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D. H. Sharp, An Overview of Rayleigh–Taylor Instability, Physica
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The governing equations

Consider the following two-phase flow

x

y

Ω+(t)

Ω−(t)

Fluid +

Fluid −

ν

Γ(t)

Γ−1

Γ1

g

consisting of a fluid − in Ω(f ) and a fluid + in Ω(f , h) with

densities ρ±, viscosities µ±, velocity potentials u±.

Joachim Escher The Rayleigh-Taylor Condition 5 / 31



The flow in the bulk is governed by Darcy’s law:

µ±~v± = −K · ∇u±, K ∈ Rn×n
sym , K > 0.

→ common model for laminar flows in porous media and flows
in Hele-Shaw cells.
Kinematic boundary condition on the upper free interface:

µ+∂th + ∂νu+ = 0 on Γ(h),

→ particles on Γ(h) stay there.
Additional dynamic boundary condition:

u+ = gρ+h on Γ(h),

→ balance of forces on Γ (zero air pressure, no surface tension
effects).
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On the interface between the fluids:

µ−∂t f + ∂νu− = 0 on Γ(f ),

→ again kinematic boundary condition and continuity of
pressure:

u+ − u− = g(ρ+ − ρ−)f on Γ(f ).
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Summarising (K = k · id), we get the following Muskat problem:

∆u+ = 0 in Ω(f , h)

∆u− = 0 in Ω(f )

µ+∂th + k∂νu+ = 0 on Γ(h)

u+ = gρ+h on Γ(h)

u+ − u− = g(ρ+ − ρ−)f on Γ(f )

µ−∂t f + k∂νu− = 0 on Γ(f )

∂yu− = b on Γ−1

where b(x) is a given injection rate on Γ−1.
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Application in pertoleum engineering1:
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Proposition 1 (A. Matioc, B. Matioc & JE, Nonlinearity, 2012)

The Muskat problem is locally well-posed in the classical
sense, provided that

bµ+ + gρ+µ− > 0
µ+−µ−
µ++µ−

(b − gρ+) + g(ρ+ − ρ−) < 0

(generalised Rayleigh–Taylor conditions).

If ρ− > ρ+ then the flat solution is asymptotically stable.

If ρ+ > ρ−, b = gρ+, and surface tension is included (and
used as a bifurcation parameter) on Γ(f ) then there are finger
shaped unstable steady states of the form:
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Finger shaped steady states for the Muskat problem:
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Assume

b ≡ 0
oil as fluid + with: ρ+ = 900 kg/m3, µ+ = 100mPas
water as fluid - with: ρ− = 1000 kg/m3, µ− = 1mPas

→ Muskat problem is well-posed.

In application to oil production:

b > 0
oil as fluid + with: ρ+ = 900 kg/m3, µ+ = 100mPas
water as fluid - with: ρ− = 1000 kg/m3, µ− = 1mPas

→ Then the Muskat problem is no longer well-posed, in cases
where b becomes too large.

Friedman and Y. Tao., 2003: equal densities, b = 0. →
well-posed if µ+ > µ−.

Siegel, Caflish, Howison, 2004: equal densities, b = 0. →
well-posed if µ+ > µ−.

Cordoba et al. 2011: equal viscosities, ρ− > ρ+.
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(RT )
bµ+ + gρ+µ− > 0
µ+−µ−
µ++µ−

(b − gρ+) + g(ρ+ − ρ−) < 0

are the Rayleigh-Taylor (RT) condition for the flat equlibrium.

With the associated pressures

p± = u± − gρ±y

(RT) are equivalent to

∂νp+ < 0 on [y = 2]

∂νp− − ∂νp+ < 0 on [y = 1]
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Proposition 2 (B. Matioc, Ch. Walker & JE, Indiana Univ. Math.
J., 2018)

Given (f0, h0) of class C 2+α, the Muskat problem is locally
well-posed in the classical sense, provided that

∂νp+ < 0 on Γ(h0)

∂νp− − ∂νp+ < 0 on Γ(f0)

The Muskat problem is backward parabolic when the
Rayleigh-Taylor conditions hold with reversed inequalities.
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Steps in the proof

Reduction of the system by solving for the potentials u±.

The linearised operator equation then involves resolvents for
u± but can nevertheless be represented as a system of Fourier
multiplication operators of first order (which is by no means
obvious).

The Rayleigh–Taylor conditions ensure that this system is
parabolic in the sense that its propagator is a sectorial
operator.

Maximal regularity then yields the well-posedness result.

The finger shaped steady states are obtained as bifurcation
branches, where the surface tension coefficient serves as a
bifurcation parameter.
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The symbols of the linearisation:

λf1(m) =
[
Aµ(b − gρ+) + g(ρ+ − ρ−)− γfm2

] k|m|
Σµ tanh(|m|) ,

λf2(m) =

[
b[µ]± + 2gρ+µ−

Σµ
− gρ− − γfm2

]
k |m|

Σµ sinh(|m|) ,

λh1(m) = −
[
gρ+µ− + bµ+

Σµ
+ γhm

2

]
k|m|

Σµ sinh(|m|) ,

λh2(m) = −
[
bµ+ + gρ+µ−

Σµ
+ γhm

2

]
k|m|

µ+ tanh(|m|) −
µ−
µ+

λh1(m)

cosh(m)
.

Here, Aµ is the Atwood number

Aµ := (µ+ − µ−)/(µ+ + µ−)

and Σµ := µ+ + µ−.

Joachim Escher The Rayleigh-Taylor Condition 19 / 31



Thin film approximation

Using the scaling

x = x̃ , y = εỹ , t = εt̃ f = εf̃ , h = εh̃,

and expanding

ũ+ =
∞∑
k=0

vk+ε
k , ũ− =

∞∑
k=0

vk−ε
k

the limit ε↘ 0 yields:

consisting of a fluid − in Ω(f ) and a fluid + in Ω(f , h) with

densities ρ±, viscosities µ±, pressures u±.
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A system of degenerated parabolic equations for the film heights
f and h:

 ∂t f = ∂x(f ∂x f ) + R∂x(f ∂xh),

∂th = ∂x(f ∂x f ) + Rµ∂x [(h − f )∂xh)] + R∂x(f ∂xh)
(1)

for (t, x) ∈ (0,∞)× (0, L) and subject to homogeneous Neumann
boundary conditions. Moreover:

R :=
ρ+

ρ− − ρ+
, Rµ :=

µ−
µ+

R.
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Proposition 3 (A. Matioc, B. Matioc & JE)

The system (1) is classically well-posed for positive initial
conditions and the flat steady state is asymptotically stable in H2,
provided that ρ− > ρ+.

Observe that in Proposition 3 the full Rayleigh–Taylor conditions
have been replaced by ρ− > ρ+.

Fundamental idea of this approach: Realise the system on a phase
space of positive functions as a regular quasilinear parabolic
system.
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In what follows:

Construction of global weak solutions to (1) emerging from
nonnegative initial conditions,

evidence of global L2-stability of weak solutions.

For g := h − f the system becomes more symmetric: ∂t f = (1 + R)∂x(f ∂x f ) + R∂x(f ∂xg),

∂tg = Rµ∂x(g∂x f ) + Rµ∂x(g∂xg).
(2)
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Furthermore, there are two energy functionals:

E1(f , g) :=

∫ L

0

[
(f ln f − f + 1) +

µ−
µ+

(g ln g − g + 1)

]
dx

of entropy-type and

E2(f , g) :=

∫ L

0

[
f 2 + R(f + g)2

]
dx

of L2-type.
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Proposition 4 (Ph. Laurençot, B. Matioc & JE)

Assume that R > 0 and Rµ > 0. Given f0, g0 ∈ L2((0, L)) with
f0 ≥ 0 and g0 ≥ 0, there exist a global weak solution (f , g) of (2)
satisfying

f ≥ 0, g ≥ 0 in (0,T )× (0,∞),

f , g ∈ L∞((0,T ), L2((0, L))) ∩ L2((0,T ),H1((0, L))),

‖f (T )‖1 = ‖f0‖1, ‖g(T )‖1 = ‖g0‖1,

Ej(f (T ), g(T )) ≤ Ej(f0, g0) for j = 1, 2

for all T > 0.

In addition, the rate of dissipation of both energies can be
estimated from above.
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In particular we have:

E1(f (T ), g(T )) + cR

∫ T

0

∫ L

0

(
|∂x f |2 + |∂xg |2

)
dx dt ≤ E1(f0, g0)

for all T ≥ 0.

This estimates is obviously most helpful in deriving H1-estimates of
solutions.
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Proposition 5 (Global exponential stability)

Under the assumptions of Proposition 3 there exist positive
constants M and ω such that∥∥∥∥f (t)− 1

L

∫ L

0
f0dx

∥∥∥∥2
2

+

∥∥∥∥g(t)− 1

L

∫ L

0
g0dx

∥∥∥∥2
2

≤ Me−ωt

for a.e. t ≥ 0.

To get a regularised system, let

Fε := (1− ε2∂2x )−1f , Gε := (1− ε2∂2x )−1g

for ε > 0 and f , g ∈ L2((0, L)). Then we consider:
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The regularised system ∂t fε = (1 + R)∂x(fε∂x fε) + R∂x(fε∂xGε),

∂tgε = Rµ∂x(gε∂xFε) + Rµ∂x(gε∂xgε),
(3)

with regularised initial data

f0ε := (1− ε2∂2x )−1f0 + ε, g0ε := (1− ε2∂2x )−1g0 + ε.

The off-diagonal terms of (3) then are of lower order.

→ system (3) is parabolic (at least on positve solutions)

→ existence of local classical solutions and a criterion for
global solutions:
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Let T+(ε) denote the positive exit time of the solution. If for every
T < T+(ε) there exists a C (ε,T ) > 0 such that

fε ≥ ε/2 + C (ε,T )−1, gε ≥ ε/2 + C (ε,T )−1

and
max

t∈[0,T ]
‖(fε(t), gε(t))‖H1 ≤ C (ε,T ),

then the solution (fε(t), gε(t)) exists globally.
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Furthermore:

The energy estimate for E1 carries over to the regularised system!

→ uniform H1-estimates for (fε, gε)

→ global existence of (fε, gε)

Using again the energy estimate for E1, we get uniform estimates
of the form∫ T

0

(
‖hε(t)‖2H1 + ‖hε(t)‖3L3 + ‖∂thε(t)‖6/5

(W 1
6 )
′

)
dt ≤ C (T )

for h ∈ {f , g ,F ,G} and all (ε,T ) ∈ (0, 1)× (0,∞).

These estimates form the core of the construction of weak
solutions.
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Thank you!
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