Different Models for 3D Space in Molecular Geometry

Carlile Lavor

University of Campinas
UNICAMP

Isometries

Isometries

Euclidean Model of the 3D space:

Isometries

Euclidean Model of the 3D space:
$\mathbb{R}^{3}+\underline{\text { usual inner product. }}$

Isometries

Euclidean Model of the 3D space:

$$
\mathbb{R}^{3}+\underline{\text { usual inner product. }}
$$

For $\alpha \in \mathbb{R}$ and $u, v, w \in \mathbb{R}^{3}$,

$$
\begin{gathered}
u \cdot v=v \cdot u \\
u \cdot(v+w)=(u \cdot v)+(u \cdot w) \\
\alpha(u \cdot v)=(\alpha u) \cdot v=u \cdot(\alpha v)
\end{gathered}
$$

and

Isometries

Euclidean Model of the 3D space:

For $\alpha \in \mathbb{R}$ and $u, v, w \in \mathbb{R}^{3}$,

$$
\begin{gathered}
u \cdot v=v \cdot u \\
u \cdot(v+w)=(u \cdot v)+(u \cdot w) \\
\alpha(u \cdot v)=(\alpha u) \cdot v=u \cdot(\alpha v)
\end{gathered}
$$

and

$$
u \neq 0 \Rightarrow u \cdot u>0 .
$$

Isometries

An isometry in \mathbb{R}^{3} is a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that, $\forall u, v \in \mathbb{R}^{3}$,

$$
\|f(u)-f(v)\|=\|u-v\|,
$$

with

$$
\|u\|^{2}=u \cdot u
$$

Isometries

An isometry in \mathbb{R}^{3} is a function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that, $\forall u, v \in \mathbb{R}^{3}$,

$$
\|f(u)-f(v)\|=\|u-v\|
$$

with

$$
\|u\|^{2}=u \cdot u
$$

An isometry f can also be given by

$$
\begin{array}{r}
f(u)=A u+b, \\
A \in \mathbb{R}^{3 \times 3}, b \in \mathbb{R}^{3}, \text { and } A^{-1}=A^{T} .
\end{array}
$$

Nonlinear!

Isometries

Homogeneous Model of the 3D space: an isometry $f(x)=A x+b$, $A \in \mathbb{R}^{3 \times 3}$ and $b \in \mathbb{R}^{3}$, can be represented linearly in \mathbb{R}^{4}.

$$
\underbrace{\left[\begin{array}{ll}
A & b \\
0 & 1
\end{array}\right]}_{x \in \mathbb{R}^{3}}\left[\begin{array}{c}
x \\
1
\end{array}\right]=\left[\begin{array}{c}
A x+b \\
1
\end{array}\right] .
$$

The Homogeneous Model

Figure 1: The Homogeneous Model

The Homogeneous Model

The Homogeneous Model

An orthogonal transformation A in \mathbb{R}^{3} can also be given by, $\forall u, v \in \mathbb{R}^{3}$,

$$
(A u) \cdot(A v)=u \cdot v .
$$

The Homogeneous Model

An orthogonal transformation A in \mathbb{R}^{3} can also be given by, $\forall u, v \in \mathbb{R}^{3}$,

$$
(A u) \cdot(A v)=u \cdot v .
$$

Consider that X, Y represent $x, y \in \mathbb{R}^{3}$ in the homogeneous model.

The Homogeneous Model

An orthogonal transformation A in \mathbb{R}^{3} can also be given by, $\forall u, v \in \mathbb{R}^{3}$,

$$
(A u) \cdot(A v)=u \cdot v .
$$

Consider that X, Y represent $x, y \in \mathbb{R}^{3}$ in the homogeneous model.
IF there is a constant $k \in \mathbb{R}(\neq 0)$ such that, $\forall x, y \in \mathbb{R}^{3}$,

$$
\begin{equation*}
X \cdot Y=\measuredangle k\|x-y\|^{2}, \tag{1}
\end{equation*}
$$

$$
X, Y \in \mathbb{R}^{4}
$$

The Homogeneous Model

THEN isometries in $\underline{\mathbb{R}}^{3}$ could be coded as orthogonal transformations in \mathbb{R}^{4}.

The Homogeneous Model

THEN isometries in \mathbb{R}^{3} could be coded as orthogonal transformations in \mathbb{R}^{4}.

From (1),

$$
x=y \Rightarrow X \cdot X=0
$$

The Homogeneous Model

THEN isometries in $\underline{\mathbb{R}}^{3}$ could be coded as orthogonal transformations in \mathbb{R}^{4}.

From (1).

$$
x=y \Rightarrow x \cdot x=0 .
$$

A point x of the $3 D$ space can also be represented by

$$
X=x+x_{4} e_{4}, \quad x_{4} \in \mathbb{R} \quad\left(x_{4} \neq 0\right) .
$$

No
solution

$$
\operatorname{FOR} \quad X \cdot Y=K\|x-y\|^{2}
$$

The Conformal Model

The Conformal Model

In $\underline{\mathbb{R}}^{5}$, a point x of the $3 D$ space,

$$
x=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+0 e_{4}+0 e_{5},
$$

$e_{5} \in \mathbb{R}^{5}$ is orthogonal to $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right.$ will be represented by
$X=\left(x+x_{4} e_{4}+x_{5} e_{5}, \quad x_{4}, x_{5} \in \mathbb{R}\right.$. $\mathbb{R}^{5} \mathbb{R}^{3}$

The Conformal Model

In $\underline{\mathbb{R}}^{5}$, a point x of the $3 D$ space,

$$
x=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+0 e_{4}+0 e_{5},
$$

$e_{5} \in \mathbb{R}^{5}$ is orthogonal to $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, will be represented by

$$
\underline{X=x+x_{4} e_{4}+x_{5} e_{5}}, \quad x_{4}, x_{5} \in \mathbb{R}
$$

Thus,

$$
\begin{aligned}
x \cdot X & =0 \\
& \Rightarrow \\
\left(x+x_{4} e_{4}+x_{5} e_{5}\right) \cdot\left(x+x_{4} e_{4}+x_{5} e_{5}\right) & =0 \\
& \Leftrightarrow \\
x_{4}^{2}\left(\frac{1}{\left(e_{4} \cdot e_{4}\right)}+x_{5}^{2}\left(e_{5} \cdot e_{5}\right)\right. & =\underbrace{-\|x\|^{2}}_{<0} .
\end{aligned}
$$

The Conformal Model

In $\underline{\mathbb{R}}^{5}$, a point x of the $3 D$ space,

$$
x=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+0 e_{4}+0 e_{5},
$$

$e_{5} \in \mathbb{R}^{5}$ is orthogonal to $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, will be represented by

$$
\underline{X=x+x_{4} e_{4}+x_{5} e_{5}}, \quad x_{4}, x_{5} \in \mathbb{R}
$$

Thus,

$$
\begin{aligned}
x \cdot X & =0 \\
& \Rightarrow \\
\left(x+x_{4} e_{4}+x_{5} e_{5}\right) \cdot\left(x+x_{4} e_{4}+x_{5} e_{5}\right) & =0 \\
& \Rightarrow \\
x_{4}^{2}\left(e_{4} \cdot e_{4}\right)+x_{5}^{2}\left(e_{5} \cdot e_{5}\right) & =-\|x\|^{2} .
\end{aligned}
$$

$x \neq 0$ and $\left\|e_{4}\right\|=1 \Rightarrow e_{5} \cdot e_{5}<0$.

The Conformal Model

Let us consider

$$
e_{5} \cdot e_{5}=-1
$$

The Conformal Model

Let us consider

$$
e_{5} \cdot e_{5}=-1
$$

The points $X \in \mathbb{R}^{5}$ that will represent the $3 D$ space must satisfy

$$
\underline{X \cdot X}=0 .
$$

The Conformal Model

Let us consider

$$
e_{5} \cdot e_{5}=-1
$$

The points $X \in \mathbb{R}^{5}$ that will represent the $3 D$ space must satisfy

$$
X \cdot X=0 .
$$

For $\alpha, \beta \in \mathbb{R}$, we have

$$
\begin{aligned}
\left(\alpha e_{4}+\beta e_{5}\right) \cdot\left(\alpha e_{4}+\beta e_{5}\right) & =0 \\
& \Leftrightarrow \\
\alpha^{2}\left(e_{4} \cdot e_{4}\right)+\beta^{2}\left(e_{5} \cdot e_{5}\right) & =0 \\
& \Leftrightarrow \\
\alpha^{2} & =\beta^{2}
\end{aligned}
$$

The Conformal Model

Let us consider

$$
e_{5} \cdot e_{5}=-1
$$

The points $X \in \mathbb{R}^{5}$ that will represent the $3 D$ space must satisfy

$$
\underline{X \cdot X}=0 .
$$

For $\alpha, \beta \in \mathbb{R}$, we have

$$
\begin{aligned}
\left(\alpha e_{4}+\beta e_{5}\right) \cdot\left(\alpha e_{4}+\beta e_{5}\right) & =0 \\
& \Leftrightarrow \\
\alpha^{2}\left(e_{4} \cdot e_{4}\right)+\beta^{2}\left(e_{5} \cdot e_{5}\right) & =0 \\
& \Leftrightarrow \\
\alpha^{2} & =\beta^{2} .
\end{aligned}
$$

Defining a new basis for $\mathbb{R}^{5},\left\{e_{1}, e_{2}, e_{3}, e_{0}, e_{\infty}\right\}$,

$$
\begin{aligned}
& e_{0}=e_{5}-e_{4}, \\
& e_{\infty}=e_{5}+e_{4},
\end{aligned}
$$

The Conformal Model

Considering a conformal point X using the basis $\left\{e_{1}, e_{4}, e_{5}\right\}$,

$$
X=x_{1} e_{1}+x_{4} e_{4}+x_{5} e_{5},
$$

$x_{1}, x_{4}, x_{5} \in \mathbb{R}$,

The Conformal Model

Considering a conformal point X using the basis $\left\{e_{1}, e_{4}, e_{5}\right\}$,

$$
X=x_{1} e_{1}+x_{4} e_{4}+x_{5} e_{5},
$$

$x_{1}, x_{4}, x_{5} \in \mathbb{R}$,
we get

The Conformal Model

Figure 2: The Conformal Model.

The Conformal Model

Figure 3: The Conformal Model.

The Conformal Model

Figure 4: The Conformal Model.

The Conformal Model

Figure 5: The Conformal Model.

The Conformal Model

Figure 6: The Conformal Model.

The Conformal Model

To obtain the inner product between

$$
X=x+x_{0} e_{0}+x_{\infty} e_{\infty} \text { and } Y=y+y_{0} e_{0}+y_{\infty} e_{\infty},
$$

for $x_{0}, x_{\infty}, y_{0}, y_{\infty} \in \mathbb{R}$, we need to calculate

$$
\begin{aligned}
& \text { REMEMBER THAT } \\
& \begin{array}{l}
e_{0} \cdot e_{\infty} . \\
X \cdot Y=k\|x-y\|^{2} \\
K \neq 0
\end{array}
\end{aligned}
$$

The Conformal Model

To obtain the inner product between

$$
X=x+x_{0} e_{0}+x_{\infty} e_{\infty} \text { and } Y=y+y_{0} e_{0}+y_{\infty} e_{\infty},
$$

for $x_{0}, x_{\infty}, y_{0}, y_{\infty} \in \mathbb{R}$, we need to calculate
$e_{0} \cdot e_{\infty}$.
For

$$
\begin{gathered}
e_{0}=\frac{e_{5}-e_{4}}{2} \\
e_{0} \cdot e_{\infty}=\left(\frac{e_{5}-e_{4}}{2}\right) \cdot\left(e_{5}+e_{4}\right)=-1 .
\end{gathered}
$$

The Conformal Model

To obtain the inner product between

$$
X=x+x_{0} e_{0}+x_{\infty} e_{\infty} \text { and } Y=y+y_{0} e_{0}+y_{\infty} e_{\infty},
$$

for $x_{0}, x_{\infty}, y_{0}, y_{\infty} \in \mathbb{R}$, we need to calculate

$$
e_{0} \cdot e_{\infty}
$$

For

$$
\begin{gathered}
e_{0}=\frac{e_{5}-e_{4}}{2}, \\
e_{0} \cdot e_{\infty}=\left(\frac{e_{5}-e_{4}}{2}\right) \cdot\left(e_{5}+e_{4}\right)=-1 .
\end{gathered}
$$

Thus,

$$
\begin{aligned}
X \cdot Y & =\left(x+x_{0} e_{0}+x_{\infty} e_{\infty}\right) \cdot\left(y+y_{0} e_{0}+y_{\infty} e_{\infty}\right) \\
& =x \cdot y-\left(x_{0} y_{\infty}+x_{\infty} y_{0}\right) .
\end{aligned}
$$

The Conformal Model

For $X=Y$,

$$
\underline{X \cdot X=0} \Rightarrow\|x\|^{2}-2 x_{0} x_{\infty}=0 .
$$

The Conformal Model

For $X=Y$,

$$
\underline{X \cdot X}=0 \Rightarrow\|x\|^{2}-2 x_{0} x_{\infty}=0 .
$$

Considering $x_{0}=1$,

$$
x=x+e_{0}+\frac{1}{2}\|x\|^{2} e_{\infty}
$$

$$
X=\left[\begin{array}{c}
x \\
1 \\
\frac{1}{2}\left\|_{x}\right\|^{2}
\end{array}\right], \quad x \in R^{3}
$$

The Conformal Model

For $X=Y$,

$$
\underline{X \cdot X=0} \Rightarrow\|x\|^{2}-2 x_{0} x_{\infty}=0 .
$$

Considering $x_{0}=1$,

$$
X=\underline{x+e_{0}}+\frac{1}{2}\|x\|^{2} e_{\infty} .
$$

For $x, y \in \mathbb{R}^{3}$,

$$
\begin{aligned}
X \cdot Y & =\left(x+e_{0}+\frac{1}{2}\|x\|^{2} e_{\infty}\right) \cdot\left(y+e_{0}+\frac{1}{2}\|y\|^{2} e_{\infty}\right) \\
& =x \cdot y-\left(\frac{1}{2}\|x\|^{2}+\frac{1}{2}\|y\|^{2}\right) \\
& =\left(-\frac{1}{2}\|x-y\|^{2} .\right.
\end{aligned}
$$

The Conformal Model

Figure 7: The Conformal Model.

The Conformal Model

Figure 8: The Conformal Model.

The Conformal Model

Figure 9: The Conformal Model.

The Conformal Model

The Conformal Model of the $3 D$ space:

The Conformal Model

The Conformal Model of the 3D space:

\mathbb{R}^{5} with the basis $\left\{e_{1}, e_{2}, e_{3}, e_{0}, e_{\infty}\right\}$, such that, for $i, j=1,2,3$,

$$
\begin{aligned}
& e_{i} \cdot e_{j}=\delta_{i j}, \\
& e_{0} \cdot e_{i}=0, \\
& e_{\infty} \cdot e_{i}=0,
\end{aligned}
$$

and

$$
\begin{gathered}
e_{0} \cdot e_{0}=e_{\infty} \cdot e_{\infty}=0 \\
e_{0} \cdot e_{\infty}=-1
\end{gathered}
$$

C.L., M. Souza, J.L. Aragon, Orthogonality of isometries in the conformal model of the 3D space, Graphical Models, 114 (2021).
J.M. Camargo, Geometria de Proteínas no Espaço Conforme, Tese de Doutorado, UNICAMP, 2021.

Questions?

Matrix Representation

If X, Y are the conformal representations of $x, y \in \mathbb{R}^{3}$,

$$
\begin{aligned}
U X & =Y \\
& \Leftrightarrow \\
\left(U^{\top} I_{c}\right) U X & =\left(U^{\top} I_{c}\right) Y \\
& \Leftrightarrow \\
X & =\left(I_{c} U^{T} I_{c}\right) Y .
\end{aligned}
$$

Matrix Representation

If X, Y are the conformal representations of $x, y \in \mathbb{R}^{3}$,

$$
\begin{aligned}
U X & =Y \\
& \Leftrightarrow \\
\left(U^{\top} I_{c}\right) U X & =\left(U^{\top} I_{c}\right) Y \\
& \Leftrightarrow \\
X & =\left(I_{c} U^{\top} I_{c}\right) Y .
\end{aligned}
$$

That is,

$$
U^{-1}=I_{c} U^{\top} I_{c}
$$

with

$$
U=\left[\begin{array}{ccc}
A & b & 0 \\
0 & 1 & 0 \\
b^{T} A & \frac{\|b\|^{2}}{2} & 1
\end{array}\right] \text { and } I_{c}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right] .
$$

