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Motivation for Modeling Derivative Markets

Figure: Number of exchange traded derivatives (ETDs) traded worldwide from 2004 to 2022, by
type(in billions) Source: Statista Research Department

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.

https://www.statista.com/statistics/535655/number-etd-contracts-traded-by-type/
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Motivation for Modeling Derivative Markets I

Fact

I Top banks in the United States and Europe have tremendous exposure to derivatives:
Notional value of $632 trillion at end-june 2022

I The gross market value of outstanding OTC derivatives, summing positive and
negative values, rose noticeably in the first half of 2022, to $ 18.3 trillion,

I Deutsche Bank alone had more than 90 ×109 Euros Potential future exposure of
derivative contracts (2020)

Source: Bank of International Settlements (BIS) and European Bank Association (EBA)
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https://www.bis.org/publ/otc_hy2211.htm
https://www.eba.europa.eu/sites/default/documents/files/document_library/Risk%20Analysis%20and%20Data/Global%20Systemically%20Important%20Institutions%20%20%28G-SIIs%29/2021/Bank%20individual%20templates/1018540/Deutsche_Bank_-_2020%5B1%5D.pdf
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Motivation for Modeling Derivative Markets II
Consequence

Options and Derivatives are a fundamental part of the world economics.

Futures and Energy Markets

I Futures are a type of derivative contract agreement to buy or sell a specific commodity
asset or security at a set future date for a set price.

I Futures are crucial in commodities and energy trading

I Imense markets

I Interconnected with fixed income markets and security markets

I Interconnected with currency markets (especially with crypto-currencies)

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Motivation for Modeling Derivative Markets I

What are the basic underlying structures?

I In Mathy language: DIFFUSIVE PROCESSES, THEIR EXPECTED VALUES, AND
CONTROL

I In AI/ML language: Model estimation and selection

I In Financial language: Find the risk premium associated to a derivative contract and
the corresponding hedging portfolio.

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Motivation for Modeling Derivative Markets II
Main difficulties

Financial Data is highly complex phenomena!
I Huge noisy data sets
I Nongaussian behavior ... in fact: Nonstationary behavior
I Volatity is complex and nonstationary phenomena
I Design models and understand the complex phenomena

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Financial Models for Options & Derivatives I

1973 - 2023 Golden Jubilee of the Seminal Papers by Black-Scholes and by Merton

I Problem: How to compute the price of a vanila option (call or a put)?

I Method: Introduce a hedging portfolio composed of cash and the underlying asset.
Define a model for the underlying and introduce a number of simplifying assumptions.

I Result: A “simple” way of relating the evolution of the option price with its variation with
respect to the underlying price. More precisely with the so called “delta” and “gamma”
of the option.

I Impact: A fair and robust (albeit very simplistic) way of computing the price of calls and
puts.

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Financial Models for Options & Derivatives II

Fischer Black
(credit Wikipedia)

Robert Merton - Nobel 1997
(credit Wikipedia)

Myron Scholes - Nobel 1997
(credit Wikipedia)

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Financial Models for Options & Derivatives III
1997 Nobel Prize Press release

“Robert C. Merton and Myron S. Scholes have, in collaboration with the late Fischer Black,
developed a pioneering formula for the valuation of stock options. Their methodology has
paved the way for economic valuations in many areas. It has also generated new types of
financial instruments and facilitated more efficient risk management in society ”

Challenge

I “Be able to prove that the method works”

I “trustworthness ”

Reference: June 2023 Nature paper by Blanka Horvath... “ Golden jubilee for an iconic
financial formula”

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.

https://www.nobelprize.org/prizes/economic-sciences/1997/press-release/
https://econpapers.repec.org/article/natnature/v_3a618_3ay_3a2023_3ai_3a7964_3ad_3a10.1038_5fd41586-023-01811-6.htm
https://econpapers.repec.org/article/natnature/v_3a618_3ay_3a2023_3ai_3a7964_3ad_3a10.1038_5fd41586-023-01811-6.htm
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Financial Models for Options & Derivatives IV

Black-Scholes-Merton eq.: Price of an option P(t,x)

P(t,x) at time t for spot value x and h is the payoff at time TE .

∂P
∂t

+
1
2

σ
2x2 ∂2P

∂x2 + r(x
∂P
∂x
−P) = 0 P(TE , ·) = h

Variables:
x is the price of the underlying (stock)
P = P(t,x) is the price of the option on the underlying x at time t
r is the interest rate and σ is the volatility. The time t < TE .

Note
I Note the BSM Equation above is a FINAL value problem.
I However, in practice we have a Stochastic Behavior of the Volatility

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Classical Black-Scholes-Merton

Under highly simplifying assumptions, the call option price C on an underlying X is given by

CBS(X , t;K ,T , r ,σ) = XN(d+)−Ke−r(T−t)N(d−) (1)

where N is the cumulative normal distribution.

d± =
log(Xer(T−t)/K )

σ
√

T − t
± σ
√

T − t
2

. (2)

Some of the Assumptions:

I Non dividend paying (just for simplicity)

I Complete and Frictionless Markets

I Exponential Brownian motion dynamics

I Constant Volatility
c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Plot of the Black-Scholes Price of a Call

Figure: Typical example of the price of a vanilla option (call).
c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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However... Stochastic Behavior of the Volatility
IBOVESPA Index and its Volatility

Figure: IBOVESPA Index and its (garch) Volatility (From Vlab at Stern, NYU)

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Stochastic Behavior of the Volatility

I Volatility is not deterministic! It is even a multi-scale phenomena!

I It is not true that the underlying undergoes an Exponential Brownian Motion

I Even more so in high frequency contexts...

Implied Volatility The value of the volatility that should be used in the Black-Scholes
formula to give the quoted market price of a derivative.

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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The Concept of Implied Volatility

Recall
CBS(X , t;K ,T , r ,σ0) = XN(d+)−Ke−r(T−t)N(d−) (3)

where N is the cumulative normal distribution function and

d± =
log(Xer(T−t)/K )

σ0
√

T − t
± σ0

√
T − t
2

. (4)

Notion of Implied Volatility Fix everything else and consider

σ 7−→ CBS(X , t;K ,T , r ,σ)

The implied volatilty is the inverse to this map.
IMPLIED VOL ”wrong number that when plugged into the wrong equation gives the
right price”

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.



16/39Local Volatility Estimation Erlangen 2024 ku.ac.ae

IMPLIED VOL

Figure: Implied Volatility Surface- (From Bruno Dupire - IMPA talk)

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Volatility
Different Interpretations and Directions

I Econometrics - Historical

I Implied (or Implicit)
I Stochastic Volatility Models

I fast mean reversion (Papanicolaou, Fouque, et al)
I for commodities: jt work Fouque, Saporito, Zubelli; IJTAF2015

I Local Volatility NON PARAMETRIC (focus of this talk)

I More recent work Stochastic Local Vol (jt work Saporito & Yang)

I More recent work Local vol and jumps (jt work V. Albani)

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Central Problems

I Understand volatility behavior.

I Protect portfolios against volatility oscilations.

I Find parsimonious and efficient models (simple but not too simple!)

I Calibrate such models in a robust and effective way.

I Price other derivatives consistently

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Dupire’s Local Volatility Model

Figure: Bruno Dupire’s seminal contributions. Source: Risk Magazine
c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Local Volatility Model
B. Dupire

Idea Assume that the volatility is given by

σ = σ(t,X)

i.e.: it depends on time and the asset price.
Easy to check that the Black-Scholes eq. holds.

∂P
∂t

+
1
2

σ(t,X)2X 2 ∂2P
∂X 2 + r

(
X

∂P
∂X
−P

)
= 0 (5)

P(T ,X) = h(X) (6)

From now on h(X) = (X −K )+ or h(X) = (K −X)+

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Take Home Message

Focus: Dupire local volatility models

Our Achievements/Goals
I Present a unified DATA DRIVEN framework for the calibration of local volatility

models
I Use recent tools of convex regularization of ill-posed Inverse Problems.
I Present convergence results that include convergence rates w.r.t. noise level in

fairly general contexts
I Go beyond the classical quadratic regularization.

Applications

I risk management; hedging; evaluation of exotic derivatives
c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Our approach: Data Driven Inverse Problem Theory
Note: Parameters may live in a very large space

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Example of an Inverse Problem
Classical Computerized Tomography

Figure: By Department of Radiology, Uppsala University Hospital (Wikipedia)

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Example of an Inverse Problem
Tomography with Diffusion (Discretized Model) published in Science Vol. 248 - 1990

Figure: Science, vol. 248, 1992

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Inverse Problems
Connection w/ Neural Networks & Deep Learning... excerpt from our Science paper

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Message of our work on Calibration of Local Volatility

I We have considered the simultaneous calibration of local volaltility
and jump-size dist.

I We have stated the regularity properties of the
parameter-to-solution map.

I Tikhonov-type regularization was used to solve the inverse
problems separately.

I We have applied a splitting strategy to solve the simultaneous calib.
prob.

I We provided numerical examples real and simulated data.

I Paper published in Finance & Stochastics (2020).
Available also at ArXiV https://arxiv.org/abs/1811.02028

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Dupire’s Equation
U(T ,K ) := P(t,X ;T ,K )

Fix (t,X) and set
U(T ,K ) := P(t,X ;T ,K )

Assuming that there exists a local volatility function σ = σ(t,X) for which Eq. (5) holds
Dupire(1994) showed that the call price satisfies{

∂T U− 1
2 σ2(T ,K )K 2∂2

K U + rK ∂K U = 0 , K > 0 , T ≥ 0
U(K ,T = 0) = (X −K )+ ,

(7)

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Problem Statement

The Vol Calibration Problem

Given an observed set
{u = u(t,X ,T ,K ;σ)}(T ,K )∈X

find σ = σ(t,X) that best fits such market data

Noisy data u = uδ

Parameter-to-solution operator

F : D(F)⊂ H1+ε(Ω)→ L2(Ω)
F(a) = u(a) (8)

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Approach

Convex Tikhonov Regularization

For given convex f minimize the Tikhonov functional

F
α,uδ(a) := ||F(a)−uδ||2L2(Ω) + αf (a) (9)

over DF , where, α > 0 is the regularization parameter.

Remark that f incorporates the a priori info on a.

||ū−uδ||L2(Ω) ≤ δ , (10)

where ū is the data associated to the actual value â ∈DF .

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Questions

Theoretical Questions:

I Does there exist a minimizer of the regularized problem?

I Suppose that the noise level goes to zero... How fast does the regularized go to the
true solution?

Results obtained in joint work with D. Cezaro and O. Scherzer.
Published in J. Nonlinear Analysis, 2012

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Questions:

I Can we devise an iterative algorithm to compute the solution?

I Does this algorithm converge?

I Can we regularize by stopping the iteration judiciously?

We proved:

1. A tangential cone condition that ensures convergence of the Landwebber
iteration. Joint work w/ D. Cezaro. (IMA J. of Applied Math. 2013)

2. Obtained a Morozov-type criterion to stop the iteration. Joint work w/ Albani &
D. Cezaro (A.Analysis & Discrete Math. 2014)

3. Developed a regularization by discretization with a stopping criterion. Joint
work w/ Albani & D. Cezaro. (Inv. Problems in Imaging. 2016)

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Furthermore

I Implemented the different algorithms

I Compared with alternatives (such as (ensemble) Kalman filter based iterations)

Impact: Solution of complex derivative problems, efficient hedging; and risk
management.

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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The Splitting Algorithm with DAX Options

Figure: Reconstructions from Dax options of local volatility surface (left), double exponential tail
(center) and jump-size density function (right).

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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The Splitting Algorithm with DAX Options

Adherence of our models to the implied volaltility at different times to expiration

Figure: Market (squares) and model (continuous line) implied volatility of DAX options.

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Final considerations

I We have considered the simultaneous calibration of local vol. and jump-size dist.

I We have stated the regularity properties of the parameter-to-solution map.

I Tikhonov-type regularization was used to solve the inverse problems separately.

I We have applied a splitting strategy to solve the simultaneous calib. prob.

I We provided numerical examples.

I We also provided examples with real data.

IMPACT

The data driven methodology provides a fairly accurate way (as measured by the
adherence to the implied vol) to model option prices.

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Thank You!

c©J.P.Zubelli Disclaimer: The views expressed herein are of the presenter only.
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Related Work
Very vast!!!
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