

Karsten Urban Institute of Numerical Mathematics, Ulm University Trends in Math. Sciences, Erlangen, June 2024 Model reduction of PPDEs – Advances, trends and challenges

- two main fields of model reduction
 - system-theoretic model reduction (Numerical Linear Algebra)
 - > partial differential equations (PDEs) depending on parameters: PPDEs

- two main fields of model reduction
 - system-theoretic model reduction (Numerical Linear Algebra)
 - > partial differential equations (PDEs) depending on parameters: PPDEs
- examples of such "parameters":
 - the right-hand side (e.g. a force acting on some body)
 - the coefficients of a PDE (e.g. the porosity or conductivity of a material)
 - the geometry of the domain (e.g. the size, shape, etc.)

- two main fields of model reduction
 - system-theoretic model reduction (Numerical Linear Algebra)
 - > partial differential equations (PDEs) depending on parameters: PPDEs
- examples of such "parameters":
 - the right-hand side (e.g. a force acting on some body)
 - the coefficients of a PDE (e.g. the porosity or conductivity of a material)
 - the geometry of the domain (e.g. the size, shape, etc.)
- parameters: $\mu \in \mathcal{P} \subset \mathbb{R}^P$ compact

- two main fields of model reduction
 - system-theoretic model reduction (Numerical Linear Algebra)
 - > partial differential equations (PDEs) depending on parameters: PPDEs
- examples of such "parameters":
 - the right-hand side (e.g. a force acting on some body)
 - the coefficients of a PDE (e.g. the porosity or conductivity of a material)
 - the geometry of the domain (e.g. the size, shape, etc.)
- parameters: $\mu \in \mathcal{P} \subset \mathbb{R}^P$ compact
- different application frameworks
 - solve for many values of the parameter: multi-query
 - realtime

- two main fields of model reduction
 - system-theoretic model reduction (Numerical Linear Algebra)
 - > partial differential equations (PDEs) depending on parameters: PPDEs
- examples of such "parameters":
 - the right-hand side (e.g. a force acting on some body)
 - the coefficients of a PDE (e.g. the porosity or conductivity of a material)
 - the geometry of the domain (e.g. the size, shape, etc.)
- parameters: $\mu \in \mathcal{P} \subset \mathbb{R}^P$ compact
- different application frameworks
 - solve for many values of the parameter: multi-query
 - realtime
 - embedded systems: cold computing

(T. Patera, MIT)

- assume: highly efficient numerical solvers for PPDEs available
 - used for a fixed value of the parameter
 - often (even optimal) schemes are known
 - complexity is too high: N
 - up to any accuracy: "truth"

Optimal steering

Optimal shape

Optimal control

Offline training – online reduced simulation

Basic idea:

- offline training
 - select parameter samples $\mu^{(1)},...,\mu^{(N)} \in \mathcal{P}$
 - compute *snapshots* $u^{\mathcal{N}}(\mu^{(i)}) \approx u(\mu^{(i)})$ by "truth" numerical simulation: \mathcal{N}
 - determine reduced model (small dimension $N \ll N$)
 - precompute and store parameter-independent terms

Offline training – online reduced simulation

Basic idea:

- offline training
 - select parameter samples $\mu^{(1)},...,\mu^{(N)} \in \mathcal{P}$
 - compute *snapshots* $u^{\mathcal{N}}(\mu^{(i)}) \approx u(\mu^{(i)})$ by "truth" numerical simulation: \mathcal{N}
 - determine reduced model (small dimension $N \ll N$)
 - precompute and store parameter-independent terms
- online
 - given new parameter values (optimization loop, control, measurements, data,...)
 - setup and solve reduced system (small dimension N)
 - compute error bound (certification)

• relation N vs. error? (error decay as $N \to \infty$)

- relation N vs. error? (error decay as $N \to \infty$)
- reducibility of certain PPDEs? $(e^{-N} \text{ or } N^{-1/2}?)$

- relation N vs. error? (error decay as $N \to \infty$)
- reducibility of certain PPDEs? $(e^{-N} \text{ or } N^{-1/2}?)$
- choice of sample values for the snapshots? Is that "optimal"?

- relation N vs. error? (error decay as $N \to \infty$)
- reducibility of certain PPDEs? $(e^{-N} \text{ or } N^{-1/2}?)$
- choice of sample values for the snapshots? Is that "optimal"?
- can we certify a reduced approximation (efficiently computable rigorous and sharp upper error bound)?

- relation N vs. error? (error decay as $N \to \infty$)
- reducibility of certain PPDEs? $(e^{-N} \text{ or } N^{-1/2}?)$
- choice of sample values for the snapshots? Is that "optimal"?
- can we certify a reduced approximation (efficiently computable rigorous and sharp upper error bound)?
- comparison with (simple) interpolation w.r.t. parameters?

- relation N vs. error? (error decay as $N \to \infty$)
- reducibility of certain PPDEs? $(e^{-N} \text{ or } N^{-1/2}?)$
- choice of sample values for the snapshots? Is that "optimal"?
- can we certify a reduced approximation (efficiently computable rigorous and sharp upper error bound)?
- comparison with (simple) interpolation w.r.t. parameters?
- how to combine with data?
- ...

- $\varOmega \subset \mathbb{R}^d$: open domain (space / space and time)
- $x \in \Omega$: primitive variables

- $oldsymbol{\Omega} \subset \mathbb{R}^d$: open domain (space / space and time)
- $x \in \Omega$: primitive variables
- $B(\mu)$: parameter-dependent linear differential operator
 - example (strong form)

$$B(\mu)u(x) = \nabla \cdot (\underline{\alpha}_{\mu}(x) \nabla u(x)) + \beta_{\mu}(x) \cdot \nabla u(x) + \gamma_{\mu}(x) u(x)$$

associate initial- and boundary conditions with the differential operator

- $\varOmega \subset \mathbb{R}^d$: open domain (space / space and time)
- $x \in \Omega$: primitive variables
- $B(\mu)$: parameter-dependent linear differential operator
 - example (strong form)

$$B(\mu)u(x) = \nabla \cdot (\underline{\alpha}_{\mu}(x) \nabla u(x)) + \beta_{\mu}(x) \cdot \nabla u(x) + \gamma_{\mu}(x) u(x)$$

- associate initial- and boundary conditions with the differential operator
- given a right-hand side $f(\mu): \Omega \to \mathbb{R}$:

$$B(\mu) \, u(x) = f(x;\mu), \quad x \in \Omega \\ u(x) = 0, \qquad x \in \Gamma \ \} \quad \text{``} \Longrightarrow \text{``} \quad B(\mu) \, u = f(\mu)$$
 operator equation

- $\varOmega \subset \mathbb{R}^d$: open domain (space / space and time)
- $x \in \Omega$: primitive variables
- $B(\mu)$: parameter-dependent linear differential operator
 - example (strong form)

$$B(\mu)u(x) = \nabla \cdot (\underline{\alpha}_{\mu}(x) \nabla u(x)) + \beta_{\mu}(x) \cdot \nabla u(x) + \gamma_{\mu}(x) u(x)$$

- associate initial- and boundary conditions with the differential operator
- given a right-hand side $f(\mu): \Omega \to \mathbb{R}$:

• ensure well-posedness (i.e., existence, uniqueness and stability): $B(\mu)$ should be an isomorphism (bijective, bounded, inverse bounded)

- $\Omega \subset \mathbb{R}^d$: open domain (space / space and time)
- $x \in \Omega$: primitive variables
- $B(\mu)$: parameter-dependent linear differential operator
 - example (strong form)

$$B(\mu)u(x) = \nabla \cdot (\underline{\alpha}_{\mu}(x) \nabla u(x)) + \beta_{\mu}(x) \cdot \nabla u(x) + \gamma_{\mu}(x) u(x)$$

- associate initial- and boundary conditions with the differential operator
- given a right-hand side $f(\mu): \Omega \to \mathbb{R}$:

- ensure well-posedness (i.e., existence, uniqueness and stability): $B(\mu)$ should be an isomorphism (bijective, bounded, inverse bounded)
- denote unique solution by $u(\mu)$

The thermal block – our "fruit fly"

•
$$\mathbb{R}^d \supset \Omega = \bigcup_{p=1}^P \Omega_p, \, \boldsymbol{\mu} = (\mu_1, ..., \mu_P)^T$$

$$\begin{split} B(\mu)\,u := -\sum_{p=1}^P \nabla \cdot (\textcolor{red}{\mu_p}\,\chi_{\varOmega_p}\,\nabla u) = f, \\ \textcolor{red}{\mu_p} > 0, p = 1, ..., P, \\ u_{|\partial\varOmega} = 0, \\ f: \varOmega \to \mathbb{R} \quad \text{external force} \end{split}$$

The thermal block – our "fruit fly"

•
$$\mathbb{R}^d \supset \Omega = \bigcup_{p=1}^P \Omega_p, \, \boldsymbol{\mu} = (\mu_1, ..., \mu_P)^T$$

$$\begin{split} B(\mu)\,u := -\sum_{p=1}^{P} \nabla \cdot \left(\mu_{p} \, \chi_{\varOmega_{p}} \, \nabla u \right) &= f, \\ \mu_{p} > 0, p = 1, ..., P, \\ u_{|\partial \varOmega} &= 0, \\ f : \varOmega \to \mathbb{R} \quad \text{external force} \end{split}$$

• variational form: $u(\mu) \in H_0^1(\Omega)$:

$$b(u(\mu), v; \mu) := \sum_{p=1}^{P} \mu_p \int_{\Omega_p} \nabla u \cdot \nabla v \, dx$$
$$= (f, v)_{L_2(\Omega)} \qquad \forall v \in H_0^1(\Omega)$$

• more general: consider $B(\mu) \in \mathcal{L}(\mathcal{U}, \mathcal{V}')$ (\mathcal{V}' : dual space of \mathcal{V})

- more general: consider $B(\mu) \in \mathcal{L}(\mathcal{U}, \mathcal{V}')$ (\mathcal{V}' : dual space of \mathcal{V})
- choice of ${\mathcal U}$ and ${\mathcal V}$ is crucial well-posedness

- more general: consider $B(\mu) \in \mathcal{L}(\mathcal{U}, \mathcal{V}')$ (\mathcal{V}' : dual space of \mathcal{V})
- choice of ${\mathcal U}$ and ${\mathcal V}$ is crucial well-posedness
- bilinear form $b(\mu) \equiv b(\cdot, \cdot; \mu) : \mathcal{U} \times \mathcal{V} \to \mathbb{R}$ induced by $B(\mu)$:

$$b(u, v; \mu) := \langle B(\mu) u, v \rangle \quad \forall u \in \mathcal{U}, \ v \in \mathcal{V}.$$

- more general: consider $B(\mu) \in \mathcal{L}(\mathcal{U}, \mathcal{V}')$ (\mathcal{V}' : dual space of \mathcal{V})
- choice of ${\mathcal U}$ and ${\mathcal V}$ is crucial well-posedness
- bilinear form $b(\mu) \equiv b(\cdot, \cdot; \mu) : \mathcal{U} \times \mathcal{V} \to \mathbb{R}$ induced by $B(\mu)$:

$$b(u, v; \mu) := \langle B(\mu) u, v \rangle \quad \forall u \in \mathcal{U}, \ v \in \mathcal{V}.$$

Definition 1.1 (Continuity / inf-sup)

(a) $b(\mu)$ is continuous (or bounded) if $\exists C_{\mu} > 0$ (continuity constant):

$$|b(u, v; \mu)| \leq C_{\mu} ||u||_{\mathcal{U}} ||v||_{\mathcal{V}} \quad \forall u \in \mathcal{U}, v \in \mathcal{V}.$$

- more general: consider $B(\mu) \in \mathcal{L}(\mathcal{U}, \mathcal{V}')$ (\mathcal{V}' : dual space of \mathcal{V})
- choice of \mathcal{U} and \mathcal{V} is crucial well-posedness
- bilinear form $b(\mu) \equiv b(\cdot, \cdot; \mu) : \mathcal{U} \times \mathcal{V} \to \mathbb{R}$ induced by $B(\mu)$:

$$b(u, v; \mu) := \langle B(\mu) u, v \rangle \quad \forall u \in \mathcal{U}, \ v \in \mathcal{V}.$$

Definition 1.1 (Continuity / inf-sup)

(a) $b(\mu)$ is continuous (or bounded) if $\exists C_{\mu} > 0$ (continuity constant):

$$|b(u, v; \mu)| \leqslant C_{\mu} \|u\|_{\mathcal{U}} \|v\|_{\mathcal{V}} \quad \forall u \in \mathcal{U}, v \in \mathcal{V}.$$

(b) $b(\mu)$ satisfies an *inf-sup condition* if $\exists \beta_{\mu} > 0$ (*inf-sup constant*):

$$\sup_{v \in \mathcal{V}} \frac{b(u, v; \mu)}{\|v\|_{\mathcal{V}}} \geqslant \beta_{\mu} \|u\|_{\mathcal{U}} \ \forall u \in \mathcal{U} \qquad \Longleftrightarrow \qquad \inf_{u \in \mathcal{U}} \sup_{v \in \mathcal{V}} \frac{b(u, v; \mu)}{\|u\|_{\mathcal{U}} \|v\|_{\mathcal{V}}} \geqslant \beta_{\mu}.$$

$$(1.1)$$

Theorem 1.2 (Banach-Nečas theorem)

Let $\mu \in \mathcal{P}$; $b(\mu) : \mathcal{U} \times \mathcal{V} \to \mathbb{R}$ be a continuous bilinear form. Then, the following statements are equivalent:

(i) $\forall f(\mu) \in \mathcal{V}' \ \exists ! \ u(\mu) \in \mathcal{U}$ (with continuous dependency on the data):

$$b(u(\mu),v;\mu)=f(v;\mu)\quad orall v\in \mathcal{V}.$$

(1.2)

Theorem 1.2 (Banach-Nečas theorem)

Let $\mu \in \mathcal{P}$; $b(\mu) : \mathcal{U} \times \mathcal{V} \to \mathbb{R}$ be a continuous bilinear form. Then, the following statements are equivalent:

(i)
$$\forall f(\mu) \in \mathcal{V}' \ \exists ! \ u(\mu) \in \mathcal{U}$$
 (with continuous dependency on the data):
$$b(u(\mu), v; \mu) = f(v; \mu) \quad \forall v \in \mathcal{V}. \tag{1.2}$$

(ii) (a) inf-sup condition (1.1) holds, and
(b)
$$\forall 0 \neq v \in \mathcal{V} \exists w_{\mu} \in \mathcal{U} : b(w_{\mu}, v; \mu) \neq 0.$$
 (1.3)

Theorem 1.2 (Banach-Nečas theorem)

Let $\mu \in \mathcal{P}$; $b(\mu) : \mathcal{U} \times \mathcal{V} \to \mathbb{R}$ be a continuous bilinear form.

Then, the following statements are equivalent:

(i)
$$\forall f(\mu) \in \mathcal{V}' \ \exists ! \ u(\mu) \in \mathcal{U}$$
 (with continuous dependency on the data):
$$b(u(\mu), v; \mu) = f(v; \mu) \quad \forall v \in \mathcal{V}. \tag{1.2}$$

(ii) (a) inf-sup condition (1.1) holds, and (b)
$$\forall \ 0 \neq v \in \mathcal{V} \ \exists w_{\mu} \in \mathcal{U} : \quad b(w_{\mu}, v; \mu) \neq 0.$$
 (1.3)

Theorem 1.3 (Lax-Milgram theorem)

Let $\mu \in \mathcal{P}$; $b(\mu): \mathcal{U} \times \mathcal{U} \to \mathbb{R}$ symmetric, continuous, coercive BLF. Then: $\forall f(\mu) \in \mathcal{U}' \ \exists ! \ u(\mu) \in \mathcal{U} \ \text{s.t.} \ b(u(\mu), v; \mu) = f(v; \mu) \ \forall v \in \mathcal{U}.$

The "truth": Petrov-Galerkin - I

- assume: detailed simulation method available ("truth")
 - approximate $u(\mu)$ with any desired accuracy for a given (fixed) parameter
 - might be computationally costly: ${\cal N}$
 - "truth" approximation: $u^{\mathcal{N}}(\mu)$

The "truth": Petrov-Galerkin - I

- assume: detailed simulation method available ("truth")
 - approximate $u(\mu)$ with any desired accuracy for a given (fixed) parameter
 - might be computationally costly: ${\cal N}$
 - "truth" approximation: $u^{\mathcal{N}}(\mu)$
- Petrov-Galerkin: finite-dimensional subspaces

$$\mathcal{U}^{\mathcal{N}} \subset \mathcal{U}, \qquad \mathcal{V}^{\mathcal{N}} \subset \mathcal{V}, \qquad \dim(\mathcal{U}^{\mathcal{N}}) = \dim(\mathcal{V}^{\mathcal{N}}) =: \mathcal{N} \quad \text{``large''}$$
 (2.1)

The "truth": Petrov-Galerkin - I

- assume: detailed simulation method available ("truth")
 - approximate $u(\mu)$ with any desired accuracy for a given (fixed) parameter
 - might be computationally costly: ${\cal N}$
 - "truth" approximation: $u^{\mathcal{N}}(\mu)$
- Petrov-Galerkin: finite-dimensional subspaces

$$\mathcal{U}^{\mathcal{N}} \subset \mathcal{U}, \qquad \mathcal{V}^{\mathcal{N}} \subset \mathcal{V}, \qquad \dim(\mathcal{U}^{\mathcal{N}}) = \dim(\mathcal{V}^{\mathcal{N}}) =: \mathcal{N} \quad \text{``large''}$$
 (2.1)

Lemma 2.1 (error / residual relation)

• Let conditions of Banach-Nečas and inf-sup for $\beta_{\mu} > 0$ hold.

Then, for the residual $r^{\mathcal{N}}(\mu) := f(\mu) - B(\mu) u^{\mathcal{N}}(\mu)$

$$||u(\mu) - u^{\mathcal{N}}(\mu)||_{\mathcal{U}} \leqslant \frac{1}{\beta_{\mu}} ||r^{\mathcal{N}}(\mu)||_{\mathcal{V}'}.$$

The "truth": Petrov-Galerkin - II (stability)

Definition 2.2 (Ladyshenskaya-Babuška-Brezzi (LBB) condition)

 $\mathcal{U}^{\mathcal{N}} \subset \mathcal{U}$ and $\mathcal{V}^{\mathcal{N}} \subset \mathcal{V}$ satisfy LBB w.r.t. $b(\mu): \mathcal{U} \times \mathcal{V} \to \mathbb{R}, \, \mu \in \mathcal{P},$ if $\exists \beta_{\mu}^{\circ} > 0$ such that

$$\inf_{u^{\mathcal{N}} \in \mathcal{U}^{\mathcal{N}}} \sup_{v, \mathcal{N} \in \mathcal{N}^{\mathcal{N}}} \frac{b(u^{\mathcal{N}}, v^{\mathcal{N}}; \mu)}{\|u^{\mathcal{N}}\|_{\mathcal{V}} \|v^{\mathcal{N}}\|_{\mathcal{V}}} \geqslant \beta_{\mu}^{\circ} \quad \text{for all } \mathcal{N}$$
 (2.2)

The "truth": Petrov-Galerkin - II (stability)

Definition 2.2 (Ladyshenskaya–Babuška–Brezzi (LBB) condition)

 $\mathcal{U}^{\mathcal{N}} \subset \mathcal{U}$ and $\mathcal{V}^{\mathcal{N}} \subset \mathcal{V}$ satisfy LBB w.r.t. $b(\mu): \mathcal{U} \times \mathcal{V} \to \mathbb{R}, \, \mu \in \mathcal{P},$ if $\exists \beta_{\mu}^{\circ} > 0$ such that

$$\inf_{u^{\mathcal{N}} \in \mathcal{U}^{\mathcal{N}}} \sup_{v^{\mathcal{N}} \in \mathcal{V}^{\mathcal{N}}} \frac{b(u^{\mathcal{N}}, v^{\mathcal{N}}; \mu)}{\|u^{\mathcal{N}}\|_{\mathcal{U}} \|v^{\mathcal{N}}\|_{\mathcal{V}}} \geqslant \beta_{\mu}^{\circ} \quad \text{for all } \mathcal{N}$$
 (2.2)

Theorem 2.3 (Best approximation^a)

^aXu and Zikatanov 2003

Continuity (C_{μ} : continuity constant) and LBB \rightsquigarrow

$$\|u(\mu) - u^{\mathcal{N}}(\mu)\|_{\mathcal{U}} \leqslant \frac{C_{\mu}}{\beta_{\mu}^{\circ}} \inf_{w^{\mathcal{N}} \in \mathcal{U}^{\mathcal{N}}} \|u(\mu) - w^{\mathcal{N}}\|_{\mathcal{U}}.$$
 (2.3)

Offline training

• select samples $S_N := \{\mu^{(1)},...,\mu^{(N)}\} \subset \mathcal{P}$ notation $\mu^{(n)}$: each $\mu^{(n)} = (\mu_1^{(n)},...,\mu_P^{(n)})^T \in \mathcal{P} \subset \mathbb{R}^P$

Offline training

- select samples $S_N := \{\mu^{(1)},...,\mu^{(N)}\} \subset \mathcal{P}$ notation $\mu^{(n)}$: each $\mu^{(n)} = (\mu_1^{(n)},...,\mu_P^{(n)})^T \in \mathcal{P} \subset \mathbb{R}^P$
- compute "snapshots" $\xi_n := u^{\mathcal{N}}(\mu^{(n)}) \in \mathcal{U}, n = 1, ..., N$
 - \rightarrow perform "truth" approximation $N \ll N$ times offline

Offline training

- select samples $S_N := \{\mu^{(1)},...,\mu^{(N)}\} \subset \mathcal{P}$ notation $\mu^{(n)}$: each $\mu^{(n)} = (\mu_1^{(n)},...,\mu_P^{(n)})^T \in \mathcal{P} \subset \mathbb{R}^P$
- compute "snapshots" $\xi_n := u^{\mathcal{N}}(\mu^{(n)}) \in \mathcal{U}, n = 1, ..., N$ \leadsto perform "truth" approximation $N \ll \mathcal{N}$ times offline
- reduced (trial) space: $U_N := \text{span}\{\xi_1, ..., \xi_N\}$ \Rightarrow approximation

$$\sigma_{\mathcal{U}}(u(\mu), U_N) := \inf_{w_N \in U_N} \|u(\mu) - w_N\|_{\mathcal{U}}.$$

Offline training

- select samples $S_N := \{\mu^{(1)},...,\mu^{(N)}\} \subset \mathcal{P}$ notation $\mu^{(n)}$: each $\mu^{(n)} = (\mu_1^{(n)},...,\mu_P^{(n)})^T \in \mathcal{P} \subset \mathbb{R}^P$
- compute "snapshots" $\xi_n := u^{\mathcal{N}}(\mu^{(n)}) \in \mathcal{U}, n = 1, ..., N$ \longrightarrow perform "truth" approximation $N \ll \mathcal{N}$ times offline
- reduced (trial) space: $U_N := \text{span}\{\xi_1, ..., \xi_N\}$ \Rightarrow approximation

$$\sigma_{\mathcal{U}}(u(\mu), U_N) := \inf_{w_N \in U_N} \|u(\mu) - w_N\|_{\mathcal{U}}.$$

• determine test space $V_N(\mu)$ for stability (\leadsto size of C_μ and β_μ°)

- given new parameter μ
- reduced approximation: seek $u_N(\mu) \in U_N$ such that

$$b(u_N(\mu), v_N; \mu) = \langle f(\mu), v_N \rangle \quad \forall v_N \in V_N(\mu)$$
(3.1)

- given new parameter μ
- reduced approximation: seek $u_N(\mu) \in U_N$ such that

$$b(u_N(\mu), v_N; \mu) = \langle f(\mu), v_N \rangle \quad \forall v_N \in V_N(\mu)$$
 (3.1)

we cannot hope to solve (3.1) in linear complexity

- given new parameter μ
- reduced approximation: seek $u_N(\mu) \in U_N$ such that

$$b(u_N(\mu), v_N; \mu) = \langle f(\mu), v_N \rangle \quad \forall v_N \in V_N(\mu)$$
 (3.1)

- we cannot hope to solve (3.1) in linear complexity
- assume complexity is $\mathcal{O}(N^{\bullet})$ (" \bullet " some power, typically $\bullet = 3$)

- given new parameter μ
- reduced approximation: seek $u_N(\mu) \in U_N$ such that

$$b(u_N(\mu), v_N; \mu) = \langle f(\mu), v_N \rangle \quad \forall v_N \in V_N(\mu)$$
 (3.1)

- we cannot hope to solve (3.1) in linear complexity
- assume complexity is $\mathcal{O}(N^{\bullet})$ (" \bullet " some power, typically $\bullet = 3$)
- meaningful if $N^{\bullet} \ll \mathcal{N}$ and N^{\bullet} independent of \mathcal{N} : online-efficient

Why should that work at all? - Affine decomposition

Definition 4.1 (affine decomposition)

(a) $b(\mu)$ is called *affine* (in the parameter)

$$\text{if } \exists Q^b \in \mathbb{N}, \ \frac{\vartheta_q^b : \mathcal{P} \to \mathbb{R}}{} \text{ & continuous BLFs } \boxed{b_q : \mathcal{U} \times \mathcal{V} \to \mathbb{R}}, 1 \leqslant q \leqslant Q^b \text{:}$$

$$b(u, v; \mu) = \sum_{b=1}^{Q^b} \vartheta_q^b(\mu) b_q(u, v) \quad \forall \mu \in \mathcal{P}, u \in \mathcal{U}, v \in \mathcal{V}$$

Why should that work at all? - Affine decomposition

Definition 4.1 (affine decomposition)

(a) $b(\mu)$ is called *affine* (in the parameter) if $\exists Q^b \in \mathbb{N}$, $\frac{\vartheta_q^b}{}: \mathcal{P} \to \mathbb{R}$ & continuous BLFs $b_q : \mathcal{U} \times \mathcal{V} \to \mathbb{R}$, $1 \leqslant q \leqslant Q^b$:

$$b(u, v; \mu) = \sum_{q=1}^{Q^b} \frac{\vartheta_q^b(\mu)}{\vartheta_q(u, v)} \quad \forall \mu \in \mathcal{P}, u \in \mathcal{U}, v \in \mathcal{V}$$

(b) similar for $f(\mu)$

Why should that work at all? – Affine decomposition

Definition 4.1 (affine decomposition)

(a) $b(\mu)$ is called *affine* (in the parameter) if $\exists Q^b \in \mathbb{N}$, $\frac{\vartheta_q^b}{q} : \mathcal{P} \to \mathbb{R}$ & continuous BLFs $b_q : \mathcal{U} \times \mathcal{V} \to \mathbb{R}$, $1 \leqslant q \leqslant Q^b$:

$$b(u, v; \mu) = \sum_{q=1}^{Q^b} \frac{\vartheta_q^b(\mu)}{\vartheta_q(u, v)} \quad \forall \mu \in \mathcal{P}, u \in \mathcal{U}, v \in \mathcal{V}$$

- (b) similar for $f(\mu)$
- (c) The parametric problem (1.2) is called *affine (in the parameter)* if both $b(\mu)$ and $f(\mu)$ are affine in the parameter. (Otherwise: approximate by EIM^a)

^aBarrault, Maday, Nguyen, and Patera 2004.

Why should that work at all? - Affine decomposition

Definition 4.1 (affine decomposition)

(a) $b(\mu)$ is called *affine* (in the parameter) if $\exists Q^b \in \mathbb{N}$, $\frac{\vartheta_q^b}{q} : \mathcal{P} \to \mathbb{R}$ & continuous BLFs $b_q : \mathcal{U} \times \mathcal{V} \to \mathbb{R}$, $1 \leqslant q \leqslant Q^b$:

$$b(u, v; \mu) = \sum_{q=1}^{Q^b} \frac{\vartheta_q^b(\mu)}{\vartheta_q(u, v)} \quad \forall \mu \in \mathcal{P}, u \in \mathcal{U}, v \in \mathcal{V}$$

- (b) similar for $f(\mu)$
- (c) The parametric problem (1.2) is called *affine* (in the parameter) if both $b(\mu)$ and $f(\mu)$ are affine in the parameter. (Otherwise: approximate by EIM^a)

Lemma 4.2 (Reduced residual is affine)

Let (1.2) be affine, then $r_{NL}(\mu) := f(\mu) - B(\mu) \frac{u_N(\mu)}{u_N(\mu)}$ is affine.

^aBarrault, Maday, Nguyen, and Patera 2004.

•
$$\mathcal{F} := \{u^{\mathcal{N}}(\mu) : \mu \in \mathcal{P}\}$$
 "solution manifold"

- $\mathcal{F} := \{u^{\mathcal{N}}(\mu): \mu \in \mathcal{P}\}$ "solution manifold"
- recall Xu/Zikatanov: $\|u^{\mathcal{N}}(\mu) u_{N}(\mu)\|_{\mathcal{U}} \leqslant \frac{C_{\mu}}{\beta_{\mu}^{\circ}} \inf_{w_{N} \in U_{N}} \|u^{\mathcal{N}}(\mu) w_{N}\|_{\mathcal{U}}$

- $\mathcal{F} := \{u^{\mathcal{N}}(\mu) : \mu \in \mathcal{P}\}$ "solution manifold"
 - recall Xu/Zikatanov: $\|u^{\mathcal{N}}(\mu) \underline{u_N}(\mu)\|_{\mathcal{U}} \leqslant \frac{C_{\mu}}{\beta_{\mu}^{\circ}} \inf_{w_N \in \underline{U_N}} \|u^{\mathcal{N}}(\mu) w_N\|_{\mathcal{U}}$
- benchmark: Kolmogorov N-width

$$d_N(\mathcal{F}) := \inf_{w_N \in U_N} \|u^{\mathcal{N}}(\mu) - w_N\|_{\mathcal{U}}$$
 (5.1)

- $\mathcal{F} := \{u^{\mathcal{N}}(\mu): \mu \in \mathcal{P}\}$ "solution manifold"
 - recall Xu/Zikatanov: $\|u^{\mathcal{N}}(\mu) u_{N}(\mu)\|_{\mathcal{U}} \leqslant \frac{C_{\mu}}{\beta_{\mu}^{\circ}} \inf_{w_{N} \in \underline{U_{N}}} \|u^{\mathcal{N}}(\mu) w_{N}\|_{\mathcal{U}}$
- benchmark: Kolmogorov N-width

$$d_N(\mathcal{F}) := \sup_{\mu \in \mathcal{P}} \inf_{w_N \in U_N} \|u^{\mathcal{N}}(\mu) - w_N\|_{\mathcal{U}}$$
 (5.1)

- $\mathcal{F} := \{u^{\mathcal{N}}(\mu): \mu \in \mathcal{P}\}$ "solution manifold"
 - recall Xu/Zikatanov: $\|u^{\mathcal{N}}(\mu) u_{N}(\mu)\|_{\mathcal{U}} \leqslant \frac{C_{\mu}}{\beta_{\mu}^{\circ}} \inf_{w_{N} \in \underline{U_{N}}} \|u^{\mathcal{N}}(\mu) w_{N}\|_{\mathcal{U}}$
- benchmark: Kolmogorov N-width

$$d_N(\mathcal{F}) := \inf_{\substack{U_N \subset X \\ \dim(U_N) = N}} \sup_{\mu \in \mathcal{P}} \inf_{w_N \in U_N} \|u^{\mathcal{N}}(\mu) - w_N\|_{\mathcal{U}}$$
 (5.1)

Theorem 5.1 (Kolmogorov N-width^a)

^aOhlberger and Rave 2016; KU 2023

Let

- $b(\cdot,\cdot;\mu)$ be bounded, inf-sup stable and affine (with Q^b terms)
- U_N , V_N are LBB-stable,

then $\exists 0 < c, C < \infty$:

$$d_N(\mathcal{F}) \leqslant C \exp(-c N^{1/Q^b})$$

(2.2.2)

Theorem 5.2 (Transport equation^a)

^aOhlberger and Rave 2016.

For
$$u_t + \mu u_x = 0$$
, $u(0, x) = 0$, $u(t, 0) = 1$, it holds

$$d_N(\mathcal{F}) \geqslant \frac{1}{2} N^{-1/2}$$

Theorem 5.2 (Transport equationa)

^aOhlberger and Bave 2016

For $u_t + \mu u_x = 0$, u(0, x) = 0, u(t, 0) = 1, it holds

$$d_N(\mathcal{F}) \geqslant \frac{1}{2} N^{-1/2}$$

Theorem 5.3 (Wave equation^a)

"Greif and KU 2019.

For
$$\ddot{u} - \mu u_{xx} = 0$$
, $\dot{u}(0, x) = 0$ and

 $u(0,x) := \begin{cases} 1 & x \leqslant 0, \\ -1 & x \geqslant 0, \end{cases}$

it holds

$$\frac{1}{4}N^{-1/2} \le d_N(\mathcal{F}) \le \frac{1}{2}(N-1)^{-1/2}$$

Offline-online decomposition

goal: compute the reduced (linear) approximation

$$u_N(\mu) = \sum_{n=1}^N \alpha_n(\mu) \, \xi_n, \qquad \alpha_n(\mu) \in \mathbb{R} \text{ coefficients}$$

Offline-online decomposition

goal: compute the reduced (linear) approximation

$$u_N(\mu) = \sum_{n=1}^N \alpha_n(\mu) \, \xi_n, \qquad \alpha_n(\mu) \in \mathbb{R} \text{ coefficients}$$

• by linear system $oldsymbol{B}_N(\mu) \, oldsymbol{lpha}_N(\mu) = \mathbf{f}_N(\mu)$

$$oldsymbol{B}_N(\mu) = \cdots = \sum_{q,q'=1}^{Q^b} \left| rac{artheta_q^b(\mu) \, artheta_{q'}^b(\mu)}{oldsymbol{\mathbb{B}}_{N,q,q'}}
ight|, \qquad \mathbb{B}_{N,q,q'} \in \mathbb{R}^{N imes N}$$

- aim: a posteriori error estimator $\|u(\mu) u_N(\mu)\|_{\mathcal{U}} \leqslant \Delta_N(\mu)$
 - for selection of the sample set S_N
 - for the certification of the reduced approximation

- aim: a posteriori error estimator $\|u(\mu) u_N(\mu)\|_{\mathcal{U}} \leqslant \Delta_N(\mu)$
 - for selection of the sample set S_N
 - for the certification of the reduced approximation
- $\Delta_N(\mu)$ needs to be sharp and online-efficient

- aim: a posteriori error estimator $\|u(\mu) u_N(\mu)\|_{\mathcal{U}} \leqslant \Delta_N(\mu)$
 - for selection of the sample set S_N
 - for the certification of the reduced approximation
- $\Delta_N(\mu)$ needs to be sharp and online-efficient

• possible choice
$$\Delta_N(\mu) = \frac{1}{\beta_\mu^\circ} \|r_N(\mu)\|_{\mathcal{V}'}, \ r_N(\mu) = f(\mu) - B(\mu)u^N(\mu)$$
 (reduced residual)

- aim: a posteriori error estimator $\|u(\mu) u_N(\mu)\|_{\mathcal{U}} \leqslant \Delta_N(\mu)$
 - for selection of the sample set S_N
 - for the certification of the reduced approximation
- $\Delta_N(\mu)$ needs to be sharp and online-efficient

• possible choice
$$\Delta_N(\mu) = \frac{1}{\beta_\mu^\circ} \|r_N(\mu)\|_{\mathcal{V}'}, r_N(\mu) = f(\mu) - B(\mu) u^N(\mu)$$
 (reduced residual)

- fast computation
 - online sharp bounds for β_{μ}° (successive constraint method)^[1]
 - Riesz representation offline and affine decomposition for $||r_N(\mu)||_{\mathcal{V}'}$

- aim: a posteriori error estimator $\|u(\mu) u_N(\mu)\|_{\mathcal{U}} \leq \Delta_N(\mu)$
 - for selection of the sample set S_N
 - for the certification of the reduced approximation
- $\Delta_N(\mu)$ needs to be sharp and online-efficient

$$\bullet \text{ possible choice } \underline{\Delta_N(\mu)} = \frac{1}{\beta_\mu^\circ} \|r_N(\mu)\|_{\mathcal{V}'}, r_N(\mu) = f(\mu) - B(\mu) u^N(\mu)$$
 (reduced residual)

- fast computation
 - online sharp bounds for eta_{μ}° (successive constraint method)^[1]
 - Riesz representation offline and affine decomposition for $||r_N(\mu)||_{\mathcal{V}'}$
- $\Delta_N(\mu)$ is even a *surrogate* for the error w.r.t. the truth

$$\|u^{\mathcal{N}}(\mu) - u_N(\mu)\|_{\mathcal{U}} \le \Delta_N(\mu) \le \frac{C_{\mu}}{\beta_{\mu}^{\circ}} \|u^{\mathcal{N}}(\mu) - u_N(\mu)\|_{\mathcal{U}}$$
 (5.2)

^[1] Huvnh, Rozza, Sen, and Patera 2007

Greedy selection of the reduced basis

Algorithm 5.4 (Weak greedy method)

```
input: training sample \mathcal{P}_{\text{train}} \subseteq \mathcal{P}, parameter \gamma \in (0,1], tolerance \varepsilon > 0
 1: chose \mu^{(1)} \in \mathcal{P}_{train}
 2: Initialize S_1 \leftarrow \{\mu^{(1)}\}, U_1 := \text{span}\{\xi_1\}, N := 1
 3. while true do
          if \max \Delta_N(\mu) \leq \varepsilon then return
             \mu \in \mathcal{P}_{train}
           \mu^{(N+1)} \leftarrow \arg \max \Delta_N(\mu)
 5.
                                \mu \in \mathcal{P}_{train}
          compute snapshot \xi_{N+1} := u^{\mathcal{N}}(\mu^{(N+1)})
 6.
          compute supremizers \eta_{N,q}, q=1,...,Q^f
 7.
          S_{N+1} \leftarrow S_N \cup \{\mu^{(N+1)}\}, U_{N+1} := \text{span}\{U_N, \xi_{N+1}\}
         N \leftarrow N + 1
10. end while
     output: sample set S_N, reduced trial space U_N, supremizers
```

Weak-Greedy convergence

Can we reach the benchmark? Yes, we can! – by (weak) greedy!

Theorem 5.5 (Weak-Greedy convergence^a)

^aBinev, Cohen, Dahmen, DeVore, Petrova, and Wojtaszczyk 2011; KU 2023

Let
$$0 < \gamma \leqslant 1$$
, $d_0(\mathcal{F}) \leqslant M$, then

Weak-Greedy convergence

Can we reach the benchmark? Yes, we can! – by (weak) greedy!

Theorem 5.5 (Weak-Greedy convergence^a)

Biney, Cohen, Dahmen, DeVore, Petrova, and Wojtaszczyk 2011; KU 2023.

Let $0 < \gamma \le 1$, $d_0(\mathcal{F}) \le M$, then

• if
$$d_N(\mathcal{F}) \leq M N^{-\alpha}$$
, $N > 0$, $\alpha > 0$, $C := q^{1/2} (4q)^{\alpha}$, $q := \lceil 2^{\alpha+1} \gamma^{-1} \rceil^2$

$$\max_{\mu \in \mathcal{P}} \|u^{\mathcal{N}}(\mu) - u_N(\mu)\|_X \leqslant C M N^{-\alpha}$$

Weak-Greedy convergence

Can we reach the benchmark? Yes, we can! – by (weak) greedy!

Theorem 5.5 (Weak-Greedy convergence^a)

^aBinev, Cohen, Dahmen, DeVore, Petrova, and Wojtaszczyk 2011; KU 2023.

Let $0 < \gamma \le 1$, $d_0(\mathcal{F}) \le M$, then

• if
$$d_N(\mathcal{F}) \leqslant M N^{-\alpha}$$
, $N > 0$, $\alpha > 0$, $C := q^{1/2} (4q)^{\alpha}$, $q := \lceil 2^{\alpha+1} \gamma^{-1} \rceil^2$

$$\max_{\mu \in \mathcal{P}} \|u^{\mathcal{N}}(\mu) - u_N(\mu)\|_X \leqslant C M N^{-\alpha}$$

• if
$$d_N(\mathcal{F}) \leq M e^{-aN^{\alpha}}$$
, $N \geq 0$, $M, a, \alpha > 0$, then

$$\max_{\mu \in \mathcal{P}} \|u^{\mathcal{N}}(\mu) - u_N(\mu)\|_X \leqslant C M \exp(-cN^{\beta})$$

where
$$\beta := \frac{\alpha}{\alpha+1}$$
, $0 \le \theta < 1$, $c := \min\{|\log \theta|, (4q)^{-\alpha}a\}$, $C := \max\{e^{cN_0^{\beta}}, q^{1/2}\}$, $q := \lceil 2\gamma^{-1}\theta^{-1} \rceil^2$, $N_0 := \lceil (8q)^{\alpha+1} \rceil$.

$$\bullet \ \, \mathcal{U} = \mathcal{V} = H^1_0(\Omega) \text{ and } b(u,v;\mu) = \sum_{p=1}^P \mu_p \int_{\varOmega_p} \nabla u(x) \cdot \nabla v(x) \, dx$$

•
$$\mathcal{U} = \mathcal{V} = H_0^1(\Omega)$$
 and $b(u, v; \mu) = \sum_{p=1}^P \mu_p \int_{\Omega_p} \nabla u(x) \cdot \nabla v(x) \, dx$

• $b(\cdot,\cdot;\mu)$ is symmetric and coercive by $\mu_p>\mu_0>0$ for all p=1,...,P

•
$$\mathcal{U} = \mathcal{V} = H_0^1(\Omega)$$
 and $b(u, v; \mu) = \sum_{p=1}^P \mu_p \int_{\Omega_p} \nabla u(x) \cdot \nabla v(x) \, dx$

- $b(\cdot,\cdot;\mu)$ is symmetric and coercive by $\mu_p>\mu_0>0$ for all p=1,...,P
- Lax-Milgram theorem → well-posedness

•
$$\mathcal{U} = \mathcal{V} = H_0^1(\Omega)$$
 and $b(u, v; \mu) = \sum_{p=1}^P \mu_p \int_{\Omega_p} \nabla u(x) \cdot \nabla v(x) \, dx$

- $b(\cdot,\cdot;\mu)$ is symmetric and coercive by $\mu_p>\mu_0>0$ for all p=1,...,P
- Lax-Milgram theorem → well-posedness
- truth: conforming finite elements in linear complexity, i.e., $\mathcal{O}(\mathcal{N})$ (pcg, multigrid)

•
$$\mathcal{U} = \mathcal{V} = H_0^1(\Omega)$$
 and $b(u, v; \mu) = \sum_{p=1}^P \mu_p \int_{\Omega_p} \nabla u(x) \cdot \nabla v(x) \, dx$

- $b(\cdot,\cdot;\mu)$ is symmetric and coercive by $\mu_p>\mu_0>0$ for all p=1,...,P
- Lax-Milgram theorem → well-posedness
- truth: conforming finite elements in linear complexity, i.e., \(\mathcal{O}(\mathcal{N}) \) (pcg, multigrid)
- N-width decays exponentially!

Time-dependent problems - I

• parameterized parabolic problem $(A(\mu))$ elliptic)

$$u_t + A(\mu)u = f(t; \mu), \quad t \in (0, T) =: I, \qquad u(0) = u_0$$
 (5.3)

Time-dependent problems - I

• parameterized parabolic problem $(A(\mu))$ elliptic)

$$u_t + A(\mu)u = f(t; \mu), \quad t \in (0, T) =: I, \qquad u(0) = u_0$$
 (5.3)

reduce in space and do time stepping: POD-Greedy^[2]

Time-dependent problems - I

• parameterized parabolic problem $(A(\mu))$ elliptic)

$$u_t + A(\mu)u = f(t; \mu), \quad t \in (0, T) =: I, \qquad u(0) = u_0$$
 (5.3)

- reduce in space and do time stepping: POD-Greedy^[2]
- usually → error bound grows (exponentially) over time ¼

treat time as variational variable^[3] (not via semigroup theory)

- treat time as variational variable^[3] (not via semigroup theory)
 - \leadsto Lebesgue-Bochner spaces for in time and space $(X = H_0^1(\Omega))$

$$\mathcal{V} = L_2(I; X) := \left\{ v : I \to X : \|v\|_{L_2(I; X)}^2 := \int_I \|v(t)\|_X^2 dt < \infty \right\}$$

- treat time as variational variable^[3] (not via semigroup theory)
 - \leadsto Lebesgue-Bochner spaces for in time and space $(X=H^1_0(\Omega))$

$$\mathcal{V} = L_2(I; X) := \left\{ v : I \to X : \|v\|_{L_2(I; X)}^2 := \int_I \|v(t)\|_X^2 dt < \infty \right\}
\mathcal{U} = W_{(0)}(I) := \left\{ v \in L_2(I; X) : v_t \equiv \dot{v} \in L_2(I; X'), v(0) = 0 \right\}$$

Time-dependent problems - II

Space/Time-variational formulation

- treat time as variational variable^[3] (not via semigroup theory)
 - \longrightarrow Lebesgue-Bochner spaces for in time and space $(X = H_0^1(\Omega))$

$$V = L_2(I; X) := \left\{ v : I \to X : \|v\|_{L_2(I; X)}^2 := \int_I \|v(t)\|_X^2 dt < \infty \right\}$$

$$U = W_{(0)}(I) := \left\{ v \in L_2(I; X) : v_t \equiv \dot{v} \in L_2(I; X'), v(0) = 0 \right\}$$

$$u_t + A(\mu)u = f(t;\mu)$$

Time-dependent problems - II

Space/Time-variational formulation

- treat time as variational variable^[3] (not via semigroup theory)
 - \rightarrow Lebesgue-Bochner spaces for in time and space $(X = H_0^1(\Omega))$

$$\mathcal{V} = L_2(I; X) := \left\{ v : I \to X : \|v\|_{L_2(I; X)}^2 := \int_I \|v(t)\|_X^2 dt < \infty \right\}$$

$$\mathcal{U} = W_{(0)}(I) := \left\{ v \in L_2(I; X) : v_t \equiv \dot{v} \in L_2(I; X'), v(0) = 0 \right\}$$

$$\int_0^T \langle u_t(t) + A(\mu)u(t), v(t) \rangle dt = \int_0^T \langle f(t; \mu), v(t) \rangle dt$$

^[3] Dautray and Lions 1992; Schwab and Stevenson 2009; KU and Patera 2012; KU and Patera 2014

- treat time as variational variable^[3] (not via semigroup theory)
 - \longrightarrow Lebesgue-Bochner spaces for in time and space $(X = H_0^1(\Omega))$

$$\mathcal{V} = L_2(I; X) := \left\{ v : I \to X : \|v\|_{L_2(I; X)}^2 := \int_I \|v(t)\|_X^2 dt < \infty \right\}$$

$$\mathcal{U} = W_{(0)}(I) := \left\{ v \in L_2(I; X) : v_t \equiv \dot{v} \in L_2(I; X'), v(0) = 0 \right\}$$

$$\underbrace{\int_{0}^{T} \langle u_{t}(t) + A(\mu)u(t), v(t) \rangle dt}_{=:b(u,v;\mu)} = \underbrace{\int_{0}^{T} \langle f(t;\mu), v(t) \rangle dt}_{=:\langle f(\mu), v \rangle}$$

- treat time as variational variable^[3] (not via semigroup theory)
 - \longrightarrow Lebesgue-Bochner spaces for in time and space $(X = H_0^1(\Omega))$

$$\mathcal{V} = L_2(I; X) := \left\{ v : I \to X : \|v\|_{L_2(I; X)}^2 := \int_I \|v(t)\|_X^2 dt < \infty \right\}$$

$$\mathcal{U} = W_{(0)}(I) := \left\{ v \in L_2(I; X) : v_t \equiv \dot{v} \in L_2(I; X'), v(0) = 0 \right\}$$

• test & integrate over space and time $(u \in \mathcal{U}, v \in \mathcal{V})$:

$$\underbrace{\int_0^T \langle u_t(t) + A(\mu)u(t), v(t) \rangle dt}_{=:b(u,v;\mu)} = \underbrace{\int_0^T \langle f(t;\mu), v(t) \rangle dt}_{=:\langle f(\mu), v \rangle}$$

→ inf-sup (Banach–Nečas): well-posed, isomorphism

- treat time as variational variable^[3] (not via semigroup theory)
 - \longrightarrow Lebesgue-Bochner spaces for in time and space $(X = H_0^1(\Omega))$

$$\mathcal{V} = L_2(I; X) := \left\{ v : I \to X : \|v\|_{L_2(I; X)}^2 := \int_I \|v(t)\|_X^2 dt < \infty \right\}$$

$$\mathcal{U} = W_{(0)}(I) := \left\{ v \in L_2(I; X) : v_t \equiv \dot{v} \in L_2(I; X'), v(0) = 0 \right\}$$

$$\underbrace{\int_0^T \langle u_t(t) + A(\mu)u(t), v(t) \rangle dt}_{=:b(u,v;\mu)} = \underbrace{\int_0^T \langle f(t;\mu), v(t) \rangle dt}_{=:\langle f(\mu), v \rangle}$$

- → inf-sup (Banach–Nečas): well-posed, isomorphism
- exponential decay of $d_N(\mathcal{F})$

• truth: tensor-product system in d+1 dimensions \leadsto uniform LBB

- truth: tensor-product system in d+1 dimensions \leadsto uniform LBB
- similar for optimal control^[4]

- truth: tensor-product system in d + 1 dimensions → uniform LBB
- similar for optimal control^[4]

Parameterized parabolic problem

		Rational Krylov Space Method			Crank Nicolson		
N_h	N_t	Its	μ_{mem}	rank	Time (s)	Direct	Iterative
41300	300	13	14	9	25.96	123.43	59.10
	500	13	14	9	30.46	143.71	78.01
	700	13	14	9	28.17	153.38	93.03
347361	300	14	15	9	820.17	14705.10	792.42
	500	14	15	9	828.34	15215.47	1041.47
	700	14	15	7	826.93	15917.52	1212.57

^[4] Beranek, Reinhold, and KU 2023

- truth: tensor-product system in d + 1 dimensions → uniform LBB
- similar for optimal control^[4]

Parameterized parabolic problem

		Rational Krylov Space Method			Crank Nicolson		
N_h	N_t	Its	μ_{mem}	rank	Time (s)	Direct	Iterative
41300	300	13	14	9	25.96	123.43	59.10
	500	13	14	9	30.46	143.71	78.01
	700	13	14	9	28.17	153.38	93.03
347361	300	14	15	9	820.17	14705.10	792.42
	500	14	15	9	828.34	15215.47	1041.47
	700	14	15	7	826.93	15917.52	1212.57

efficient tensor solvers beat time stepping!

^[4] Beranek, Reinhold, and KU 2023

- truth: tensor-product system in d + 1 dimensions → uniform LBB
- similar for optimal control^[4]

Parameterized parabolic problem

		Rational Krylov Space Method			Crank Nicolson		
N_h	N_t	Its	μ_{mem}	rank	Time (s)	Direct	Iterative
41300	300	13	14	9	25.96	123.43	59.10
	500	13	14	9	30.46	143.71	78.01
	700	13	14	9	28.17	153.38	93.03
347361	300	14	15	9	820.17	14705.10	792.42
	500	14	15	9	828.34	15215.47	1041.47
	700	14	15	7	826.93	15917.52	1212.57

efficient tensor solvers beat time stepping!

allows reduction in space and time!

^[4] Beranek, Reinhold, and KU 2023

Summary

• RBM allows enormous reduction (multi-query / realtime / cold computing)

- RBM allows enormous reduction (multi-query / realtime / cold computing)
- keys:
 - well-posedness / isomorphism

- RBM allows enormous reduction (multi-query / realtime / cold computing)
- keys:
 - well-posedness / isomorphism
 - offline / online-decomposition (truth, affine decomposition)

- RBM allows enormous reduction (multi-query / realtime / cold computing)
- keys:
 - well-posedness / isomorphism
 - offline / online-decomposition (truth, affine decomposition)
 - error estimator / week greedy (certification)

- RBM allows enormous reduction (multi-query / realtime / cold computing)
- keys:
 - well-posedness / isomorphism
 - offline / online-decomposition (truth, affine decomposition)
 - error estimator / week greedy (certification)
 - analysis of Kolmogorov N-width \sim week greedy

- RBM allows enormous reduction (multi-query / realtime / cold computing)
- keys:
 - well-posedness / isomorphism
 - offline / online-decomposition (truth, affine decomposition)
 - error estimator / week greedy (certification)
 - analysis of Kolmogorov N-width \sim week greedy
- elliptic √, parabolic (in space-time) √

Summary

- RBM allows enormous reduction (multi-query / realtime / cold computing)
- keys:
 - well-posedness / isomorphism
 - offline / online-decomposition (truth, affine decomposition)
 - error estimator / week greedy (certification)
 - analysis of Kolmogorov N-width ~ week greedy
- elliptic √, parabolic (in space-time) √

Outlook

- "tough" problems
 - transport, wave, Schrödinger, nonlinear...
 - "non-standard" variational forms
 - nonlinear model reduction

Summary

- RBM allows enormous reduction (multi-query / realtime / cold computing)
- keys:
 - well-posedness / isomorphism
 - offline / online-decomposition (truth, affine decomposition)
 - error estimator / week greedy (certification)
 - analysis of Kolmogorov N-width ~ week greedy
- elliptic √, parabolic (in space-time) √

Outlook

- "tough" problems
 - transport, wave, Schrödinger, nonlinear...
 - · "non-standard" variational forms
 - nonlinear model reduction
- combine with data assimilation (digital twins)

Summary

- RBM allows enormous reduction (multi-query / realtime / cold computing)
- keys:
 - well-posedness / isomorphism
 - offline / online-decomposition (truth, affine decomposition)
 - error estimator / week greedy (certification)
 - analysis of Kolmogorov N-width \sim week greedy
- elliptic √, parabolic (in space-time) √

Outlook

- "tough" problems
 - transport, wave, Schrödinger, nonlinear...
 - "non-standard" variational forms
 - nonlinear model reduction
- combine with data assimilation (digital twins)
- use in industrial problems
- ...

