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D. H. Sharp, An Overview of Rayleigh—Taylor Instability, Physica
D, 1984: J

Thus we can infer a simple criterion for the onset
of Taylor instability at the interface between two
fluids of different densities: If the heavy fluid pushes
the light fluid, the interface is stable. If the light fluid
pushes the heavy fluid, the interface is unstable. A
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Table I
Some factors influencing the development of Rayleigh-Taylor instability

Relative size of effect
Facior (dimensionless parameter) Effect on growth of instability

Density ratio PulpL or A =(py—p)fpu+py) A key factor governing the growth rate of
Rayleigh-Taylor or Kelvin-Helmholtz instability for
small amplitude perturbations of
wavelength 1.

Surface tension Weber number = 20 /(py; —p, )gA? In linear theory, stabilizes wav
than a critical wavelength 1 =
Establishes a most
probably makes problem well posed ically.

Viscosity R=vt/2? Reduces growth rate; regularizes fluid flow.
Compressibility G =glke*= (phase velocity of gravity waves)? Red growth rate of long wavelength perturbations;
=glke= (sound speed)? decreases active volume of fluid.

Heterogeneity AL[2, dvfv... Can excite secondary, tertiary, . . . instabilities of

various wavelengths.




The governing equations

Consider the following two-phase flow
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The flow in the bulk is governed by Darcy's law:

pivy = —K-Vug, KeRMX" K>0. J

sym

— common model for laminar flows in porous media and flows
in Hele-Shaw cells.
Kinematic boundary condition on the upper free interface:

i Och + dyuy =0 on  T(h), J

— particles on I'(h) stay there.
Additional dynamic boundary condition:

uy =gpyh on T(h), J

— balance of forces on I (zero air pressure, no surface tension
effects).
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On the interface between the fluids:

p—0f +0,u_ =0 on [I(f), J

— again kinematic boundary condition and continuity of
pressure:

up —u— = g(p+ —p-)f on T(f). J
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Summarising (K = k - id), we get the following Muskat problem:

Auy = 0 in Q(f, h)
Au_ = 0 in Q(f)
rOth+ kOyuy = 0 on '(h)
up = gp+h on '(h)
up —u- = g(py —p-)f onT(f)
p—Of + kOyu_ = 0 on I'(f)
oyu_ = b onl_q

where b(x) is a given injection rate on _;.
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Application in pertoleum engineering®:

Society of Petroleum Engineers UET  ++
Lahore Chapter

Diese Seite gefalt mir

*Water Coning*

‘The change in the oil-water contact profile as a
result of drawdown pressures during production.
Coning occurs in vertical or slightly deviated wells
and is affected by the characteristics of the fluids
involved and the ratio of horizontal to vertical

Wagar Shara, Ibtihaj Atia, Rao Junaid und 12 anderen
gefalt das.

5 Mal geteilt

M Muskat: Two fluid systems in porous media. The encroachment of
water into an oil sand, J. Appl. Physics, 5 (1934), 250 — 264

achim Esch
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Proposition 1 (A. Matioc, B. Matioc & JE, Nonlinearity, 2012)

@ The Muskat problem is locally well-posed in the classical
sense, provided that

bpy + gp+p— > 0

Pt =i

bt=(b—gps) +glpy —p-) < O

(generalised Rayleigh—Taylor conditions).
o If p— > p4 then the flat solution is asymptotically stable.

e If p > p_, b= gp4, and surface tension is included (and
used as a bifurcation parameter) on I'(f) then there are finger
shaped unstable steady states of the form:
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Finger shaped steady states for the Muskat problem:
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Related papers (not complete):

@ Friedman and Y. Tao., Nonlinear Analysis TMA, 2003
Siegel, Caflish, Howison, CPAM, 2004

Cordoba, Cordoba, Gancedo, Annals Math., 2011
Priiss, Simmonett, Evol. Equ. Control Theory, 2016
o B. Matioc, Ch. Walker, JE, Indiana Univ. Math. J., 2018
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Assume
e b=0
o oil as fluid + with: p, =900 kg/m>, ;. = 100 mPas
o water as fluid - with: p_ = 1000 kg/m?®, p_ =1 mPas
— Muskat problem is well-posed.

In application to oil production:

e b>0
e oil as fluid + with: py =900 kg/m>, ;. = 100 mPas
o water as fluid - with: p_ = 1000 kg/m>, p_ = 1mPas

— Then the Muskat problem is no longer well-posed, in cases
where b becomes too large.

Friedman and Y. Tao., 2003: equal densities, b = 0. —
well-posed if py > p_.

Siegel, Caflish, Howison, 2004: equal densities, b = 0. —
well-posed if py > p_.

Cordoba et al. 2011: equal viscosities, p— > p+.
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b/1+ + 8P+

i

(RT) = (b—gpi)+glpr—p-) < O

are the Rayleigh-Taylor (RT) condition for the flat equlibrium.

With the associated pressures

P+ = U+ — 8p+Y

(RT) are equivalent to

Oypr <0 on [y=2]
8yp7 - az/p+ <0 on [y = 1]
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Proposition 2 (B. Matioc, Ch. Walker & JE, Indiana Univ. Math.

J., 2018)

o Given (fy, ho) of class C>*2, the Muskat problem is locally
well-posed in the classical sense, provided that

Oup+ <0 on T(hg)
Oyp— — Oyp+ <0 on T(fy)

@ The Muskat problem is backward parabolic when the
Rayleigh-Taylor conditions hold with reversed inequalities.
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Steps in the proof

@ Reduction of the system by solving for the potentials u. .
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Steps in the proof

@ Reduction of the system by solving for the potentials u..

@ The linearised operator equation then involves resolvents for
u+ but can nevertheless be represented as a system of Fourier
multiplication operators of first order (which is by no means
obvious).
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Steps in the proof
@ Reduction of the system by solving for the potentials u. .

@ The linearised operator equation then involves resolvents for
u+ but can nevertheless be represented as a system of Fourier
multiplication operators of first order (which is by no means
obvious).

@ The Rayleigh—Taylor conditions ensure that this system is
parabolic in the sense that its propagator is a sectorial
operator.
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@ Reduction of the system by solving for the potentials u. .

@ The linearised operator equation then involves resolvents for
u+ but can nevertheless be represented as a system of Fourier
multiplication operators of first order (which is by no means
obvious).

@ The Rayleigh—Taylor conditions ensure that this system is
parabolic in the sense that its propagator is a sectorial
operator.

@ Maximal regularity then yields the well-posedness result.
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Steps in the proof

Reduction of the system by solving for the potentials u.

The linearised operator equation then involves resolvents for
u+ but can nevertheless be represented as a system of Fourier
multiplication operators of first order (which is by no means
obvious).

The Rayleigh—Taylor conditions ensure that this system is
parabolic in the sense that its propagator is a sectorial
operator.

Maximal regularity then yields the well-posedness result.

The finger shaped steady states are obtained as bifurcation
branches, where the surface tension coefficient serves as a
bifurcation parameter.
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The symbols of the linearisation:

A (m) = [Au(b - gps) + glp+ — p-) — rm’] mv
Aj(m) = [b[ﬂ]i ;igpw_ —8p-— wmﬂ Z#Sl,(r’]:’(“m,)

) = - [ BB ]

A3(m) = — [bﬂﬁzipw + 2} pc+13kr|1’:(||m) - icifé?:z)

Here, A, is the Atwood number
Au = (bt — p=)/ (bt + 1)

and X, = py +p—.
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Thin film approximation

Using the scaling
x=X, y=ey, t=et f=¢cf, h=ch,

and expanding

o o
iy = Z vfﬁek, i_ = Z vkek
k=0 k=0

the limit € ™\, 0 yields:
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A system of degenerated parabolic equations for the film heights
f and h:

O f Ox(FOXF) + RO (fOyh),
Oth = Oy(fOxf) + Ru0x [(h — F)Oxh)] + ROx(fOxh) (1)

for (t,x) € (0,00) x (0, L) and subject to homogeneous Neumann
boundary conditions. Moreover:

R=—* g .=FEp
W= = [P+ Wi
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Proposition 3 (A. Matioc, B. Matioc & JE)

The system (1) is classically well-posed for positive initial
conditions and the flat steady state is asymptotically stable in H?,
provided that p_ > p.

Observe that in Proposition 3 the full Rayleigh—Taylor conditions
have been replaced by p_ > p.

Fundamental idea of this approach: Realise the system on a phase
space of positive functions as a regular quasilinear parabolic
system.
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In what follows:

e Construction of global weak solutions to (1) emerging from
nonnegative initial conditions,

@ evidence of global Ly-stability of weak solutions.

For g := h — f the system becomes more symmetric:

B, (1+ R)L(FOLF) + ROL(Fug),
. s - 2
()tg - Ru()x(g()xf) + Ru()x(g()xg)' ( )
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Furthermore, there are two energy functionals:

L
&i(f,g) ::/0 [(flnff+1)+ﬁj+(glngg+l)} dx

of entropy-type and

L
Ef,g) = /0 [f2 + R(f + g)?] dx J

of Lo-type.
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Proposition 4 (Ph. Laurengot, B. Matioc & JE)

Assume that R > 0 and R, > 0. Given fy, go € L>((0, L)) with
fo > 0 and gp > 0, there exist a global weak solution (f, g) of (2)
satisfying

e f>0,g>0in(0,T) x (0,00),

o f, g€ Lo((0, T), L2((0, L)) N L2((0, T), H*((0, L)),
o [[F(T)ll=llflls,  llg(T)ll = llgolls,

o &i(f(T), g(T)) <&(fo, go) forj=1,2

for all T > 0.

In addition, the rate of dissipation of both energies can be
estimated from above.
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In particular we have:

T oL
E1(F(T),&(T)) + ek /o /0 (10xF2 + 0xg]?) dx dt < &1(fo, &)

forall T > 0.

This estimates is obviously most helpful in deriving H'-estimates of
solutions.
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Proposition 5 (Global exponential stability)

Under the assumptions of Proposition 3 there exist positive
constants M and w such that

Hf(t)— 1/01_7‘0dx

for a.e. t > 0.

2 2
S Me—wt

2

1 L
+ Hg(t) — L/o godx

2

To get a regularised system, let
F.:=(1—¢e20%)71F, G. = (1-¢20?)"g

fore > 0and f, g € L»((0,L)). Then we consider:
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The regularised system

Oif: = (14 R)0Ox(f-0xf-) + ROk (f:0xG.),
3
Oig: = RuaX(gsasz) + RM8X(geaxgs); (3)

with regularised initial data
fOe = (1 - 528}%)_1'(0 +e, 8oe = (1 - 828)2()_1g0 +e.

The off-diagonal terms of (3) then are of lower order.
— system (3) is parabolic (at least on positve solutions)

— existence of local classical solutions and a criterion for
global solutions:
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Let T, (g) denote the positive exit time of the solution. If for every
T < T4(e) there exists a C(e, T) > 0 such that

f.>e/2+C(e,T)", g >e/2+C(e, T)!
and

TE I(=(2), g=() [ 2 < C(e, T),

then the solution (f.(t), g-(t)) exists globally.
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Furthermore:

The energy estimate for &1 carries over to the regularised system! J

— uniform H'-estimates for (., g.)
— global existence of (f;, g:)

Using again the energy estimate for £1, we get uniform estimates
of the form

L (101 + 1001 + 10eh (61l ) e < €(T)

for he {f,g,F,G} and all (¢, T) € (0,1) x (0, 00).

These estimates form the core of the construction of weak
solutions.
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Thank you!

Joachim Escl



