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Context and objectives

Context and objectives

Hamiltonian systems (in Darboux coordinates)

ż(t) = XH(z(t)) := J∇H(z(t)), t ∈ [0, T ],

where z = (q,p) ∈ R2d is the position and momentum vector,

J =

󰀕
0 Id
−Id 0

󰀖
is the canonical symplectic matrix.

H : R2d −→ R is a Hamiltonian function.
Hamilton’s equations

q̇i =
∂H

∂qi
, ṗi =

∂H

∂pi
, i = 1, . . . , d.

Designed for simple mechanical systems (H = T + V ) and obtained out

of a variational principle (Hamilton’s principle).
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Context and objectives

Going beyond simple mechanical systems

Hamiltonian mechanics on symplectic manifolds

(M,ω) symplectic manifold H : M −→ R Hamiltonian function.

iXhω = dH

Examples: classical mechanics on non-Euclidean configuration spaces

and Lie groups: pendula, robotic arms, rigid body mechanics, fluids.

Hamiltonian mechanics on Poisson manifolds

A Poisson manifold (P, {·, ·}). {, } : C∞(P )× C∞(P )→ C∞(P ) is a
bilinear operation such that:

(i) (C∞(P ), {, }) is a Lie algebra.
(ii) {, } is a derivation in each factor, that is,

{FG,H} = {F,H}G + F{G,H}, for all F,G, and H ∈ C∞(P ).
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Context and objectives

Poisson mechanics examples

Hamiltonian vector field: XH[F ] = {F,H}, for all F ∈ C∞(P ).
Symplectic case: {F,G}(z) = ω(XF (z), XG(z)).
Lie-Poisson mechanics on duals g∗ of Lie algebras:

{F,G}±(µ) = ±
󰀟
µ,

󰀗
δF

δµ
,
δG

δµ

󰀘󰀠
, µ ∈ g∗ and F,G ∈ C∞ (g∗)

XH(µ) = ∓ad∗δH
δµ

µ, µ ∈ g∗.
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Context and objectives
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Context and objectives

Now the objective

Solve the inverse problem

Find the Hamiltonian

What Hamiltonian? Problem intrinsically ill-posed.

Out of observations of

Noisy realizations of the Hamiltonian vector field.

Other options: discrete-time temporal traces: implies learning a

structure-preserving integrator. Choices involved.

Assume access to full state-space observations.

Formulation of a global solution not using local coordinates.

Compare with [JZKK22, EGBHP24].

Using Reproducing Kernel Hilbert Spaces (RKHS): Why?

Imposing structure preservation

The estimated system will be Hamiltonian despite the presence

of approximation and estimation errors.
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Context and objectives

Observation data regime

The random samples consist of

{ZN ,Xσ2,N} := {(Z(n))Nn=1, (X
(n)
σ2
)Nn=1}

real ization−−−−−−−→ {zN , xσ2,N}.

Z(n) are the phase space vectors containing the positions and the

momenta of the system and they are IID random variables with the

same distribution µZ.

The noisy vector fields X
(n)
σ2
= XH(Z

(n)) + ε(n) where ε(n) are IID

random variables with mean zero and variance σ2 and are

independent to Z(n).
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Context and objectives

Machine learning methods

First approach: kernel ridge regression, Hamiltonian and Lagrangian

neural networks.

Construct an empirical quadratic risk functional

1

N

N󰁛

n=1

󰀂f(Z(n))− X(n)
σ2
󰀂2, (1.1)

and find the least squares (or ridge) estimator of the vector field f over a

hypothesis function space, such as RKHS or neural network classes.

Not structure-preserving: no guarantee that the learned vector field
󰁥f is Hamiltonian.
For some methods: Lack of error analysis. Non-convex optimization

problems.
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Structure-preserving kernel regression

Structure-preserving kernel regression

Structure-preserving kernel regression: We search the vector field f with

specific form f = fh := Xh, where h is in the reproducing kernel Hilbert

space (RKHS) HK with kernel K.

Optimization problem: We consider the following optimization using the

regularized empirical risk

󰁥hλ,N := argmin
h∈HK

󰁥Rλ,N(h), (2.1)

󰁥Rλ,N(h):=
1

N

N󰁛

n=1

󰀂Xh(Z(n))− X(n)σ2 󰀂
2 + λ󰀂h󰀂2HK . (2.2)

Need to address:

The well-posedness of the optimization problem.

The convergence analysis of the structure-preserving kernel

estimator 󰁥hλ,N to the real Hamiltonian H with respect to the RKHS
norm.
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Structure-preserving kernel regression

Structure-preserving kernel regression

We also consider the optimization problem associated to the regularized

statistical risk

h∗λ := argmin
h∈HK

Rλ(h), (2.3)

Rλ(h):= 󰀂Xh −XH󰀂2L2(µZ) + λ󰀂h󰀂
2
HK + σ

2. (2.4)

Consistence: The regularized empirical and statistical risks are consistent

within the RKHS in the sense that for every h ∈ HK , we have that

lim
N→∞

Eε
󰁫
󰁥Rλ,N(h)

󰁬
= Rλ(h), a.s.
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Structure-preserving kernel regression RKHS: A crash course

RKHS: A crash course
A Mercer kernel on X is a positive-semidefinite symmetric function
K : X × X → R. Positive-semidefinite means that Gram matrices

G := [K(xi , xj)]
n
i,j=1

are positive semi-definite for any x1, · · · , xn ∈ X and any given n.

Definition (RKHS)

Let K : X × X → R be a Mercer kernel on a nonempty set X ⊆ Rd . A
Hilbert space HK of real-valued functions on X endowed with the
pointwise sum and pointwise scalar multiplication, and with inner product

〈·, ·〉HK is a reproducing kernel Hilbert space (RKHS) associated to K if:
(i) For all x ∈ X , the function K(x, ·) =: Kx ∈ HK .
(ii) For all x ∈ X and for all f ∈ HK , the following reproducing property

holds

f (x) = 〈f , K(x, ·)〉HK .
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Structure-preserving kernel regression RKHS: A crash course

Properties of RKHS

There is a bijection between RKHSs and Mercer kernels.

Given a kernel K, the corresponding RKHS HK can be constructed
as the completion of the span of elements of the form

f =

N󰁛

i=1

ciK(xi , ·), ci ∈ R, xi ⊂ X .

Universal kernels: the Gaussian kernel on Euclidean spaces.

HK(Z) = span {Kz | z ∈ Z}.

Denote now by HK(Z) the uniform closure of HK(Z). A kernel K
is called universal if for any compact subset Z ⊂ X , we have that
HK(Z) = C(Z).
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Structure-preserving kernel regression RKHS: A crash course

Differential reproducing property

Theorem

Let s ∈ N, and K : Rd × Rd → R be a Mercer kernel such that
K ∈ C2s+1b (Rd × Rd). Then:
(i) For any x ∈ Rd and α ∈ Is , (DαK)x ∈ HK .
(ii) A differential reproducing property holds true for α ∈ Is :

Dαf (x) = 〈(DαK)x , f 〉HK ∀x ∈ Rd , f ∈ HK . (2.5)

(iii) Denote κ2 = 󰀂K󰀂C2sb (Rd×Rd ). The inclusion J : HK ↩→ C
s
b(Rd) is

well-defined and bounded:

󰀂f 󰀂Csb 󰃑 κ󰀂f 󰀂HK ∀f ∈ HK .
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Structure-preserving kernel regression Operator representation for the regression problem

Operator representation

We define the operator A as

Ah = Xh, h ∈ HK .

If K ∈ C3b(R2d × R2d), the operator A : HK → L2(R2d ;µZ;R2d) is
bounded linear. The adjoint operator A∗ is

A∗g =

󰁝

R2d
gT (x)J∇1K(x, ·) dµZ(x), (2.6)

with g ∈ L2(R2d ;µZ;R2d). As a consequence, the operator B, defined by

Bh := A∗Ah =

󰁝

R2d
∇T h(x)∇1K(x, ·) dµZ(x), (2.7)

is a positive and trace class mapping from HK to HK .
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Structure-preserving kernel regression Operator representation for the regression problem

Operator representation
We define the operator AN (empirical version of A) as

ANh :=
1√
N
Vec({Xh(Z(n))}Nn=1), h ∈ HK .

If the kernel K ∈ C3b(R2d × R2d), the operator AN : HK → R2dN is
bounded linear. The adjoint operator A∗N is

A∗NW =
1√
N
W T J∇1K(ZN , ·),

with W ∈ R2dN , where J = diag{J, · · · , J}N×N . And the operator BN
defined by

BNh := A
∗
NANh =

1

N
∇T h(ZN)∇1K(ZN , ·), (2.8)

is a positive and compact mapping HK to HK .
Juan-Pablo Ortega (Nanyang Technological University, Singapore)Learning Hamiltonian Systems Erlangen, June 2024 16 / 50



Structure-preserving kernel regression Operator representation for the regression problem

Operator representation

For all λ > 0, the solutions of the optimization problems (5.1) and (2.3)

exist and are unique:

󰁥hλ,N : = argmin
h∈HK

󰁥Rλ,N(h) =
1√
N
(BN + λI)

−1A∗NXσ2,N ,

h∗λ := (B + λI)
−1A∗XH.
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Structure-preserving kernel regression The Differential Representer Theorem

The Differential Representer Theorem

Theorem

For every λ > 0, 󰁥hλ,N can be represented as

󰁥hλ,N =
N󰁛

i=1

〈󰁥ci ,∇1K(Z(i), ·)〉,

with 󰁥c1, . . . ,󰁥cN ∈ R2d and 〈·, ·〉 the Euclidean inner product in R2d .
Moreover, if 󰁥c ∈ R2dN is the vectorization of (󰁥c1| · · · |󰁥cN), then

󰁥c = (∇1,2K(ZN ,ZN) + λNI)−1J⊤Xσ2,N .

The matrix ∇1,2K(ZN ,ZN) is the differential Gram matrix which is
positive semidefinite.
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Structure-preserving kernel regression The Differential Representer Theorem

How can the solution be unique?

Define the kernel of A:

Hnull := {h ∈ HK | Ah = Xh = 0} = {f ∈ HK | ∇h = 0}.

It can be shown that 󰁥hλ,N ∈ H⊥null. The uniqueness of the optimizer is
due to the use of the regularization term:

Let 󰁥hλ,N and let h ∈ Hnull.
󰁥hλ,N and 󰁥hλ,N + h have the same Hamiltonian vector field associated
but 󰁥hλ,N + h is an empirical risk minimizer if and only if h ≡ 0.
This is because

󰁥Rλ,N(󰁥hλ,N + h) =
1

N

N󰁛

n=1

󰀂X󰁥hλ,N
(Z(n))− X(n)

σ2
󰀂2 + λ

󰀓
󰀂󰁥hλ,N󰀂2HK + 󰀂h󰀂

2
HK

󰀔
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Structure-preserving kernel regression Connection with Gaussian Posterior Mean Estimator

Connection with Gaussian Posterior Mean Estimator

Step 1: Model the Hamiltonian H as a GP prior GP(0, Kθ).

Step 2: Maximize the log marginal likelihood

− log p(Xσ2,N |zN , xσ2,N , θ,σ2).

Step 3: Make the prediction: For each z∗ ∈ R2d , H(z∗) satisfies

H(z∗)|zN , xσ2,N ∼ N (φN(z∗),ΣN(z∗)),

where

φN(z
∗) = K

󰁥θ
H,XH
(z∗, zN)(K

󰁥θ
XH
(zN , zN) + 󰁥σ2I2dN)−1xσ2,N ,

ΣN(z
∗) = K

󰁥θ(z∗, z∗)−K󰁥θ
H,XH
(z∗, zN)(K

󰁥θ
XH
(zN , zN) + 󰁥σ2I2dN)−1K

󰁥θ
XH ,H
(zN , z

∗).

Connection:

φN = 󰁥hλ,N ⇐⇒ λ =
σ2

N
.
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Structure-preserving kernel regression Online regression with kernels

Online regression with kernels

The structure-preserving kernel estimator is

󰁥hλ,N = 󰁥cN ·∇1K(ZN , ·), with

󰁥cN = (∇1,2K(ZN ,ZN) + λNI)−1J⊤Xσ2,N =: K−1N J
⊤Xσ2,N .

We now observe one more data point (Z,X). If λ(N)N = C,

K−1N+1=

󰀗
K−1N +K

−1
N bND

−1
N b

⊤
NK
−1
N −K−1N bND

−1
N

−D−1N b⊤NK
−1
N D−1N

󰀘
,

where DN = A− b⊤NK
−1
N bN and the matrix A = ∇1,2K(Z,Z) + CI.

Deal with large training datasets in a cheap way.

Easy to update the kernel estimator when new data comes in.
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Error and Convergence Rates Analysis

Error analysis
Convergence analysis

Estimation and approximation errors

󰁥hλ,N −H󰁿 󰁾󰁽 󰂀
Reconstruction error

= 󰁥hλ,N − h∗λ󰁿 󰁾󰁽 󰂀
Estimation error

+ h∗λ −H󰁿 󰁾󰁽 󰂀
Approximation error

Approximation error: source condition. We assume that

H ∈ ΩγS := {h ∈ HK | h = B
γψ,ψ ∈ HK , 󰀂ψ󰀂HK < S}.

This is the source condition [FKRT23]. As the parameter γ increases,

the functions in ΩγS are smoother. The source condition implies that the

approximation error can be bound using the RKHS norm as

󰀂h∗λ −H󰀂HK ≤ λ
γ󰀂B−γH󰀂HK .

Estimation error: Γ-convergence and probabilistic inequalities,

Hanson–Wright inequality.
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Error and Convergence Rates Analysis PAC bounds with fixed Tikhonov parameter

PAC bounds with fixed Tikhonov parameter

Theorem (PAC bounds of the total reconstruction error)

Suppose that K ∈ C3b(R2d × R2d) and H ∈ Ω
γ
S. Then for every ε, δ > 0,

there exist λ > 0 and n ∈ N+ such that for all N > n, it holds that

P
󰀕󰀐󰀐󰀐󰁥hλ,N −H

󰀐󰀐󰀐
HK
> ε

󰀖
< δ.
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Error and Convergence Rates Analysis Convergence rates with adaptive Tikhonov parameter

Convergence rates with adaptive Tikhonov parameter

Consider a dynamical Tikhonov parameter

λ ∝ N−α, α > 0 (3.1)

Theorem (Convergence rate of the total reconstruction error)

Suppose that K ∈ C3b(R2d × R2d) and H ∈ Ω
γ
S. Then for all α ∈ (0,

1
3),

and for any 0 < δ < 1, with probability as least 1− δ, it holds that

󰀂󰁥hλ,N −H󰀂HK ≤ C(γ, δ,κ) N
−min{αγ, 1

2
(1−3α)},

where C(γ, δ,κ) = max
󰁱
󰀂B−γH󰀂HK ,

󰁳
8 log(8/δ)dκ3󰀂H󰀂HK

󰁲
.
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Error and Convergence Rates Analysis Convergence rates with adaptive Tikhonov parameter

Convergence rates with coercivity condition
Coercivity condition: [FKRT23] There exists a constant cHK > 0 such
that

󰀂Ah󰀂2L2(µZ) = 󰀂Xh󰀂
2
L2(µZ)

≥ cHK󰀂h󰀂
2
HK , ∀ h ∈ HK . (3.2)

Theorem (Convergence rate of the total reconstruction error)

Suppose that K ∈ C3b(R2d × R2d) and H ∈ Ω
γ
S. Under coercivity

condition (3.2), for all α ∈ (0, 12), and for any 0 < δ < 1, with probability
as least 1− δ, it holds that

󰀂󰁥hλ,N −H󰀂HK ≤ C(γ, δ,σ,κ, cHW , cHK ) N
−min{αγ, 1

2
(1−2α)},

where

C(γ, δ,σ,κ, cHW , cHK )

= max

󰀫

󰀂B−γH󰀂HK ,
σκ√
2d

󰀣

1 +

󰁶
1

cHW
log(4/δ)

󰀤

,
󰁳
8 log(8/δ)dκ2

󰀣

2 +
κ

√
cHK

󰀤

󰀂H󰀂HK

󰀬

.
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Numerical experiments

Numerical experiments

Gaussian kernel:

Kη (x, y) = exp

󰀣

−󰀂x − y󰀂
2

η2

󰀤

.

Dynamical Tikhonov regularization parameter:

λ = cN−α.

Estimator:

󰁥hλ,N = ∇1K⊤(zN , ·)(∇1,2K(zN , zN) + λNI)−1JT xσ2,N .

In the numerical experiments, we shall fix α = 0.4 and search the

parameters η and c .
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Numerical experiments

Double pendulum

Consider the following Hamiltonian function

H(θ1, θ2, p1, p2) = p1θ̇1 + p2θ̇2 +
1

2
mgl(3 cos θ1 + cos θ2)

− 1
6
ml2(θ̇2

2
+ 4θ̇1

2
+ 3θ̇1θ̇2 cos(θ1 − θ2)).
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Numerical experiments

Double pendulum

(a) (b) (c)

Figure: Double pendulum (p1 = p2 = 0, N = 200): (a) Groundtruth Hamiltonian

(b) Learned Hamiltonian (c) Mismatch error after vertical shift.
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Numerical experiments

Highly non-convex potential well

Consider the Hamiltonian function

H(q1, q2, p1, p2) =
1

2
(p21 + p

2
2)

+ sin

󰀕
2π

3
· q1

󰀖
cos

󰀕
2π

3
· q2

󰀖
+
sin(

󰁴
q21 + q

2
2)󰁴

q21 + q
2
2

.
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Numerical experiments

Highly non-convex potential well

(a) (b) (c)

Figure: Highly non-convex potential well (p1 = p2 = 0, N = 500): (a)

Groundtruth Hamiltonian (b) Learned Hamiltonian (c) Mismatch error after

vertical shift.
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Numerical experiments

Highly non-convex potential well

(a) (b)

Figure: Highly non-convex potential well (p1 = p2 = 0, N = 1500): (a) Learned

Hamiltonian (b) Mismatch error after vertical shift.
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Learning framework on symplectic and Poisson manifolds

Learning Hamiltonian systems on manifolds

Motivation: The phase spaces of Hamiltonian systems are, in general:

Symplectic manifolds (e.g. cotangent bundles)

Poisson manifolds (e.g. Lie-Poisson)

that we shall endow with a Riemannian metric.

Observation data regime The random samples consist of

{ZN ,Xσ2,N} := {(Z(n))Nn=1, (X
(n)
σ2
)Nn=1}

real ization−−−−−−−→ {zN , xσ2,N}.

The noisy vector fields X
(n)
σ2
= XH(Z

(n)) + ε(n) where Z(n) are IID

random variables on a symplectic manifold M with distribution µZ
and ε(n) are IID random variables on TZ(n)M with E[ε(n)] = 0 and
E[ε(n)]2 = σ2I2d .
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Learning framework on symplectic and Poisson manifolds

Learning problem on manifolds

Optimization problem: We consider the following optimization using the

regularized empirical risk

󰁥hλ,N := argmin
h∈HK

󰁥Rλ,N(h), (5.1)

󰁥Rλ,N(h):=
1

N

N󰁛

n=1

󰀂Xh(Z(n))− X(n)σ2 󰀂
2
g + λ󰀂h󰀂2HK . (5.2)

The corresponding optimization problem for the regularized statistical

risk is

h∗λ := argmin
h∈HK

Rλ(h), (5.3)

Rλ(h):= 󰀂Xh −XH󰀂2L2(µZ) + λ󰀂h󰀂
2
HK + σ

2. (5.4)
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Learning framework on symplectic and Poisson manifolds

High-order differentials and the space Csb(M)
If f : M → R is in Ck class, we define the k-order differential of f
denoted as Dk f : T kM → R inductively to be the differential of
Dk−1f : T k−1M → R.

Csb(M) is the set of functions in C
s class with bounded s-order

differentials

Csb(M) := {f ∈ Cs(M) | 󰀂f 󰀂∞ +
s󰁛

k=1

󰀂Dk f 󰀂∞ <∞},

where 󰀂f 󰀂∞ := supx∈M |f (x)| and

󰀂Dk f 󰀂∞ := sup
y∈T k−1M

sup
v∈TyT k−1M

󰀏󰀏Dk f (y) · v
󰀏󰀏

󰀂v󰀂k−1
.

󰀂v󰀂k−1 stands for the norm of v in the tangent space TyT k−1M. If M is
a Riemannian manifold with metric g, this norm can be induced by g.
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Learning framework on symplectic and Poisson manifolds

Learning on symplectic manifolds

Compatible structure: We equip the manifold M with both a symplectic

form ω and a Riemannian metric g. Then, we can define a map

J : TM → TM given by

Jv := ω󰂒x

󰀓
g󰂐x(v)

󰀔
, ∀ x ∈ M, v ∈ TxM, (5.5)

where ω󰂒 : T ∗M → TM and g󰂐 : TM → T ∗M are the bundle
isomorphisms determined by the symplectic form ω and the Riemannian

metric g, respectively.

Hamiltonian vector fields: Xh = ω
󰂒(dh) = ω󰂒

󰀃
g󰂐(∇h)

󰀄
= J∇h.

Warning: we are not imposing Kähler despite the notation.
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Learning framework on symplectic and Poisson manifolds

Learning on Poisson manifolds

The Poisson tensor: (P, {·, ·}) be a Poisson manifold. The Poisson
tensor is the contravariant anti-symmetric two-tensor

B : T ∗P × T ∗P → R, defined by

B(z) (αz ,βz) = {F,G}(z), where dF (z) = αz and dG(z) = βz ∈ T ∗z P .

Compatible structure: B󰂒 : T ∗P → TP vector bundle map associated to
the B by B(z) (αz ,βz) = αz · B󰂒(z)(βz). Define the vector bundle map
J : TP → TP by

J(z)v := B󰂒(z)
󰀓
g󰂐(z)(v)

󰀔
, ∀ z ∈ P, v ∈ TzP, (5.6)

Hamiltonian vector fields: Xh = B
󰂒(dh) = B󰂒(g󰂐(∇h)) = J∇h.
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Learning framework on symplectic and Poisson manifolds

Poisson degeneracy

Important difference between symplectic and Poisson manifolds is that

the Poisson tensor can of varying and non-constant rank. This is always

the case when the Poisson algebra has a center

C(P ) = {C ∈ C∞(P ) | {C, F} = 0, for all F ∈ C∞(P )},

Elements in C(P ) are called Casimirs. If C ∈ C∞(P ) then C is constant
along the flow of all Hamiltonian vector fields, equivalently, XC = 0.

Hamiltonians are defined only up to Casimirs.

Juan-Pablo Ortega (Nanyang Technological University, Singapore)Learning Hamiltonian Systems Erlangen, June 2024 37 / 50



Learning framework on symplectic and Poisson manifolds

Example I: The rigid body
The rigid body satisfies a Lie-Poisson equation on so(3)∗ ≃ R3
determined by the Hamiltonian function

H(Π) =
1

2
Π⊤I−1Π,

where I = diag{I1, I2, I3} is a diagonal matrix. The Poisson bracket is
{F,K}(Π) = −Π · (∇F ×∇K).

C(Π) = 󰀂Π󰀂2 is a Casimir function of the Poisson algebra. Φ : R→ R
differentiable function implies the function Φ ◦ C is also a Casimir.

T
a
ke
n
fr
o
m
[M
R
9
9
]
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Learning framework on symplectic and Poisson manifolds

Example II: The underwater vehicle [Leo97]
The underwater vehicle has Lie-Poisson dynamics on so(3)∗ × R3∗ × R3∗

determined by the Hamiltonian function

H(Π,Q,Γ) =
1

2

󰀃
Π⊤AΠ+ 2Π⊤B⊤Q+Q⊤CQ− 2mg (Γ · rG)

󰀄
,

The Poisson bracket on so(3)∗ × R3∗ × R3∗ is

{F,K}(Π,Q,Γ) = ∇F⊤Λ(Π,Q,Γ)∇K,

where the Poisson tensor Λ is given by

Λ(Π,Q,Γ) =

󰀳

󰁃
Π̂ Q̂ Γ̂

Q̂ 0 0

Γ̂ 0 0

󰀴

󰁄 .

Casimir functions:

C1(Π,Q,Γ) = Q · Γ, C2(Π,Q,Γ) = 󰀂Q󰀂2, C3(Π,Q,Γ) = 󰀂Γ󰀂2,
C4(Π,Q,Γ) = Π ·Q, C5(Π,Q,Γ) = Π · Γ, C6(Π,Q,Γ) = 󰀂Π󰀂2.
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Learning framework on symplectic and Poisson manifolds

Well-posedness of the optimization problems
Boundedness condition: The compatible structure J satisfies

g(Jv , Jv) ≤ γ(x)g(v , v), for all v ∈ TxM, (5.7)

where γ is a positive bounded function on P . The boundedness of J

gives us the boundedness of the operators A and AN .

Boundedness of A: Define the operator:

Ah := Xh = J∇h, h ∈ HK ,

If kernel K ∈ C3b(M ×M), then the boundedness condition implies that
A : HK −→ L2(M,µZ) is bounded linear. The operator Q : HK −→ HK ,
defined by

Qh := A∗Ah =

󰁝

M

g(XK·(x), Xh(x)) dµZ(x). (5.8)

is positive trace class.
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Learning framework on symplectic and Poisson manifolds

Operator representations of the minimizers
Let AN : HK → TZNP := ΠNi=1TZ(i)P as

ANh :=
1√
N
Xh(ZN) :=

1√
N
Vec

󰀓
J(Z(1))∇h(Z(1))| · · · |J(Z(N))∇h(Z(N))

󰀔
.

Proposition

If boundedness assumption holds then AN : HK → TZNP is bounded.
The adjoint operator A∗N : TZNP → HK of AN is finite rank and given by

A∗NW =
1√
N
gN(W,XK·(ZN)), W ∈ TZNP.

The operator QN defined by

QNh := A
∗
NANh =

1

N
gN(Xh(ZN), XK·(ZN)), h ∈ HK , (5.9)

is a positive-semidefinite compact operator.
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Learning framework on symplectic and Poisson manifolds

Operator representations:

h∗λ := (Q+ λI)
−1A∗XH.

󰁥hλ,N :=
1√
N
(QN + λI)

−1A∗NXσ2,N .

Kernel representations of the minimizers: define the generalized

differential Gram matrix GN : TZNP → TZNP as

GNc := XgN(c,XK·(ZN))(ZN), c ∈ TZNP.

In even dimensional Euclidean spaces reduces to the usual differential

Gram matrix Jcan∇1,2K(ZN ,ZN)J⊤can.

Property: Given a Mercer kernel K ∈ C3b(M ×M), the general differential
Gram matrix GN : TZNM → TZNM is symmetric and positive semidefinite.
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Learning framework on symplectic and Poisson manifolds

Differential Representer Theorem on Poisson manifolds

Theorem

Suppose K ∈ C3b(P × P ) and J is bounded. Then, can be represented as

󰁥hλ,N = gN(󰁥c, XK·(ZN)),

where 󰁥c ∈ TZNP is given by

󰁥c = (GN + λNI)−1Xσ2,N .
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Learning framework on symplectic and Poisson manifolds

What about Poisson degeneracy?
Define the kernel of A as:

Hnull := {h ∈ HK | Ah = J∇h = 0}.
Hnull is a closed subspace of HK and hence HK can be decomposed as

HK = Hnull ⊕H⊥null,
This decomposition and the expression of the kernel estimator implies

󰁥hλ,N ∈ H⊥null.

Why is the estimator 󰁥hλ,N unique and not up to Casimir functions? The
answer is in the use of the regularization term. Let h ∈ Hnull then 󰁥hλ,N
and 󰁥hλ,N + h have the same Hamiltonian vector field associated, but it is
easy to show that 󰁥hλ,N + h is a minimizer if and only if h ≡ 0. This is
because:

󰁥Rλ,N(󰁥hλ,N + h) =
1

N

N󰁛

n=1

󰀂X󰁥hλ,N
(Z(n))− X(n)

σ2
󰀂2 + λ

󰀓
󰀂󰁥hλ,N󰀂2HK + 󰀂h󰀂

2
HK

󰀔
.
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Learning framework on symplectic and Poisson manifolds

What else?

Availability of coordinate expressions

Very similar error bounds and convergence rates.
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Learning framework on symplectic and Poisson manifolds

Example: 󰁥hλ,N in the Lie-Poisson case
Equip the dual Lie algebra g∗ with the Lie-Poisson bracket {·, ·}+:

{F,G}+(µ) =
󰀟
µ,

󰀗
δF

δµ
,
δG

δµ

󰀘󰀠
.

The Lie-Poisson system associated with a Hamiltonian H : g∗ → R is

µ̇ = XH(µ) = ad
∗
δH
δµ

µ.

The generalized differential Gram matrix GN is

GNc = XgN(c,XK·(ZN))(ZN) = Xc⊤JN∇1K(ZN ,·)(ZN) = JN∇1,2K(ZN ,ZN)J
⊤
Nc,

for all c ∈ TZNg∗. Therefore,

󰁥hλ,N = X⊤σ2,N
󰀃
JN∇1,2K(ZN ,ZN)J⊤N + λNI

󰀄−1 JN∇1K(ZN , ·),

where the compatible structure J defined is given by

J(µ)ξ = ad∗〈ξ,·〉 µ, for all ξ ∈ g∗.
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Learning framework on symplectic and Poisson manifolds

Numerical illustration: Rigid body

(a) (b) (c)

(d) (e)

Figure: Rigid body dynamics: (a) Groundtruth Hamiltonian (b) Learned

Hamiltonian with N = 500 (c) Learned Hamiltonian adjusted by a Casimir

function (d) Absolute error of the predicted Hamiltonian after Casimir

adjustment (e) Error of the predicted Hamiltonian vector field
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Learning framework on symplectic and Poisson manifolds

Numerical illustration: Underwater vehicle

(a) (b) (c)

Figure: Underwater Vehicle: (a) Groundtruth Hamiltonian (b) Learned

Hamiltonian with N = 400 (c) Error of the predicted Hamiltonian vector field
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Perspectives

Perspectives

Argumentwise invariant kernels and momentum map preservation.

What about time series data?

Use universality arguments and develop universality for kernels on

manifolds.
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