Different Models for 3D Space in Molecular Geometry

Carlile Lavor

University of Campinas UNICAMP

 $\underline{\textit{Euclidean Model}}$ of the $\underline{\textit{3D space}}:$

Euclidean Model of the 3D space:

 $\mathbb{R}^3 + \text{usual inner product}.$

Euclidean Model of the 3D space:

$$\mathbb{R}^3$$
 + usual inner product.

For $\alpha \in \mathbb{R}$ and $u, v, w \in \mathbb{R}^3$,

$$u \cdot v = v \cdot u,$$

$$u \cdot (v + w) = (u \cdot v) + (u \cdot w),$$

$$\alpha(u \cdot v) = (\alpha u) \cdot v = u \cdot (\alpha v),$$

and

Euclidean Model of the 3D space:

$$\mathbb{R}^3$$
 + usual (inner product.)

For $\alpha \in \mathbb{R}$ and $u, v, w \in \mathbb{R}^3$,

$$u \cdot v = v \cdot u,$$

$$u \cdot (v + w) = (u \cdot v) + (u \cdot w),$$

$$\alpha(u \cdot v) = (\alpha u) \cdot v = u \cdot (\alpha v),$$

and

$$u \neq 0 \Rightarrow u \cdot u > 0.$$

An isometry in \mathbb{R}^3 is a function $f:\mathbb{R}^3 \to \mathbb{R}^3$ such that, $\forall u,v \in \mathbb{R}^3$,

$$||f(u) - f(v)|| = ||u - v||,$$

with

$$||u||^2 = u \cdot u.$$

An isometry in \mathbb{R}^3 is a function $f: \mathbb{R}^3 \to \mathbb{R}^3$ such that, $\forall u, v \in \mathbb{R}^3$,

$$||f(u) - f(v)|| = ||u - v||,$$

with

$$||u||^2 = u \cdot u.$$

An isometry f can also be given by

$$f(u)=Au+b,$$

NONLINEAR

$$A \in \mathbb{R}^{3 imes 3}, \ b \in \mathbb{R}^3, \ \mathsf{and} A^{-1} = A^T.$$

Homogeneous Model of the 3D space: an isometry f(x) = Ax + b, $A \in \mathbb{R}^{3 \times 3}$ and $B \in \mathbb{R}^3$, can be represented linearly in \mathbb{R}^4 ,

$$\begin{bmatrix}
A & b \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
\mathbf{x} \\
\mathbf{1}
\end{bmatrix} = \begin{bmatrix}
Ax + b \\
1
\end{bmatrix}.$$

$$x \in \mathbb{R}^{3}$$

Figure 1: The Homogeneous Model

An orthogonal transformation A in \mathbb{R}^3 can also be given by, $\forall u,v\in\mathbb{R}^3$,

$$(Au)\cdot (Av)=u\cdot v.$$

An orthogonal transformation A in \mathbb{R}^3 can also be given by, $\forall u,v\in\mathbb{R}^3$,

$$(Au)\cdot (Av)=u\cdot v.$$

Consider that X, Y represent $x, y \in \mathbb{R}^3$ in the homogeneous model.

An orthogonal transformation A in \mathbb{R}^3 can also be given by, $\forall u,v\in\mathbb{R}^3$,

$$(Au)\cdot (Av)=u\cdot v.$$

Consider that X, Y represent $x, y \in \mathbb{R}^3$ in the homogeneous model.

<u>IF</u> there is a constant $\underline{k} \in \mathbb{R} \ (\neq 0)$ such that, $\forall x, y \in \mathbb{R}^3$,

$$X \cdot Y = |k||x - y||^2,$$

 $\underline{\mathsf{THEN}}$ isometries in $\underline{\mathbb{R}^3}$ could be coded as orthogonal transformations in $\underline{\mathbb{R}^4}.$

 \underline{THEN} isometries in $\underline{\mathbb{R}^3}$ could be coded as orthogonal transformations in $\underline{\mathbb{R}^4}.$

From (1),

$$x = y \Rightarrow X \cdot X = 0.$$

<u>THEN</u> isometries in \mathbb{R}^3 could be coded as orthogonal transformations in \mathbb{R}^4 .

$$x = y \Rightarrow X \cdot X = 0.$$

A point x of the 3D space can also be represented by

$$X = x + x_4 e_4, \quad x_4 \in \mathbb{R} \ (x_4 \neq 0).$$

In \mathbb{R}^5 , a point x of the 3D space,

$$x = x_1e_1 + x_2e_2 + x_3e_3 + 0e_4 + 0e_5,$$

 $(e_5 \in \mathbb{R}^5)$ is orthogonal to (e_1, e_2, e_3, e_4) , will be represented by

$$(X)=(x)+x_4e_4+x_5e_5, x_4,x_5 \in \mathbb{R}.$$

In \mathbb{R}^5 , a point x of the 3D space,

$$x = x_1e_1 + x_2e_2 + x_3e_3 + 0e_4 + 0e_5,$$

 $e_5 \in \mathbb{R}^5$ is orthogonal to $\{e_1, e_2, e_3, e_4\}$, will be represented by

$$X = x + x_4 e_4 + x_5 e_5, \quad x_4, x_5 \in \mathbb{R}.$$

Thus,

$$(x + x_4 e_4 + x_5 e_5) \cdot (x + x_4 e_4 + x_5 e_5) = 0$$

$$x_4^2 (e_4 \cdot e_4) + x_5^2 (e_5 \cdot e_5) = -||x||^2.$$

In \mathbb{R}^5 , a point x of the 3D space,

$$x = x_1e_1 + x_2e_2 + x_3e_3 + 0e_4 + 0e_5,$$

 $e_5 \in \mathbb{R}^5$ is orthogonal to $\{e_1, e_2, e_3, e_4\}$, will be represented by

$$X = x + x_4 e_4 + x_5 e_5, \quad x_4, x_5 \in \mathbb{R}.$$

Thus,

$$\begin{array}{rcl} X \cdot X & = & 0 \\ & \Rightarrow & \\ & (x + x_4 e_4 + x_5 e_5) \cdot (x + x_4 e_4 + x_5 e_5) & = & 0 \\ & \Rightarrow & \\ & x_4^2 (e_4 \cdot e_4) + x_5^2 (e_5 \cdot e_5) & = & -||x||^2. \\ x \neq 0 \text{ and } ||e_4|| = 1 \Rightarrow \underbrace{e_5 \cdot e_5 < 0}. \end{array}$$

Let us consider

$$e_5 \cdot e_5 = -1.$$

Let us consider

$$e_5 \cdot e_5 = -1.$$

The points $X \in \mathbb{R}^5$ that will represent the 3D space must satisfy

$$X \cdot X = 0$$
.

Let us consider

$$e_5\cdot e_5=-1.$$

The points $X \in \mathbb{R}^5$ that will represent the 3D space must satisfy

$$X \cdot X = 0$$
.

For $\alpha, \beta \in \mathbb{R}$, we have

$$(\alpha e_4 + \beta e_5) \cdot (\alpha e_4 + \beta e_5) = 0$$

$$\Leftrightarrow$$

$$\alpha^2 (e_4 \cdot e_4) + \beta^2 (e_5 \cdot e_5) = 0$$

$$\Leftrightarrow$$

$$\alpha^2 = \beta^2$$

Let us consider

$$e_5 \cdot e_5 = -1.$$

The points $X \in \mathbb{R}^5$ that will represent the 3D space must satisfy

$$X \cdot X = 0$$
.

For $\alpha, \beta \in \mathbb{R}$, we have

$$(\alpha e_4 + \beta e_5) \cdot (\alpha e_4 + \beta e_5) = 0$$

$$\Leftrightarrow$$

$$\alpha^2 (e_4 \cdot e_4) + \beta^2 (e_5 \cdot e_5) = 0$$

$$\Leftrightarrow$$

$$\alpha^2 = \beta^2$$

Defining a new basis for \mathbb{R}^5 , $\{e_1, e_2, e_3, e_0, e_\infty\}$,

$$e_0 = \underline{e_5 - e_4},$$

Considering a conformal point X using the basis $\{e_1,e_4,e_5\}$,

$$X = x_1e_1 + x_4e_4 + x_5e_5,$$

$$x_1, x_4, x_5 \in \mathbb{R}$$
,

Considering a conformal point X using the basis $\{e_1, e_4, e_5\}$,

$$X = x_1e_1 + x_4e_4 + x_5e_5,$$

$$x_1, x_4, x_5 \in \mathbb{R}$$
,

we get

$$(x_{1}e_{1} + x_{4}e_{4} + x_{5}e_{5}) \cdot (x_{1}e_{1} + x_{4}e_{4} + x_{5}e_{5}) = 0$$

$$(x_{1}e_{1} + x_{4}e_{4} + x_{5}e_{5}) \cdot (x_{1}e_{1} + x_{4}e_{4} + x_{5}e_{5}) = 0$$

$$(x_{1}e_{1} + x_{4}e_{4} + x_{5}e_{5}) \cdot (x_{1}e_{1} + x_{4}e_{4} + x_{5}e_{5}) = 0$$

Figure 2: The Conformal Model.

Figure 3: The Conformal Model.

Figure 4: The Conformal Model.

Figure 5: The Conformal Model.

Figure 6: The Conformal Model.

To obtain the inner product between

$$(X) = x + x_0 e_0 + x_\infty e_\infty$$
 and $(Y) = y + y_0 e_0 + y_\infty e_\infty$,

for $x_0, x_\infty, y_0, y_\infty \in \mathbb{R}$, we need to calculate

$$e_0 \cdot e_{\infty}$$
.

$$(X \cdot Y = K || x - y ||^2)$$

To obtain the inner product between

$$X = x + x_0 e_0 + x_\infty e_\infty$$
 and $Y = y + y_0 e_0 + y_\infty e_\infty$,

for $x_0, x_\infty, y_0, y_\infty \in \mathbb{R}$, we need to calculate

 $e_0 \cdot e_{\infty}$.

For

$$e_0 = \frac{e_5 - e_4}{2},$$

$$\underline{e_0 \cdot e_\infty} = \left(\frac{e_5 - e_4}{2}\right) \cdot \left(e_5 + e_4\right) = \boxed{-1}.$$

To obtain the inner product between

$$X = x + x_0 e_0 + x_\infty e_\infty$$
 and $Y = y + y_0 e_0 + y_\infty e_\infty$,

for $x_0, x_\infty, y_0, y_\infty \in \mathbb{R}$, we need to calculate

$$e_0 \cdot e_\infty$$
.

For

$$e_0 = rac{e_5 - e_4}{2},$$
 $e_0 \cdot e_\infty = \left(rac{e_5 - e_4}{2}
ight) \cdot \left(e_5 + e_4
ight) = -1.$

Thus,

$$(X \cdot Y) = (x + x_0 e_0 + x_\infty e_\infty) \cdot (y + y_0 e_0 + y_\infty e_\infty)$$
$$= \underline{x \cdot y} - (x_0 y_\infty + x_\infty y_0).$$

For
$$X = Y$$
,

$$\underline{X \cdot X = 0} \Rightarrow (||x||^2 - 2x_0 x_\infty = 0.)$$

For
$$X = Y$$
,

$$\underline{X \cdot X = 0} \Rightarrow ||x||^2 - 2x_0 x_\infty = 0.$$

Considering $x_0 = 1$,

$$X = \underline{x + e_0} + \frac{1}{2}||x||^2 e_{\infty}.$$

$$X = \begin{bmatrix} x \\ 1 \\ \frac{1}{4} \| x \|^2 \end{bmatrix}, \quad x \in \mathbb{R}^3$$

For
$$X = Y$$
,

$$\underline{X \cdot X = 0} \Rightarrow ||x||^2 - 2x_0 x_\infty = 0.$$

Considering $x_0 = 1$,

$$X = \underline{x + e_0} + \frac{1}{2}||x||^2 e_{\infty}.$$

For $x, y \in \mathbb{R}^3$,

$$\overline{(X \cdot Y)} = \left(x + e_0 + \frac{1}{2}||x||^2 e_\infty\right) \cdot \left(y + e_0 + \frac{1}{2}||y||^2 e_\infty\right)
= x \cdot y - \left(\frac{1}{2}||x||^2 + \frac{1}{2}||y||^2\right)
= \left(-\frac{1}{2}||x - y||^2\right).$$

Figure 7: The Conformal Model.

Figure 8: The Conformal Model.

Figure 9: The Conformal Model.

The $\underline{Conformal\ Model}$ of the $\underline{3D}$ space:

The <u>Conformal Model</u> of the 3D space:

 \mathbb{R}^5 with the basis $\{e_1,e_2,e_3,e_0,e_\infty\}$, such that, for i,j=1,2,3,

$$e_i \cdot e_j = \delta_{ij},$$

$$e_0 \cdot e_i = 0$$
,

$$e_{\infty}\cdot e_i=0,$$

and

$$e_0 \cdot e_0 = e_\infty \cdot e_\infty = 0,$$

 $e_0 \cdot e_\infty = -1.$

C.L., M. Souza, J.L. Aragon, Orthogonality of isometries in the conformal model of the 3D space, *Graphical Models*, 114 (2021).

J.M. Camargo, Geometria de Proteínas no Espaço Conforme, Tese de Doutorado, UNICAMP, 2021.

Matrix Representation

If X, Y are the conformal representations of $x,y\in\mathbb{R}^3$,

$$UX = Y$$

$$\Leftrightarrow$$

$$(U^{T}I_{c})UX = (U^{T}I_{c})Y$$

$$\Leftrightarrow$$

$$X = (I_{c}U^{T}I_{c})Y.$$

Matrix Representation

If X, Y are the conformal representations of $x, y \in \mathbb{R}^3$,

$$UX = Y$$

$$\Leftrightarrow$$

$$(U^{T}I_{c})UX = (U^{T}I_{c})Y$$

$$\Leftrightarrow$$

$$X = (I_{c}U^{T}I_{c})Y.$$

That is,

$$U^{-1} = I_c U^T I_c,$$

with

$$U = \left[egin{array}{ccc} A & b & 0 \ 0 & 1 & 0 \ b^T A & rac{||b||^2}{2} & 1 \end{array}
ight] ext{ and } I_c = \left[egin{array}{ccc} I & 0 & 0 \ 0 & 0 & -1 \ 0 & -1 & 0 \end{array}
ight].$$