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Euclidean Model ¢f the 3D space:
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Fora € R and u,v,w € R3,

and



Isometries

An isometry in R? is a function f : R® — R3 such that, Yu, v € R3,

£ (u) = F(W)I| = [Ju = v]],

with

lulP =u-u.



Anin R3 is a function f : R® — R3 such that, Yu, v € R3,

£ (u) = F(W)I| = [Ju = v]],

with

||u|\2 =u-u.

An isometry f can also be given by

Novs cae |
AcR3*3 peR3, and




Isometries

v N\
(Homogeneous Model bf the 3D space: an isometry f(x) = Ax + b,
A€ R33 and b € R3, can be represented linearly in R,
x| | Ax+b
O 1

x €[>



The Homogeneous Model
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Figure 1: The(Homogeneous Model)



The Homogeneous Model




The Homogeneous Model

An orthogonal transformation A in R3 can also be given by, Yu, v € R3,

(Au) - (Av) =u-v.
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The Homogeneous Model

An orthogonal transformation A in R3 can also be given by, Yu, v € R3,

(Au) - (Av) =u-v.

Consider that X, Y represent x,y € R3? in the homogeneous model.

IE there is a constant k € R (# 0) such that, Vx,y € R3,

fYe R




The Homogeneous Model

THEN isometries in R3 could be coded as orthogonal transformations in
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The Homogeneous Model

THEN isometries in R3 could be coded as orthogonal transformations in
4

From (1),
x=y=X-X=0.



The Homogeneous Model

THEN isometries in R3 could be coded as orthogonal transformations in

A point x of the 3D space can also be represented by

)(ZX—‘y-X4(947 x3 € R (X4750)

N() Sowvndw FoOR
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The Conformal Model

In R, a point x of the 3D space,
X = x1€1 + X262 + x3e3 + 0eyq + Oes,
@ is orthogonal to@ will be represented by
()6: XH Xs€4 + X565, Xa,X5 € R.

IR®




The Conformal Model

In R, a point x of the 3D space,
X = x1€1 + X0 + x3e3 + 0eq + Oes,
es € R® is orthogonal to {ey, e, €3, €4}, will be represented by

X = x+ x4e4 + X565, Xx4,%5 € R.

Thus,

=
(x + xaeq + x565) - (x + xae4 + x565) = O
1 &
e - e es-es) = —||x||°
X (es - €a) + x5 (es - ) |||

<0



The Conformal Model

In R, a point x of the 3D space,
X = x1€1 + X0 + x3e3 + 0eq + Oes,
es € R® is orthogonal to {ey, e, €3, €4}, will be represented by

X = x+ x4e4 + X565, Xx4,%5 € R.

Thus,
X-X =0
=
(x + xaeq + x565) - (x + xae4 + x565) = O
=
Xi(ea- &) +x3(es-es) = x|

e ® el o] = 1



The Conformal Model

Let us consider
€5 - €5 = —1.
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Let us consider
€5 - €5 = —1.

The points X € RS that will represent the 3D space must satisfy
X - X=0.



The Conformal Model

Let us consider
€5 - €5 = —1.

——

The points X € R that will represent the 3D space must satisfy

(0[64 + 585) . (0464 + Be;,) =I()

For o, B € R, we have

3

062(64 0 64) + 62(65 0 65) =0

(3
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The Conformal Model

Let us consider
€5 - €5 = —1.

The points X € RS that will represent the 3D space must satisfy

X - X=0.
For a, 8 € R, we have
(aeq + Pes) - (aes + Pes) = 0
=
o’(ey-e3)+B%(es-e5) = 0
=
o2 = B2

Defining a new basis for R®, {e;, e, €3, €9, €0 },

: €5 — €4,
ST
: € + €4,



The Conformal Model

Considering a conformal point X using the basis {e;, e, &5},
X = x1€1 + Xa€4 + Xsés,

X1, Xa, X5 € R,



The Conformal Model

Considering a conformal point X using the basis {e;, e, &5},

X = X1€1 + Xa€4 +X5e5,

X1, Xa, X5 € R,

we get

o
(x1€1 + xses + xs€5) - (x1€1 + xae4 + x5€5) = 0
(&)
2

2 2
Xy +X3 = Xg.



The Conformal Model
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Figure 2: The Conformal Model.
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Figure 3: The Conformal Model.



The Conformal Model

5

fe

€

Figure 4: The Conformal Model.



The Conformal Model

Figure 5: The Conformal Model.



The Conformal Model

Figure 6: The Conformal Model.



The Conformal Model

To obtain the inner product between

@: X + X0€ + Xoo€oo and @: Y + Yo€o + Yoo€oo,
for xg, Xso, Y0, Yoo € R, we need to calculate
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The Conformal Model

To obtain the inner product between
X =X+ X060 + Xoo€o and Y =y + yp€0 + Yoo oo,

for xg, Xso, Y0, Yoo € R, we need to calculate

€5 — €4
N

€ - e = (%) (&5 + 1) :@

For




The Conformal Model

To obtain the inner product between
X =X+ X060 + Xoo€o and Y =y + yp€0 + Yoo oo,

for xg, Xso, Y0, Yoo € R, we need to calculate

€0 * €xo-
For
€5 — €4
=
e — e
eo-em:< 52 4)'(e5+e4):—1.
Thus,

@ = (x+ 080 + Xo0€00) - (¥ + Y0€0 + Yooo)

Xy = (X0Yoo + Xoo0)-




The Conformal Model
For X =Y,
< e



The Conformal Model

For X =Y,
X-X=0=||x]|> — 2x0% = 0.

Considering xp = 1,
— 1
X=x+¢e+ EHXHzeOO.

X: x Dc*é//I?i>




The Conformal Model

For X =Y,
X-X=0=||x]|> — 2x0% = 0.

Considering xp = 1,

1
X :x+eo+§\|x\|2eoo.

For x,y € R3,

(v

1 5 1 2
X+€0+§HXH e | - y+eo+§\|y|| €so

1 1
Xy = (3P + 3l1P)

@IIXHF-



The Conformal Model

Figure 7: The Conformal Model.



The Conformal Model

Figure 8: The Conformal Model.



The Conformal Model

Figure 9: The Conformal Model.



The Conformal Model

The Conformal Model of the 3D space:




The Conformal Model
The Conformal Model of the 3D space:

@with the basis {e1, e, €3, €, €x }, such that, for i,j =1,2,3,

e;-ej:(S,-j,
60'6,‘:0,
e - € =0,

and
€ € = €xo " € = 0,

€ €so = —1.
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Matrix Representation

If X, Y are the conformal representations of x,y € R3,

UXx Y

(3

(UTiHyux = (UTL)Y

X = (lLUTI)Y.



Matrix Representation

If X, Y are the conformal representations of x,y € R3,

Ux =Y
=
(UTiHyux = (UTL)Y
=1
X = (lUTL)Y.
That is,
ut=1uTl,
with
A b 0 I 0 0
U= 0 1 0 and /.= 0 0 -1
pbTA LEE 4 0 -1 0
2



