}$ and τ_1, τ_2 be fixed s.t.

$$N > rac{d}{2} + 3;$$
 $0 < au_1 < au_2 < T.$

Regularity for coefficients in $\mathcal{C}^{N-1,1}(\overline{\Omega})^{d \times d}$

$$\begin{split} \left|\left|u^{\varepsilon}\right|\right|_{\mathcal{C}^{\ell}\left(\left(\tau_{1},\tau_{2}\right);H^{m_{0}}\left(\Omega\right)\right)} \leq C_{\ell}\left(\left|\left|u^{\varepsilon}(0,\cdot\right)\right|\right|_{L^{2}\left(\Omega\right)}+\left|\left|f\right|\right|_{W^{1,1}\left(0,T;H^{m_{0}}\left(\omega\right)\right)}\right) \ \forall \ell \geq 0 \end{split}$$
 where $m_{0}=2\left[\frac{N+1}{2}\right].$

Local stability & identifiability (I)

For $0 < \alpha < \beta$, define

$$\mathcal{M}(\alpha,\beta,\Omega) \stackrel{(\mathrm{def})}{=} \left\{ \boldsymbol{A} \in \mathcal{C}^{N-1,1}(\overline{\Omega}; \boldsymbol{Sym}_d) \ \Big| \ \alpha |\xi|^2 \leq \boldsymbol{A}(\boldsymbol{x}) \xi \cdot \xi \leq \beta |\xi|^2 \ \forall \, \xi, \boldsymbol{x} \right\}$$

Sym_d: class of $d \times d$ real-valued symmetric matrices

Admissible tensors around a given set $\eta = (\eta_{ij})_{i,j=1}^d$ Let M_0 , $r_0 > 0$ be given (r_0 small). We define

$$\omega_1 \stackrel{(\text{def})}{=} \{ x \in \Omega \mid dist(x, \partial \Omega) < r_0 \}.$$

For any set of smooth functions $\eta = (\eta_{ij})_{i,j=1}^d$ defined on $\overline{\Omega}$, we set

$$\mathcal{U}[M_{0},\eta] \stackrel{(\mathrm{def})}{=} \left\{ \boldsymbol{A} \in \mathcal{M}(\alpha,\beta,\Omega) \ \bigg| \ ||\boldsymbol{A}||_{\mathcal{C}^{N-1,1}(\overline{\Omega})^{d \times d}} \leq M_{0}, \boldsymbol{A}|_{\omega_{1}} = \eta \right\}$$

Stability & Identifiability (II)

Theorem Let $A^{(2)} \in \mathcal{U}$ be fixed. Then we can choose $\ell_0 = d(d+3)/2$ functions $(f_\ell)_{\ell=1}^{\ell_0}$ in $\mathcal{C}_0^{\infty}((0, T) \times \omega)$ such that, for every $A^{(1)} \in \mathcal{U}$,

$$\begin{split} |A^{(1)} - A^{(2)}||_{H^{1}(\Omega)^{d \times d}} &\leq C \sum_{\ell=1}^{\ell_{0}} ||u[A^{(1)}, f_{\ell}](\theta, \cdot) - u[A^{(2)}, f_{\ell}](\theta, \cdot)||_{H^{3}(\Omega)} + \\ &+ C \sum_{\ell=1}^{\ell_{0}} ||A^{(1)} \nabla u[A^{(1)}, f_{\ell}] \cdot \hat{n} - A^{(2)} \nabla u[A^{(2)}, f_{\ell}] \cdot \hat{n}]||_{H^{2}((\tau_{1}, \tau_{2}); L^{2}(\Gamma_{0}))}, \end{split}$$

where *C* depends continuously on $\mathcal{U}, (f_{\ell})_{\ell=1}^{\ell_0}$ and $||A^{(2)}||_{\mathcal{C}^1(\overline{\Omega})^{d \times d}}$.

Good and not-so-good consequences

- (Uniqueness) Same solutions and fluxes \Rightarrow tensors coincide
- (Reconstruction) It suggests that it would be enough to do it using a finite number of sources
- (Multiscale case) The constant *C* scales to an $O(\varepsilon^{-1})$

Reconstruction

Two considerations before reconstruction

• Reconstruction of multiple coefficients is currently outside the scope of inverse problems theory

The number of unknowns should be reduced $(\frac{d(d+1)}{2} \rightarrow 1)$

 A numerical reconstruction departing from the fine-scale model requires a resolution (i.e. a mesh size) resolving the scale ε (which, although fixed, is very small), often representing a prohibited cost.

Going down to the fine-scale should be avoided, which we'll do via homogenization

Why a homogenization strategy?

$$(A^{\varepsilon})_{\varepsilon \to 0} \stackrel{\mathrm{G}}{\longrightarrow} A^{\circ} \Rightarrow \forall f \in L^{2}(0, T; H^{-1}(\Omega)),$$

$$\begin{cases} \Lambda_{A^{\varepsilon}} f \stackrel{\varepsilon \to 0}{\longrightarrow} \Lambda_{A^{\circ}} f \text{ in} \\ L^{2}(0, T; H^{-1/2}(\partial \Omega)) \end{cases}$$

Homogenization strategy

A new class of admissible highly oscillating tensors

Admissible tensors

 A^{ε} is sought in the subclass of parametrizable, locally periodic tensors of the form

$$A^{\varepsilon}(x) = A^{\varepsilon}_{\sigma}(x) = F(\sigma(x), \frac{x}{\varepsilon}),$$

where
$$\left\{\begin{array}{ll} F \colon \mathbb{R} \times \mathbb{R}^d \to Sym_d \subset \mathbb{R}^{d \times d} \\ (s, y) \mapsto F(s, y) \end{array} \text{ is } Y = [0, 1)^d \text{-periodic in } y, \end{array}\right.$$

and $\sigma \colon \Omega \to \mathbb{R}$ is the parametrizing function. F, σ sufficiently smooth.

Our IP revisted (restricted to less admissible tensors)

• The map $F(\cdot, \cdot)$ is assumed to be known, we look for $\sigma(\cdot)$, say

$$\sigma \in \mathcal{A}_{\mathsf{ad}} \stackrel{(\mathrm{def})}{=} \left\{ m \in \mathcal{C}^{N-1,1}(\overline{\Omega}) \; \middle| \; A_m^{\varepsilon} \in \mathcal{M}(\alpha,\beta,\Omega) \right\}$$

Parametrizable, locally $[0, 1)^d$ -periodic homogenization

Explicit formulae for the homogenized coefficients

- Any sequence $(A_{\sigma}^{\varepsilon})_{\varepsilon}$ is G-convergent, say $\operatorname{G-lim}_{\varepsilon \to 0} A_{\sigma}^{\varepsilon} = A_{\sigma}^{0} \in \mathcal{A}_{ad}$
- Explicit formulae for the coefficients (A⁰_σ)_{ij}(x) of A⁰_σ are available in terms of (F(·, ·))_{ij} and σ: ∀i, j = 1,...d,

$$(A^0_{\sigma})_{ij}(x) = \int_{Y} F_{ij}(\sigma(x), y) dy - \sum_{k=1}^{d} \int_{Y} (F(\sigma(x), y))_{ik} \frac{\partial \hat{\chi}_{j}}{\partial y_{k}} dy,$$

where $\hat{\chi}_j$ is the unique solution to finding $\hat{\chi}_j \in H^1_{\#}(Y)$ s.t.

$$\int_{Y} F(\sigma(x), y) \nabla_{y} \hat{\chi}_{j} \cdot \nabla_{y} v \, dy = \int_{Y} F(\sigma(x), y) \, \mathbf{e}_{j} \cdot \nabla_{y} v \, dy$$
$$\forall v \in H^{1}_{\#}(Y)$$

The effective inverse problem (I)

As said in the first slide, our IP's input data are the maps

 $f\mapsto (\Lambda_{A_{\sigma}^{\varepsilon}}f)|_{(\tau_1,\tau_2) imes\Gamma_0}\quad\&\quad f\mapsto u[A_{\sigma}^{\varepsilon},f](heta,\cdot),$

corresponding to boundary measurements of the fluxes and the solution of (P) at time $t = \theta$.

This is a considerable amount of information

 The stability theorem suggests that a finite number of source terms would be enough for reconstruction

The effective inverse problem (II)

- The stability theorem suggests that a finite number of source terms would be enough for reconstruction
- and leads naturally to consider the optimisation problem of finding σ ∈ A_{ad} s.t.

$$\Phi^{\varepsilon}(\sigma) = \inf_{m \in \mathcal{A}_{ad}} \Phi^{\varepsilon}(m),$$

$$\Phi^{\varepsilon}(m)^{(\text{def})} \stackrel{\ell_{0}}{=} \sum_{\ell=1}^{\ell_{0}} ||(\Lambda_{A_{\sigma}^{\varepsilon}} - \Lambda_{A_{m}^{0}})f_{\ell}||^{2}_{H^{2}(\tau_{1},\tau_{2};L^{2}(\Gamma_{0}))} + ||(u[A_{\sigma}^{\varepsilon},f_{\ell}] - u[A_{m}^{0},f_{\ell}])(\theta,\cdot)||^{2}_{H^{3}(\Omega)}$$

Here, $u[A_m^0, f_\ell] = u_m^0$ is the unique solution for $A_m^0(x) = \operatorname{G-lim}_{\varepsilon \to 0} A_m^{\varepsilon}$, i.e.,

$$(HP)_{\ell} \begin{cases} \frac{\partial u_m^0}{\partial t} - \operatorname{div}(A_m^0 \nabla u_m^0) = f_{\ell} & \text{in} \quad (0, T) \times \Omega\\ u_m^0 = 0 & \text{on} \quad (0, T) \times \partial \Omega\\ u_m^0(0, \cdot) = u_0 & \text{in} \quad \Omega \end{cases}$$

Reconstruction Algorithm

for σ or A_{σ}^{ε}

Input data: The maps $f \mapsto (\Lambda_{A_{\sigma}^{\varepsilon}} f)|_{(\tau_1, \tau_2) \times \Gamma_0}$, $f \mapsto u[A_{\sigma}^{\varepsilon}, f](\theta, \cdot)$, for a fixed $\theta \in (\tau_1, \tau_2)$. Take a first $m \in \mathcal{A}_{ad}$.

- Compute the homogenized tensor A_m^0
- 2 Set $A^{(2)} = A_m^0$ in the stability theorem. Obtain the sources $(f_\ell)_{\ell=1}^{\ell_0}$
- 3 Recover data: $(\Lambda_{A_{\sigma}^{\varepsilon}}f_{\ell})|_{(\tau_1,\tau_2)\times\Gamma_0}, u[A_{\sigma}^{\varepsilon},f_{\ell}](\theta,\cdot)$
- For $\ell = 1, \ldots, \ell_0$, solve the homogenized problem (HP) $_{\ell}$
- Sompute the corresponding fluxes $(\Lambda_{A_m^0} f_\ell)|_{(\tau_1, \tau_2) \times \Gamma_0}$, and evaluate $u_m^0(\theta, \cdot)$ for $\ell = 1, \ldots, \ell_0$
- Evaluate $\Psi^{\varepsilon}(m) = \Phi^{\varepsilon}(m) + \gamma ||m m_0||^2_{H^1(\Omega) \text{ or } L^2(\Omega)}$ (Tikhonof's regularization, parameter γ , guess m_0 for σ , given)
- Oppending on the optimization method chosen for minimizing Ψ, upgrade m, go back to the first step
- 8 End when a tolerance criterion is achieved Trends in Mathematical Sciences * Friedrich-Alexander-Universität Erlangen-Nürnberg * Tuesday 11 - June 202

・ロト ・ 理 ト ・ ヨ ト ・ ヨ

Mathematical justification

Theorem(c) Let $\sigma \in \mathcal{A}_{ad}$ be fixed. For each ε , we consider the minimization problem

$$\inf_{m\in\mathcal{A}_{\mathrm{ad}}}\Phi^{\varepsilon}(m),$$

Then for every minimizing sequence $(m_n^{\varepsilon})_n$, there is a subsequence $(m_{n_k}^{\varepsilon})_k$ such that

$$\operatorname{G-lim}_{k\to\infty} A^{\varepsilon}_{m^{\varepsilon}_{n_k}}(x) = A^{\varepsilon}_{\sigma}(x).$$

Moreover,

$$\operatorname{G-lim}_{\varepsilon\to 0}\left(\operatorname{G-lim}_{k\to\infty}A^{\varepsilon}_{m^{\varepsilon}_{n_k}}(x)\right)=A^0_{\sigma}(x).$$

Thank You for your Attention !

