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Problem Formulation

We will consider Q ¢ RN (N =2 or N = 3) be a non-empty bounded
connected open set, with regular boundary 02 and let T > 0 be given.
We will us denote by Q the cylinder Q x (0, T) with side boundary
Y =00x(0,T).

Let w C Q be a (small) non-empty open set. We denote by (.,.) and
||| respectively the L? scalar product and norm in Q. We will use C to
denote a generic positive constant. Thus, we will study the null
controllability for the nonlinear systems:

Ye—V-(W(Vy)Dy)+(y - V)y + VP =vi, + ey in Q
V-y=0 in  Q,
0 — V- (v(Vy)V 9)+y VO =vwl, +v(Vy)Dy:Vy in Q,
y(x,t) = ,H(X )= on X,
y(x,0) = y°(x), 6(x, 0)—90( X) in  Q,
(1)
where

UTy) =+ [ [VyPox @)
Q

Trends in Mathematical Sciences Juan Limaco - Joao Carlos Barreira 3/55



and

Yi— V- (5(VY)Dy) +(y - V)y + VP =vi, + ey in Q,
V-y=0 in Q,
0 —V - (2(VOVO) +y -V =vwl,+5(Vy)Dy:Vy in Q,
y(x,t)=0,0(x,t)=0 on X,
y(x,0) = y°(x), 6(x,0) = 6°(x) in Q,

(3)

where (V<) := vy + v1||Vs]|2,, for 3 < p < 6, and in both systems

on | ONIEN=2,
N~ (0,0,1)if N=3.
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In (1) and (3), y = y(x, t) stands the “averaged” velocity field,
0 =0(x,t) and p = p(x, t) represent, respectively, temperature and
pressure of a fluid whose particles are in Q during the time interval
(0, T); o and vy are positive constants representing the kinematic
viscosity and turbulent viscosity, respectively. (y°,6°) are the initial
states, that is to say, the states at time t = 0; 1,, € C5°(Q2) such that
0< 1, <1inwand 1, = 0 outside w; Dy stands for the symmetrized

gradient of y: Dy = %(Vy +VTy)and

N
Ty — 1.(0y;  9yi\ i
Dy.Vy._i;Z(aXiJraxj o (4)

Furthermore, w x (0, T) is the control domain and v (force) and v
(heat sources) represent the controls acting on the system.
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The following vector spaces, frequently used in the context of
incompressible fluids, which will be used throughout the article are:

H={uel2(QV:V.u=0inQ,u-n=00ndQ}
and
VP .= {ue W)PQN:V-u=0inQ},

where 7 is the normal vector exterior to Q2 and Wg P(Q) is the closure
of the space of test functions in Q, D(Q), in W'P(Q)(the standard
Sobolev space). In particular, when p = 2 we will denote V = VP.

For N=2,y0c V, 9% e W, *?Q),and any v € L2(w x (0, T))N,
Vo € L?(w x (0, T)) sufficiently small in their respective spaces, (1)
possesses exactly a strong solution (y, p, 8) with

y e L2(0, T; H2 ()N 1 V) n CO([0, T]; V), yi € L2(0, T: H) -
0 € L2(0, T; W23/2(Q)), 6; € L?(0, T; L3/2(Q)).
For N = 3, this is true if y°, 6°, v and vy are sufficiently small in their

respective spaces.
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Main Results

Definition 1
Let any non-empty open set w C Q. It will be said that (1) (respectively
(3)) is locally null-controllable at time T > 0 if there exists 6 > 0 such
that, for every (y2,6°) € V x W, 3/2(Q) (respectively

(¥°,6°) € VP x W, P(Q)) with

0 p0 ; 0 p0
”(y ,0 )||V>< ngS/Z(Q) < 6(reSpeCtlve|yH(y ,0 )||Vp><WO1’p(Q) < 6))

there exists controls v € L2(w x (0, T))N, vy € L?(w x (0, T)) and
associated solutions (y, p, 8) satisfying

y(x,T)=0 and 0(x,T) =0 in Q. (6)
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Thus, the main results are given by the following:

The nonlinear system (1) is locally null-controllable at any T > 0.

The nonlinear system (3) is locally null-controllable at any T > 0.

In order to prove Theorems 2 and 3, we will first see a result of null
controllability for the linear system associated with (1) and (3)

L1y +VP=vi,+wpfen+Fi, V-y=0 in Q,

Lo = Voiw + F in  Q, (7)
y(x,t)=0, 6(x,t)=0 on X,
y(x,0) = yo(x), 6(x,0) = 6°(x) n

where, £1y =Yt — l/oAy and Lo6 = 6 — vy A6.
Furthermore, when N = 2 we also show a result of null controllability in
a large time for the solutions of the system (1).
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Theorem 4 (Large time Null-Controllability)

For N = 2, let (y°,6°) € V x H}(Q) and r > 0 a positive constant such
that ||(y°, 6°)]| vxH@) < I, then there exists a sufficiently large time
T > 0 such that the nonlinear system (1) is null-controllable at T.
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Well-posedness results

The results here will be applied when we study the null controllability of
system (7), since once we have the appropriate regularity for ° and y°
the results described here can be applied to equation formed by (7);
and (7)5.

The first lemma we mention here is applied to parabolic equations in
LP — L9 spaces and its verification can be based on [3]:
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Lemma 5

Let1 < r,s < oo and suppose that ¢° € W'-$(Q) and
h e L'(0, T; L5(Q)). Then the problem

or—Ap=h in Q,
p=0 on %,
¢(0)=¢° in Q
admits a unique solution
¢ € W0, T; LS(Q)) N L'(0, T; W25(Q)),

Furthermore, there exist a constant C > 0 such that

pellLr(o, sy + 1Al ro,7es()y < CUI°Iwrseay + 1Al r o0, 7iLs(2)))-
(8)
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The second result is valid for Stokes systems with homogeneous
Dirichlet boundary conditions and can be found in [11]:

Forevery T >0, u’ € V and f € L2(Q)VN, there exists a unique solution
(u,q) € (L2(0, T; HA(Q)N 0 V) N L=(0, T; V) x L2(0, T; H'(Q)) to the
Stokes system

u—Au+vqg=fFf V-u=0 in Q,
{ u=20 on %,
u(0) = u° in Q.
The next result, proven in [6], concerns the regularity of the solutions
of the Stokes system in LP — L9 spaces (see also [7] for additional
comments):
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Let1 < py, p2 < oo and suppose that u® € W'P2(Q)N and
fe LP1(0, T; LP2(Q2)). Then, the weak solution
ue L?0,T;V)nL>0,T;H) of system

u=20 on %,

u—Au+vg=f V-u=0 in Q,
u(0) = u° in Q

actually verifies, together with a pressure q, that

(u,Vq) € (Lp1 (0, T; W2P2(Q)N) 0 W1 (0, T; Lp2(Q)N)> x LP1(0, T; LP2()

Moreover, there exists a positive constant C just depending on Q such
that

[ull Loy (0, T; W2P2(Q)N)N W' P1 (0, T;LP2(2)N) T 1Vall ey (0,T;LP2(Q)N)
< C1Fll o1 0, 722 () + 1U0 .o )
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Carleman estimate

Let’s introduce a new non-empty open set wg € w. Due to Fursikov and
Imanuvilov [5] we have the following result:

Lemma 8
There exists a function n° € C?(Q) satisfying
770( X) > Vx € Q,
n°(x ) = Vx € 09,
|Vn0(x )| > 0, Vx€Q\uwo.
Let us introduce the function ¢ € C*>([0, T]) such that
T2
— <t<
=1 7 0<t<T/2,
(T—1t), T/2<t<T.
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Thus, for all A > 0 and m > 4, we consider the following weight
functions:

e5/4Am|n°llce _ @A (ml|1°]loc+n°(x)) eNmln° o +n°(x))
CY(X, t) - g(t)4 9 g(X7 t) - [(t)4 9
a*(t) = ma}a(x, t)> 5*(t) = miﬂf(X> t)a
XeQ XeQ
a(t) = mina(x, 1), £(t) = max&(x,t).
XeQ XeN

The constant m will be chosen large enough, in particular such that

364 > 33a* in (0, T). (9)

Trends in Mathematical Sciences Juan Limaco - Joao Carlos Barreira



Consider the adjoint system of (7) which is given by

Lip+Vr =Gy, V-9o=0 in  Q,
[,;1/1 = pen + Go in  Q, (10)
o(x, ) =0, ¥(x,t)=0 on I,

>
(. T) =0T (x), v(x. T)=¢"(x) in

where L3¢ = —pt — 19Ap, L3t = bt — gAY, o7 € H,¢T € L3(Q),
G; € L2(Q)N and G; € L2(Q).
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Thus, we will present a Carleman estimate given by the following
lemma:

Lemma 9 (Lemma 2, [7])

For any sufficiently large s and \, there exists a positive constant C
(depending on T, s and \) such that, for all 7 € H and ¢ € L?(Q)
and any Gy € L2(Q)N and G, € L?(Q), the solution to (10) verifies

o O+ G, O + [ [ & 25214 +1012) + E1Viel + V0121
Q

< C / 6785&+6Sa*§"16(’¢|2_’_ |¢’2)dth
wx(0,T)

+ // e—4s&+25a*é15/2(‘G1|2 + ng)dxdt) )

Q
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Null Controllability of Linear System

We emphasize that two null controllability results will be obtained,
since we will consider different cases for the initial data y°, #° and the
functions Fy, Fo. More precisely, in the first case we will consider more
common spaces in control theory, such as H} () and L2(Q) while in
the second case we will work with spaces less usual ones, like
W, P(Q) and L9(0, T; LP(Q)), for 3 < p< 6and Z < g < oc.

Let us set the following weights

p= eSa€—3/2’ p1 = eZSa—Sa*€—15/4, po = ghsa—3sa 5—87
p3 = es (é‘*)—1/27 w = eSSa—7Sa 5—15’ Lo = eSSa—7Sa 5—16’
Uz = e8sa77sa é~7177 K = e9sa785a 5717’
(12)
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So that the values of s and ) satisfy the Lemma 9. By inequality (9),
we can see that

k< Cpg < Cpz < Cpz2 < Cps < Cui,
| 112.¢]

. (13)
< Cp1, |paps,| < Cu3 and k; < Cpg in (0, T).

With Lemma 9 we will be able to obtain a null controllability result for
(7), in which the right-hand side F; and F, decay sufficiently fast to
zero as t — T. In other words, the following propositions are valid:
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Proposition 6.1

Let us assume that
@ ifN=2:y0c H, 0% c L2(Q), psF; € L2(Q)? and
,03F2 € LZ(O, T; LS/Z(Q))
@ ifN=23:y%c HNL*(Q)3, 6° € L?(Q), p3Fy € L2(Q)® and
psFz € L2(0, T; L3/2(Q)).
Then, we can find state-controls (y, P, 0, v, vy) for (7) such that

//m (v +l6axat+ [ AB(VIE + ol

wx(0,T) (14)
< C (I1y°12, + 16°12 + llpsFirl1Zo oy + 193F2 122 0 712y ) -
In particular, one has y(x, T) = 0 and 6(x, T) = 0. Moreover, if

(y0,69) € V x W) ¥3(Q) then y € L2(0, T; V) n C°([0, T]; H) and
0 € [2(0, T; W23/2(Q)) n CO([0, T]; L3/2(Q)).
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Proposition 6.2

Consider3 < p <6 and% < g < oo. Let us assume that the functions
Fi, Fy in (7) satisfy psFy € L9(0, T; LP(Q)N), psFz € L9(0, T; LP(Q)) and
(¥°,6°) € VP x W,P(Q). Then (7) is null-controllable, and its
control-state satisfy (v, vo) € L?(w x (0, T))N*1,

y € L9(0, T; W2P(Q)N) n C°([0, T]; LP()N) and

6 € L9(0, T; W2P(Q)) N CO([0, T]; LP(Q)).
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Estimates for the states solutions

Here we will show estimates for the solutions associated with (7), that
is, for both the velocity variable and the temperature variable. We will
obtain estimates not only for y and 6, but also for Vy, Ay, V6, Ag and
the controls v and vy. The results obtained in this subsection will be
fundamental to obtain the null controllability of the nonlinear systems
(1) and (3).
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Proposition 6.3

Let the assumptions in Proposition 6.1 be satisfied. Let the
state-control (y, P, 0, v, vy) satisfy (7) and (14). Then, the following
estimate holds:

sup [ iy o+ [ [ vy axat
Q

te[0,T] J/Q

<c |+ /[p3|F1|2+p1(|y|2+|0| )] dx dt + // FBIV[2 dx dit

wx(0,T)
(15)
Furthermore, if (y°,6°) € V x W,*/?(Q), one also has
sup [ BIVyP ok [ [ uB(ni? + Ay dxot
te[0,T] JQ
aQ
< C | IOl + [ [ [o5IF1 P + pi(ly[? + 101)] dx ot + p3|v|? dx ot
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Continuation Proposition 6.3
and

T T
/0 MSHQIHiS/z(Q) dt+/o MgHAeHiSﬂ(Q) dt
< C |10y //p1l9\2dxdf+ ] Bwlaxa  7)

wx(0,T)
T 2
+/0 ||p3F2HL3/2(Q) at|.
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Proposition 6.4

Let the assumptions in Proposition 6.2 be satisfied. Then, the controls
verifies

kv e L2(0, T; H?(w)N) n CO([0, T]; H' (w)N), (kv)r € L3(w x (0, T))N.(1
kVo € L2(0, T; H?(w)) N CO([0, T]; H'(w)), (kW) € L?(w x (0, T)).(1

with the estimate

)
/0 /[|(w)t,2+,(ﬁvo)t‘u\HAV\ZHHAVO,Z} dxatt + sup [lnviZ

)

+ [SUP] H’%VOH/z-ﬁ(w) <C <Hy0” + HHOHW1 P(Q + HP3F1 Hiq(oyT;Lp(Q)N)

)

- Hp3F2HLq(o,T;Lp(Q))) '
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Continuation Proposition 6.4
Furthermore, the associated states satisfy

[ aieaxat+ sup [ iEvyax [ [ itiaylPaxar
[0,T]/Q
Q Q
+sup [ yElylPd+ / [ 1819yPaxat < ¢ (1y°IF
[0, T]/Q

/ [ AR+ vyt [[ BvE dxat+ Rl raam)
wx(0,T) (20)
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Continuation Proposition 6.4
and

//Msw dxdt+sup/u3\V0\2dx+//u3]A9]2dxdt+sup/u§|0|2c
+ [ [ 1BivoRaxat < © (16013000, + [ [ oRIOF axat
W)
Q Q

+ﬂé%mmmmmmm
wx(0,T)
(21)

Trends in Mathematical Sciences Juan Limaco - Joao Carlos Barreira 27/55



The next result is a proposition from [8] and will be of great importance
for us to conclude our main theorems.

Proposition 6.5

Ifue L9(0, T; W2P(Q)), ur € LI(0, T; LP(Q)) then
ue CO([0, T); W'P(Q)), p > 2 and q > max{2, %&-2}.

The following proposition will be fundamental to guarantee the null
controllability of the system (3) and its proof is acquired from the
previous results of this section.
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Proposition 6.6

Let the assumptions in Proposition 6.4 be satisfied. Then, the following
estimates are valid

1(50)¢ll a0, 7ep()) + 11681l Lago, ;w2 )y + 160l oo, . wrp ()

<C (”yOHVP + HGOHWOLP(Q) + ”P3F1 ”Lq(07T;I_P(Q)N) + ||p3F2HLQ(07T;LP(Q))
(22)
and

(&Yl Lago, T;eeyvy + I16Y [l a0, T wem)ny + 1Y Nl oo, 7. w0 ()m)

<C <”y0||vp + ||‘90HW01,;7(Q) + [l p3F ||Lq(O7T;Lp(Q)N) + ||P3F2||Lq(o,T;Lp(Q))
(23)
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Proof of Theorem 2

We will proved the local null controllability for the system (1). Let us
consider the Stokes operator A: D(A) — H, where

D(A) := VN H>(Q)N, Aw = P(—Aw) for all w € D(A) and

P : [2(Q)N — H is the orthogonal projector.

Let &y be (for N = 2 or N = 3) the following space:

En=1{(V,P,0,v. %) : pry, p2vi, € L3(Q)N,y € L[2(0, T; D(A)),

Vy € L2(Q)N*N P e [2(0, T; H'(Q)), p16, pavol. € L3(Q),

0 € L2(0, T; W23/2(Q)), for Fy := L1y + VP — vpfey — vi,, and

Fo = L0 — oo, paFy € L2(Q)N, psFs € 12(0, T; [3/2(Q)),V - y = 0,
y(-,0) € V,0(,0) € Wy ¥2(9),0 5= 0},

(24)
emphasizing that L1y = y; — voAy and L0 = 6; — 1y Af. Thus, it's
clear that £y is a Banach space for the norm ||.||¢,, Wwhere
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10 P8, v ) B, = Y120 100 + 10120 raesrecayy + 101
2
+HP19H + HPHLz 0,T;H'(Q)) + HPZVHLz(wX(QT))N + ”pZVOHLz(wX(o’T))
2
+Hp3F1 HLZ(Q)N + Hp3F2HL2(077';L3/2(Q)) + He("O)HWJﬁ/z(Q)'

Due to Proposition 6.3 we get:

1Yo (0,7:H) + 1Yl 200, 7:v) + 02V [l (0,7;v) + 2V [l 200, T; D))
+ lw2yill 2o, 72 @ny + 120t 20, 7:082(0)) + 1120|120, 7 W2.972(02))
< Cll(y, P, 0, v, v)lley-
(25)
Furthermore, if (y, P, 0, v, vy) € En, then y; € L2(Q)V, whence
y : [0, T] — V is continuous (see, [4]) and we have y(.,0) € V, with

1y, 0)llv < Cli(y, P, 0, v, vo)lley; (26)
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Now, let us introduce the Banach space
Zy = 205 QN x V x [2(53(0, T); L2(Q)) x Wy *2(),  (27)

where L2(p3(0, T); L3/2(Q)) be the Banach space formed by the
measurable functions u = u(x; t) such that psu € L?(0, T; L3/2(Q)).
Finally, consider also the mapping F : £y — Zpn, such that

Fly,P,0,v,vw) = (F1,F2, F3, Fa)(y, P,0, v, vp) (28)
where
Fi(y,P.0,v.vo) == y; — v(Vy)Ay + (y - V)y + VP — vofey — Vi,
Fa(y, P,0,v,v0) == y(.,0), )
Fa(y,P,0,v,vg) == 0t —v(Vy)AO +y-VO —v(Vy)Dy : Vy — vy,
f4(y7 P7 07 V7 VO) = 9('70 .

(29)
Note that, in (29)1 we used the definition of V - (v(Vy)Dy) to rewrite in
the form v(Vy)Ay, since V- y = 0.
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Theorem 2 will be proven if we show that there is § > 0 such that,
(F1,y°, F2,6°) € Zy and ||(Fy, ¥°, F2,6%)||zn < 6 then the equation,

F(y,P,0,v,v) = (F1,y° F2,0%) , (y,P,0,v,v) € En

possesses at least one solution.
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We are interested in apply the Mapping Inverse Theorem in infinite
dimensional spaces, that can be found in [1], and is given below,
where B,(0) and Bs((p) are open ball, respectively of radius r and 6.

Theorem 10 (Mapping Inverse Theorem)

Let £ and Z be Banach spaces and let F : B,(0) c £ — Z be aC'
mapping. Let as assume that F'(0) is onto and let us set 7(0) = (p.
Then, there exist 6 > 0, a mapping W : Bs({p) C Z — € and a
constant K > 0 such that

W(z) € B/(0), F(W(2)) = z and [|W(2)|l¢ < K||z=F(0)]|z ¥z € B5(Co)-

In particular, W is a local inverse-to-the-right of F.
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Thus, we will prove that we can apply this Theorem 10 to the mapping
F in (28)-(29), through the following three lemmas:

Let F : Ey — Zn be given by (28)-(29). Then, F is well defined and
continuous.

proof. We using that elements (y, P, 6, v, vy) € Ex have regularity of
the linear problem.
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The mapping F : Ey — Zy is continuously differentiable.

proof. We will the proof for N = 3 (the case N = 2 is similar). Let us
first prove that F is Gateaux-differentiable at any (y, P,0, v, w) € &
and let us compute the G-derivative F'(y, P,0, v, vp).
Let us fix (y, P,0,v, ) € & and let us take (y’, P',¢', V', vy) € & and
o > 0. Also, by the decomposition made in (29), we introduce the
linear mapping D.F : &3 — Z3 with
DF(y,P,0,v,v) = DF = (DFy,DFo, DF3, DF4) Where
DF(y,P.,0', V', vg) = yi —v(Vy)Ay —2v4(Vy,Vy')Ay + VP
+( - V)y+(y-V)y —0es—Vvi,,
DFo(y', PO, V', vp) = y'(.,0),
DF3(y’, P,0', V', vy) =0t —v(Vy)AY —2v1(Vy,Vy')AO
+y VO+y- VO — Vi, —v(Vy)Dy : Vy
— [W(Vy)Dy' +211(Vy,Vy')Dy] : Vy,

D ! D/ / ! C— / 0

4
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From the definition of the spaces &3, Z5 and (30), it becomes clear that
DF € L(&3, Z3). Furthermore, for each j = {1,2,3,4} we have

]
S 71 (y: P.0.v.vo) oy, POV, ) = Fily. P6v.vo)l g4

converges to DF;(y', P, 0, v/, vj) strong in Z3, asc — 0.

By the same arguments as the previous lemma it is possible to show
that (31) is true.
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It is also easily proven that (y, P,0,v,vp) — F'(y,P,0,v,v) is a
continuous mapping. Thus, it is shown that F is not only
Gateaux-differentiable, but also Fréchet-differentiable. For that,
suppose that

(me Pm7 9m7 Vm, VOm) — (y, P, 9, v, Vo) |n 53
and there is existence of ¢ ;(y, P, 0, v, vy) such that

” (]:/(Ym7 Pm, em, va VOm) - F/(y7 Pa 07 V7 VO)) (ylv Plu 0,7 Vl? V(/))”22,’3
g 5m”(y/7 Pl7 9/7 Vl? V(/))H(%sv
(32)
!/ / / /! / H _
foraII(y,P,H,v,vo)ec‘,’sandmlinooam—o. O
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Let F be the mapping in (28)-(29). Then, 7'(0,0,0,0,0) is onto.

proof. Let (Fy,y°, Fp,0°) € Zx. From Proposition 6.1 we know there
exists (y, P, 0, v, vp) satisfying (7) and (14). Furthermore, from the
usual regularity results for the Stokes system we have

(v, P) € (L?(0, T; D(A)) x L2(0, T; H'(Q))). Consequently,
(y,P,0,v,v) € Ey and

~7:/(0707070a0)(y7 P>97 v, VO) = (F‘IayanZaHO)'
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Proof of Theorem 2. We conclude from Lemmas 11-13 that the
Inverse Mapping Theorem (Theorem 10) can be applied to the spaces
En and Zy together with the mapping F introduced at the beginning of
this Section. Thus, there exists 6 > 0 such that, for every

(y,6°) € V x W, */?(Q) satisfying H(yO,eo)HVXwJ,S/z < 6.

We have that (y, P, 6, v, vy) = W(0, y°,0,6°) is the sought solution, as
it satisfies: F(y, P, 8, v, vo) = (0, y°,0,6°).

This proves that, the nonlinear system (1) is locally null-controllable at
time T > 0.
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Proof of the Theorem 3

Let

Uy = (y,P,0,v,v%) : pry € L2(Q)N, pav, (kV)t, AV € L2(w x (0, T))N,
y € L90, T; W2P(Q)N), Vy € L2(Q)NN, P € L9(0, T; LP(Q)),

p10 € L2(Q), paVo, (kVo)t, KAVy € L2(w x (0, T)),0 € LI(0, T; W2P(Q)),
for Fy := L1y + VP — pfen — vigand Fo = L0 — Voo,

paFy € L9(0, T; LP(Q)N), psFo € L9(0, T; LP(Q)),V -y = 0, y(.,0) € VP,
0(.,0) € Wg’p(Q),y |y=0,6 |s=0,where 3 < p <6 and % < g < oo},

33

It's clear that Uy is a Banach space for the norm ||.|z,, with )
1(y: P.0. v, vo)ligy, = 1Y 20, 7.wemaymy + 101 a0, rwzmgayy + 11 12 qpn
+HP10H + HP”Lq 0,T:LP(Q)) + HpZVHL?(wx(O,T))N + HPZVOHLZ(WX(O’T))
+H(/{V)tHL2(w><(O,T))N + ||"€AVH22(MX(O’T))N + H("QVO)tHZZ(wX(QT))
‘|‘H"‘$AVOHZ2(WX(O7T)) + [lpaFi ||(Zq(0’T;Lp(Q)N) + ||P3F2||(Zq(o,T;Lp(Q))

+ 1y O + 100,01 e
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Now, let us introduce the Banach space
R = LI(p(0, T); LP(Q)N) x VP x LI(pd(0, T); LP(Q)) x W, P(Q), (34)

and the mapping 7 : Uy — R, such that

I(y, P, 9, v, Vo) = (I~| ,IQ,I3,I4)(}/, P, 9, v, Vo) (35)
where
I1(y7 Paev V7 VO) = .yt_ D(vy)Ay+ (yV)y+VP— VOQGN - V1~LU7
To(y,P.0,v, vo) :=y(.,0), 3
Is(y,P,0,v,vp) := 0 — 0(VO)AO + y - VO — 0(Vy)Dy : Vy — w1y,
Za(y, P, 0,v,vp) :=6(.,0).

(36)
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Theorem 3 will be proven if we show that there is § > 0 such that,
(F1,y°, F2,6°) € Ry and ||(Fy, y°, F2,0%)||r v < & then the equation,

Z(y, P,0,v,vo) = (F1,¥° F2,6%) , (y,P,0,v,v) € Uy

possesses at least one solution.
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To simplify the notation, in the norms of LP(Q)N we will just write LP(Q).
That said, we have the following results:

LetZ : Uy — Ry be given by (35)-(36). Then, T is well defined and
continuous.

proof. Let’s prove that, for each (y, P, 6, v, vy) € Uy We have

I(y7 P.,0,v, Vo) € Rn.

That Z, and Z, are well defined follows immediately from the definition
of Upn. So let’s find out Zy and Zs.

Analysis of 7Z;:

o llp3F1l{ao,7.00(02)) < ClIY. P60, v, w0l

Taking into account (9) we have p3x~2 < C. Moreover, using the fact
that W'P(Q) — L>(Q) (since p > N) and the estimate (23) from the
Proposition 6.6, we obtain
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T q/p
“loaly D laoran < [ ([ AWPIvyPax) ot

T a/p

= [ ([ A oeyriypax) ot
a/p

< ¢ [ 1 ([ wypan) o

< Clwyll? < Cl(y. P,0, v, v)lI7].

50 (0,T; W1P(Q)) ”’i}/HLq(o T;W1p(2))

In a similar way

‘HPSWHV}’H AyHLq(oTLp C/ Ps SqHHV}’HLp(Q)H”AYHCZP(Q)dt
< ClRYIEL o 7w o 15Y | Fao. 7-weqy) < CIY: PL O v Vo)

Hence, Z(y, P, 0, v, vo) € L9(p3(0, T); LP(Q)N).
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Analysis of Z3:
b HP3F2HgQ(o’T;LP(Q)) < (v, P,0,v, VO)HzC,’{N'

Using the same previous arguments together with the estimates (22)
and (23) from the Proposition 6.6, we get

T a/p
A o A

C/ ’H’VHHW1 p Q)H"i.yH(ZP(Q)dt

q q
\ CH’%yH ©(0,T; WhP(Q))HK@HLQ(O’T;WZP(Q))
< Cl(y.P.0.v, v)|Z]

o a1 1V8)1Z, 58] o 7. 1002) C/ 3 3‘7”*”9’&«9)HRMHE’n(mO’f

CHHQHLOO 0,T;Wp(Q)) H""ﬁHLq (0, T;W2p(Q)) S < Cll(y,P,0,v, VO)H
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and

® ||psi(Vy)Dy : V}’HLq(o T;LP(Q)) < Cllryllf. 0, T:W! p(Q))H’WHLq 0,T:W1p(Q))
+C||I{y|| OTW1 p(Q))||'%yHLq0TW1 P(Q)) C||(y7 Pa 97 v, VO)HZ/[N'

Consequently we have Z5(y, P, 0, v, vy) € L9(p3(0, T); LP()N).
This proves the Lemma 14.
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Based on the arguments applied in the Lemma 14, the next two results
follow in a similar way to the Lemmas 12, 13, respectively.

The mapping T : Uy — Ry is continuously differentiable.

Let T be the mapping in (35)-(36). Then, 7'(0, 0,0, 0, 0) is onto.

According to Lemmas 14-16, we can apply the Inverse Mapping
Theorem (Theorem 10), then, there exists 6 > 0 and a mapping
W : B5(0) C Ry — Uy such that

W(z) € B,(0) and Z(W(z2)) = z, Vz € B;(0).

Taking (0, ¥°,0,6%) € Bs(0) and (y, P, 6, v, vo) = W(0, ¥°,0,6°) < Uy,
we have
I(y7 P707 V7 VO) = (O7y070700)'

Thus, we conclude that (3) is locally null controllable at time T > 0.
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Large time Null-Controllability

Following the ideas of [2, 9], we will make the system (1) evolve
without control and certify an asymptotic behavior according to t — o~
of its solutions, when N = 2. That is, we will deal with the energy
decay of the solutions of the system complete
Ladyzhenskaya-Boussinesq. Having verified this analysis, we will take
atime T* > 0 such that the solutions y(T*,.) and 6(T*,.) related to the
null local controllability of (1) (Theorem 2). Thus, by setting y(T*,.)
and 6(T*,.) as the initial data in (1), Theorem 2 gives us the v and vy
controls that drive the solutions to zero in some sufficiently large time.
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Accordingly we state the following lemma, which will be fundamental
for the demonstration of Theorem 4.

Lemma 17

ForN=2,any T >0 and (y°,6°) € V x H}(RQ), if there is positive
constant r > 0 such that

12, 6% vxHi@) <

and (y,p, 0) is a solution of (1) with v = vy = 0, so this solution has
asymptotic behavior as t — oo. More precisely, for

E(t) = |Vy(t, )IZ + 16, )% + IVo(t.,)]12
there are positive constants C1,Co such that

E(t) < Coe “'E(0)a.ein(0, T). (37)
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Proof of Theorem 4 First, let’s fix To > 0. Applying the Theorem 2
there exists § > 0 such that the system (1), with any initial data
(7°,8°) € V x W,*?(Q) satisfying ||(7°, 8°) < 6, is locally
null controllable at Ty.

Determine (y°,6°) € V x H}(2) and consider r > 0 as defined in the
statement of Lemma 17. Let then T* be a positive time satisfying

Iy w, /%)

]

1
T*> _—1In < ) (38)
Cr  \Co(|[VyQ[12 + [|69]12 + | V6°[[?)

and consider a solution (y, p, #) of the system (1), with T = T* + Ty,
v = v = 0and (y°,6°) as the initial data.
From (37) and (38), y(T*,.), 6(T*,.) are such that

| (T, 0T )| Vx Wy 32 (@) <Cpe“ T*(
< 0.

VYOl2 +116°]2 + ([ V6°]|?)

Consequently, by Theorem 2, (1) is null controllable at T* + Tj.
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