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Abstract: This talk will provide an overview of topological materials and the
mathematical challenges linked to them. In particular, topological invariants are
introduced as index pairings in noncommutative geometry, then it is shown how
to compute them numerically by means of the spectral localizer and finally the
bulk-boundary correspondence is described as a robust mathematical concept

based on suitable exact sequences.
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Why am a speaker in this conference?

True reason: office of Erlangen organizer is above mine

Current scientific collaborations with Latin America:

• Villegas (Cuernavaca)
• Ballesteros & Franco & Naumkin (UNAM)
• Sadel (Catolica, Santiago di Chile)

Earlier collaborations

• de Nittis (Catolica, Santiago di Chile)
• J. C. Avila (Guadalajara)
• del Rio (UNAM)
• Lozano Viesca (Cuernavaca)

Outsider to: control, optimization, non-linear PDEs, networks

Trend (rather in physics than in math): topological materials
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What is a topological material?

• Historically first example: quantum Hall effect (QHE, 1980)

two-dimensional electron gas with non-vanishing Chern number

(topological invariant measuring global twist in wave functions)

• bulk-boundary correspondence (BBC) =⇒ ∃ boundary modes

• Since 2005: topological insulators of electrons in all dimensions

• In particular: anomalous QHE and topological superconductors

• Since 2010: topological meta materials, photonic crystals, etc.

Common feature of topological materials:

periodic wave-type equation with spectral gaps

non-trivial topology in Bloch bands & stability to disorder

Nobel prizes:

1985 (Klitzing), 1998 (Laughlin et al), 2016 (Thouless, Haldane)
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Example: topological mechanics

Coupled pendula in Huber group, ETH Zürich, 2015

coupling only with springs, but in a complex manner

(inspired by quantum spin Hall systems)
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coupling mechanism
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Boundary modes at frequencies in gap of bulk
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Potential applications of topological materials

Numerous, but unpredictable

• topological high-temperature superconductor

• topological Majorana modes for quantum computers

• topological light-wires and logical elements (light computer)

• evacuation of vibrations on rockets

• dissipationless spintronics

• data transmission with topological photonic crystals

• ...

• ...

• ???
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From K -theory to physics and back

(sub-title from my 2016 book with Prodan)

Beautiful deep math related to topological materials:

• K -theory (of vector bundles and C ∗-algebras)

• cyclic cohomology and noncommutative geometry

• exact sequences of C ∗-algebras connecting bulk and boundary

• spectral flow for Fredholm operators (first book on subject)

• applied index theory

• new field of numerical K -theory for engineering of top. materials

• analysis of random operators and random matrices

Fields medals related to these topics:

1966 (Atiyah), 1982 (Connes), 1990 (Witten)
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Topological invariants and index theorem in 1d

1d chiral periodic Hamiltonian H on `2(Z,C2L)

H =

(
0 A∗

A 0

)
= −JHJ , J =

(
1 0
0 −1

)
with A short-range discrete differential operator on `2(Z,C2L)

Partial diagonalization by Fourier transform FAF∗ =
∫ ⊕
T1 dk Ak

Here the bulk topological invariant is: Wind(A) = i
∫
Tr(A−1dA)

Fritz Noether’s index theorem from 1921

Π Hardy projection onto `2(N) ⊂ `2(Z) =⇒ ΠAΠ Fredholm and

Wind(A) = − Ind(ΠAΠ)

BBC: zero-energy boundary states of half-space Hamilt. Ĥ = ΠHΠ

Wind(A) = dim
(
Ker(Ĥ)∩Ker(J+1)

)
−dim

(
Ker(Ĥ)∩Ker(J−1)

)



Mathematics for topological materials

Chern numbers in 2d (QHE and AQHE)

Periodic short-range 1-particle Hamiltonian H on `2(Z2,CL)

Partial diagonalization H ∼=
∫ ⊕
T2 dk Hk by Bloch-Floquet

P = χ(H ≤ µ) ∼=
∫ ⊕
T2 dk Pk smooth Fermi projection below gap µ

Ch(P) = 2πi

∫
T2

dk

(2π)2
Tr
(
Pk [∂k1Pk , ∂k2Pk ]

)
∈ Z

Noncommutative analog for random H = (Hω)ω∈Ω using positions

Ch(P) = 2πi E Tr
(
〈0|P

[
[X1,P], [X2,P]

]
|0〉
)

= 2πi T (PdPdP)

Index theorem (Connes, Bellissard, etc. 1980’s)

Almost surely

Ch(P) = Ind(PFP) ∈ Z , F =
X1 + iX2

|X1 + iX2|
If ∆ ⊂ R Anderson localized, then µ ∈ ∆ 7→ Ch(P) constant
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Numerical computation of Chern number

Periodic system: implementation of k-integral, twisted BC

disordered system: compute P from H (costly), then above formula

Topological photonic crystals: 100’s of bands, not feasible

Spectral localizer is Hamiltonian in a (dual) Dirac trap

Lκ =

(
−(H − µ) κ(X1 − iX2)
κ(X1 + iX2) H − µ

)
Selfadjoint Lκ = (Lκ)∗ with compact resolvent. Fact: gap at 0

Lκ,ρ finite volume restriction to [−ρ, ρ]2. For κ small and ρ large:

Ch(P) =
1

2
Sig(Lκ,ρ)

Computation: only LDL necessary for Sig! No spectral calculus!
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Implementation for dirty p + ip superconductor

Standard toy model (like disordered Harper or Haldane model)

Density of states (DOS) of the localizer for κ = 0.1 and ρ = 20
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0

20

40

60

80

DOS of Spectral Localizer

Looks harmless, however, note gap at 0

Spectral asymmetry = −2 = # positive − # negative eigenvalues
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Main theorem on spectral localizer

Finite volume computation of K -theory invariants (with Loring)

Let g = ‖(H − µ)−1‖−1 be gap of Hamiltonian H. Suppose

κ <
12 g3

‖H‖ ‖[X1 + iX2,H]‖
, ρ >

2 g

κ

Then Lκ,ρ has gap g
2 at 0 and

Ch(P) =
1

2
Sig(Lκ,ρ)

If H ”differentiable”, conditions always OK for κ small and ρ large

Numerics: typically κ ≈ 0.1, ρ ≈ 20 sufficient

Proof: K -theory of fuzzy spheres or spectral flow

Special case of general statement for KK -theoretic index pairings

Even: Z2-invariants in Real K -theory or semifinite index pairings
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Intuition: H topological mass term added to Dirac

Lκ(λ) =

(
−λH κ (X1 − iX2)

κ (X1 + iX2) λH

)
, λ ≥ 0

Spectrum for λ = 0 symmetric and with space quanta κ

σ(Lκ(0))

κ

0

Spectrum for λ = 1: less regular, central gap open and asymmetry

σ(Lκ(1))

g

0

Spectral asymmetry determined by low-lying spectrum (finite vol!)
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Why care about non-trivial topology?

Bulk-boundary correspondence implies effects at edges or defects

First explain this in 1d using Toeplitz extension and its K -theory

S bilateral shift on `2(Z), then C∗(S) ∼= C (S1)

Ŝ unilateral shift on `2(N), only partial isometry with a defect:

Ŝ∗Ŝ = 1 Ŝ Ŝ∗ = 1− |0〉〈0|

Then C∗(Ŝ) = T Toeplitz algebra with short exact sequence:

0 −→ K −→ T −→ C (S1) −→ 0

K -groups for any C∗-algebra A with unitization A+:

K0(A) = {[P]− [s(P)] : projection in some Mn(A+)}
K1(A) = {[U] : unitary in some Mn(A)}

with homotopy classes. Abelian group operation: Whitney sum
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6-term exact sequence for Toeplitz extension

C∗-algebra short exact sequence =⇒ K -theory 6-term sequence

K0(K) = Z
i∗ - K0(T ) = Z

π∗- K0(C (S1)) = Z

K1(C (S1)) = Z

Ind
6

�
π∗

K1(T ) = 0 �
i∗

K1(K) = 0

Exp
?

Here: [A]1 ∈ K1(C (S1)) and [P̂J]0 = [P̂+]0 − [P̂−]0 ∈ K0(K)

Ind([A]1) = [P̂+]0 − [P̂−]0 (bulk-boundary for K -theory)

Tr(Ind(A)) = Wind(A) (bulk-boundary for invariants)

Disordered case: analogous Higher dimension: analogous
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Generalization to dimension d

Random operators A = (Aω)ω∈Ω on Hilbert space `2(Zd)⊗ CL

C∗-algebra of covariant observables Ad = C ∗(SB
1 , . . . ,S

B
d ,Vω)

Here SB
j S

B
i = e iBi,jSB

i S
B
j and (Vω)ω∈Ω covariant matrix potential

Half-space restrictions `2(Zd−1 × N)⊗ CL form Toeplitz T (Ad)

Contains boundary operator Ed ∼= Ad−1 ⊗K(`2(N))

edge half-space bulk
0 → Ed → T (Ad) → Ad → 0

Again 6-term exact sequence connecting bulk and edge for d even:

Exp : K0(Ad)→ K1(Ed) , Exp(P) = exp
(
2πi Lift(P)

)
Ind : K1(Ad+1)→ K0(Ed+1) , Ind(A) = ....
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Meta Theorem on BBC

Theorem

For d even and P ∈ Ad projection

Chd(P) = Chd−1(Exp(P))

For d even and A ∈ Ad+1 invertible, specifying chiral H,

Chd+1(A) = Chd(Ind(A))

Here with T (A) = EP TrL 〈0|Aω|0〉 and ∇jAω = i [Xj ,Aω]

Chd+1(A) =
i(iπ)

d
2

(d + 1)!!

∑
ρ∈Sd+1

(−1)ρ T

d+1∏
j=1

A−1∇ρjA


Concrete situations: boundary invariant has physical interpretation
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Current research and open questions

• more exact sequences (bulk to defect)

• respecting symmetries (time-reversal, particle-hole, space groups)

• spectral localizers with symmetries

• spectral localizer in the Anderson localization regime

• topological phase transitions

• topology in non-hermitian physics

• topological scattering theory
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