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Two-body problems in eletrodynamics
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‘It was observed that for Antarctic whale and
seal populations, the length of time to maturity
is a function of the amount of food (mostly krill)
available. Prior to World War Il, it was observed
that individual seals took five years to mature,
small whales took seven to ten years, and large
whale species took twelve to fifteen years to
reach maturity.

Subsequent to the introduction of factory ships
after the war, and with it a depletion of the large
whale populations, there was an increase in the
krill available for the seals and the remaining
whales. It was then noted that seals took three
to four years to mature and small whales now

only took five years.”
Aiello, Freedman & Wu 1992
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Aiello, W. G., Freedman, H. I., and Wu, J. Analysis of a model
representing stage-structured population growth with state-

dependent time delay, SIAM Journal on Applied Mathematics
52(3), pp. 855-869, 1992.
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A DIFFERENTIAL EQUATION WITH A STATE-DEPENDENT
QUEUEING DELAY™
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Consider the following DDE with state—dependent delays

x(t) = g(x(t—1(xt))). (1)

where g : R” — R" and a delay functional T : U — [0, h] on a subset

Uy C C([—h,0],R").
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For initial data in the space C = C([—h, 0], R") of solutions to
equations with state—dependent delay are in general NOT unique in

cases where for similar equations with constant delay the IVP is

well-posed.



The functions

x()=t+1and x(t) =t+1— 32
for a small t > 0 are both solutions of the equation

X' (1) = —x(t—[x(1)])
with initial values

—1, if t<—1;
x()=1q 2(t+1)"/83-1, if —1<t<—
2t+1, if —f<t<o.

0|~




Consider

x(t) = fo(xt), (2)

where fy : C([—h,0],R") — R".

Define f, : C([—h,0],R") — R" by
fo:=goevo(id x (—1))

with the evaluation

ev: C([—h,0],R") x [-h,0] — R"

given by ev(0,s) = ¢(s).



Then, we get the following DDE with state—dependent delays

x(t) = g(x(t—1(x1))); (3)

where g : R" — R".

But the evaluation map ev is in general NOT continuously

differentiable, NOR even locally Lipschitz continuous.



BRUNOVSKY, ERDELYI AND WALTHER (2004)

x(t) = ax(t)—ax(t—1)+f(x(t))

H-O WALTHER (2005) AND (2006)

GARAB, KOVACS AND KRISZTIN (2016)




STUMPF (2012)

H-O. WALTHER (2013)

x(t) = ax(t+ d(x(t
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x'(t) = ax'(t+d(x(1))) + f(x(t))

with a € R and given functiond : R — (—h.0) and f : R — RR.
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Goal 1: We want to write the equation (1) in the form

x'(t) = 9(9x;. x;)

for a functional g : C x C' D W — R", W open, which satisfies some

conditions (g0)—(g4), (g6) and (g7) which we will explain later

For t € |a, b, define x; : [—h.0| — R" by

—Q x:(8) = x(t+6).



Let h > 0, consider the equation

’_

x'(t) = ax'(t+ d(x(t))) + f(x(1)) (2)

withac Rand d: R — (—h,0),f: R— R, r: R — R all continuously
differentiable, f(0) = 0, r(R) C [—h.0]. Consider the evaluation map

ev:|[—hoO]xC>(to)—0(f) € R,
where ev is continuous and the induced map

evy : (—h.0)x C' 3 (t.9)—o(t) eR

. Is continuously differentiable.
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Defineg: Cx C' — R by

g=alevo((doevi(0,-)opra) x pri))+foevi(0,-)opr.

with the projections pry, pr» onto the first and second factor.
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Let U; C C' denote the open set of all y € C' with (dy., y) € W.

(g0) Continuity: The function g is continuous;

(g1) The delay in the neutral term “never vanishes”:
For every ¢ € U; C C', there exists A € (0, h) and a
neighbourhood N C W of (dy,y) in C x C' such that for all

(¢1 :X): (‘DE%) In N with

q)1(f) — q)2(r)= Vit € [—h,—A]

we have

Q(q)hX) — Q((l)zf,)().
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(g2) Local estimates for g
For every w € U; C C', there exists L, > 0 and a neighbourhood
N C W of (dy.y) in Cx C') such that for all (¢1.y1), (02, ys) in

N, we have:

9(02,y2) — g(01,w1)| < La(|02 — O1]c + (Lip(P2) +1)[w2 — yilc).
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(g3) Linear extension of the derivative Dg

The restriction g4 of g to the open subset Wy = WN(C' x C") of
the space C' x C' is continuously differentiable, every derivative

Dg;(d,y): C'x C' — R", (¢, y) € W;, has a linear extension:

Degi1(0,y) : Cx C— R"

and the map

Wi x Cx C3 (0, w,%,p) — Degi(0,w)(x.p) € R".
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A condition like (g3) was introduced as almost Fréchet
differentiability by Mallet-Paret, J., Nussbaum, R. D., and P.
Paraskevopoulos.
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Property (g3) implies that the set

X,o ={we UnC:y(0)= gy, v)}.

If nonempty, is a continuously differential submanifold of the Banach
space C? of the twice continuously differentiable functions

O : [—h.0] — R” with the norm given by

0l2 = |0 +|d0] +-[dd0].
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(g4) For every (0q.Wo) € W; there exist ¢, > 0 and a neighborhood
N C Wy of (¢g. o) in C' x C' such that for all (¢, ). (d1,y4) in
N and for all x € C', we have

(Dg1(9. ) — Dgy1(01.y1))(%.0)| < caldx||w— w1
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(g6) (0,0) € W, g(0.0) =0, (g3) holds and the map

(q) ‘41) — HDEQ1 ((l)?ll")(‘?o)HLﬂ(CiR”) c R

is upper semicontinuous at (0, 0).
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(97) (0,0) € W, g(0.0) =0, gy is differentiable, and there exist 1 > 0,
c; > 0 and a function & : [0, 00) — [0, 0) with

G(0) = 0= lim¢(¢)

[—0

so that for every (0, y) € W; with ||+ |w| <n andforall p € C,

we have

[Dg1(9.w) — Dg1(0.0)](0,p)| < c7(S([0]+ +[wl1)Ip[+Ipl1]w]).



Proposition (H-O Walther, 2016)

The map g satisfies (g0)—(g4), (g6) and (g7).




Consider the following closed subset

Xgoe ={W € Xg2 : ¥'(0) = Dogy(QY. y) (0, 0y) }

on the manifold X ».

Proposition (Hans-Otto Walther, 2013)

For each @ € X; 2., the solution x? is twice continuously differentiable,

and for all t € [0, #y). X; € Xg.2%.



Prove that 0 is unstable.

Use invariance of cone
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(A1) (E,|-|o) is aBanach space, E, C E subspace, |-|» is a norm on

E, such that |- |g < |- |2. The operator {S(t)}+~0 € Lc(E, E) form
a Co—semigroup of linear operators. There exist real numbers

o < [3 with B > 0 and a decomposition E = U & V into
S(t)—-invariant closed subspaces, where U # {0}, and a constant

K > 0 such that
Yue UVt >0:|S(t)ulo > K 'eM|ulo (4)

Yv e V.Vt>0:|S(t)v]o < Ke™|vlo. (5)
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(A2) X C Eyisasubset, [, =[0,t) C [0,o) open interval for x € X
with 0 € Iy, t;- € (0. 0] lower semicontinuous as function of

X e X,

Q= ]k x{x},

xeX

¢ : {2 — X is a semiflow on X. In other words,

o Iftely, s lyx), then s+t e ly;

o O(t+s.x)=0(s.0(t.x));
Q 1'0 = [Oﬂﬂ),
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(A3) Define
R(t.x) :=0(t.x)— S(t)x for x € X, t € Iy.

Assume there exists a t; > 0 such that for every € > 0. there

exists 0 > 0, for all x € B|.|,(0.0¢) N X such that t; € /,, and

‘Fl’(ﬁ :X)‘o < E‘X‘g.
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Under these assumptions, an equivalent norm || - ||o exists on C, such
that
Yue UNVt>0:|S(t)ullo > e ullo (6)

Vv e V.Vt>0:|[|S(t)v]o < e™|v]o (7)

l.e., the estimates in [ above hold with K = 1, and

|u+Vvllo = maxi||ullo. [[Vlo}- (8)
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For c € (0,1] , we define the cone

Ko.={u+veE:veV.ueU.|ulo>cllu+v|o}
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~lnvariance of cone and .expﬁnsk@n
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Letce (0.1] and 0 < t; as in (A3). Setq := > (soq > 1, since

B > 0). There exists & > 0 such that

X=u+secKNXNB,,(0,9)

= 0(t;,x) :=s5+U€ K. and ||Ullo > ql|ul|o.
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Consider the following additional hypothesis on g

(A) g1: Wy — R"is Con W; and for (y. ) € Wy, D°g(y, ¢) has a

continuous extension D5g;(y,d) to C x C.

With this condition, we can show that Mz = X, 5. M C?is a

C'-submanifold of C3.
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Consider the following condition

(A4) 0 € Xp0:\ {0} N K, 2.

Theorem (Linearized Instability Principle)
Assume (A1), (A4), (90)—(g4), (96) and (g7) are satisfied. Then O is

unstable for the semiflow ¢ on X. More precisely, for a sequence (up)

as in (A4) and ny € N such that u, € B‘,‘E(O?B) for all n > ng, one has

for every n > ng, there exists t, > 0 such that ¢(t,,un) & Bj.,,(0,9).




Second Part




X (1)

X0

AX(1)+F (£, %p(0x)) > £ € [0, 4] (1)
¢ )

We consider (1)—(2) as an abstract retarded functional differential

equation with infinite delay. Because of the infinite delay, the
function x;, which is usually known as the segment of x(-) at t, is

defined by
Xt: (—o0,0] = X, x:(0) = x(t+ 0)

We assume that x; € B, where B is the phase space for the problem

(1)—(2).



du(t,&) d°u(t,&)

TER e TR f(tUp(ruy), 0<t<a, (3)
u(t,0) = u(t,m)=0, (4)
U(GJE.') o (p(ew&)z —o0 < 0 < D: (5)

for 0 < & < 1 and where u: (—, a] x [0,t] — R represents the
temperature distribution in the bar, and the function

@: (—,0] x [0,tr] — R is the initial temperature distribution.
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