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two main fields of model reduction

® system-theoretic model reduction (Numerical Linear Algebra)

> partial differential equations (PDEs) depending on parameters: PPDEs
e examples of such “parameters”:

* the right-hand side (e.g. a force acting on some body)
* the coefficients of a PDE (e.g. the porosity or conductivity of a material)
* the geometry of the domain (e.g. the size, shape, etc.)

parameters: ;. € P < R” compact /
different application frameworks

* solve for many values of the parameter: multi-query
* realtime
* embedded systems: cold computing

(T. Patera, MIT)
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Introduction - i

e assume: highly efficient numerical solvers for PPDEs available

¢ used for a fixed value of the parameter

¢ often (even optimal) schemes are known
* complexity is too high: \/

® up to any accuracy: “truth”

Optimal steering Optimal shape Optimal control
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Offline training — online reduced simulation

Basic idea:
e offline training

* select parameter samples ™V, ..., N e P

* compute snapshots u™ (1) ~ u(u?) by “truth” numerical simulation: A/
* determine reduced model (small dimension N « )

* precompute and store parameter-independent terms
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Basic idea:
e offline training

* select parameter samples ™V, ..., N e P

* compute snapshots u™ (1) ~ u(u?) by “truth” numerical simulation: A/
* determine reduced model (small dimension N « )

* precompute and store parameter-independent terms

e online

® given new parameter values (optimization loop, control, measurements, data,...)
* setup and solve reduced system (small dimension N)
® compute error bound (certification)
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Some mathematical questions

e relation IV vs. error? (error decay as N — o)
e reducibility of certain PPDESs? (e~ or N—1/22)
e choice of sample values for the snapshots? Is that “optimal”?

* can we certify a reduced approximation
(efficiently computable rigorous and sharp upper error bound)?

e comparison with (simple) interpolation w.r.t. parameters?
* how to combine with data?
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Some notation - linear problems

e () c RY: open domain (space / space and time)

* x € {2: primitive variables

B(u): parameter-dependent linear differential operator
® example (strong form)

B(pu(z) = V - (v, (x) Vu(x)) + Bu(x) - Vu(z) + 7u(7) u(x)

¢ associate initial- and boundary conditions with the differential operator
e given aright-hand side f(u) : 2 —» R:

ensure well-posedness (i.e., existence, uniqueness and stability):
B(u) should be an isomorphism (vijective, bounded, inverse bounded)

denote unique solution by u(u)
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The thermal block — our “fruit fly”

*RIS02= U (koo ip) ™
555585858538 i iy xe, V) = .
98 99 . tp >0,p=1,..., P,
ujpn =0,
95 96 f:2 —R external force

HHHHTH
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The thermal block — our “fruit fly”

P
* RIS Q= U1Q v = (g1, pp)t
=

(P=9) ,
02202222225  Blu=-3 Y (uyxa, Vu) =1,

27 | % | () jy>0.p=1,..P,
u|0.Q = 07
Qp | 125 | (%% f:2 >R external force

e variational form: u(y) € Hg(£2):

(92 (2 (25 P
b(u(p),v; p) := Z Hp Vu - Vudz

trettrtetet

= ([,v)1.(2) Vv e H)(£2)
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Variational formulation of PPDE - |
e more general: consider B(u) € L(U, V') (V': dual space of V)
e choice of & and V is crucial well-posedness
e bilinear form b(u) = b(-, ;) : U x V — R induced by B(u):

b(u,v; p) := {(B(p) u,v) Yuel, ve.

Definition 1.1 (Continuity / inf-sup)

(@) b(u) is continuous (or bounded) if 3C,, > 0 (continuity constant):
|b(u, v; )| < Cp |ufu vy Yueld,veV.
(b) b(p) satisfies an inf-sup condition if 38,, > 0 (inf-sup constant):

b o
sup (u, v; )

b .
= Bullulu Vued <— inf SupM = B,
veEV ”U”V

uell ey J|ulle o]y

(1.1)

y
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Variational formulation of PPDE - I

Theorem 1.2 (Banach—Necas theorem)

LetueP;b(n) : U xV — R be a continuous bilinear form.
Then, the following statements are equivalent:

(i) Vf(u) eV 3! u(u) € U (with continuous dependency on the data)
b(u(p),v;p) = flosp) YveV. (1.2)
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Variational formulation of PPDE - I

Theorem 1.2 (Banach—Necas theorem)

Letpe P;b(n) : U x V — R be a continuous bilinear form.
Then, the following statements are equivalent:

(i) Vf ( M) eV 3! u( M) € U (with continuous dependency on the data)

blu(p),v;p) = f(vsp) Yve. (1.2)
(i) (a) inf-sup condition (1.1) holds, and
b)YO#veVIw, eU: blwy,v;p) #0. (1.3)

| A

Theorem 1.3 (Lax—Milgram theorem)

Letpe P;b(u) : U x U — R symmetric, continuous, coercive BLF.
Then: Vf(u) e Fu(p) e U s.t. b(u(p),v; u) = f(v;p) Yvel.
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° assume: detailed simulation method available (“truth”)
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* might be computationally costly: A/
* “truth” approximation: (1)
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The “truth”: Petrov-Galerkin - |

° assume: detailed simulation method available (“truth”)

* approximate u(u) with any desired accuracy for a given (fixed) parameter
* might be computationally costly: N
* “truth” approximation: ' (1)

¢ Petrov-Galerkin: finite-dimensional subspaces

Lemma 2.1 (error / residual relation)

* Let conditions of Banach-Necas and inf-sup for 5, > 0 hold.
Then, for the residual ™V (1) := f(u) — B(p) v (1)

() — N () e < iu|rN<,,L)||v,.

9/26



0.10/26 Model reduction of PPDEs — Advances, trends and challenges | A detailed approximation — the ,truth”

The “truth”: Petrov-Galerkin - Il (stability)

UN c U and VN c V satisfy LBBw.rt. b(p) : U x V — R, p e P,
if 38;, > 0 such that

N N
inf  sup b(—’“)>. for all A/ (2.2)

wNeun ey TN o o™
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The “truth”: Petrov-Galerkin - Il (stability)

Definition 2.2 (Ladyshenskaya—Babuska—Brezzi (LBB) condition)

UN < U and VN c V satisfy LBBw.rt. b(p) : U x V >R, pe P,
if 38, > 0 such that

b(uN V-
inf  sup w>
wWeud ynepn [uN [y o]y

. for all A/ (2.2)

Theorem 2.3 (Best approximation?)

Continuity (c,, : continuity constant) and LBB ~~

C
[u() = Wl < Z it (k) = 0l (2:3)
m
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p.

Offline training

select samples Sy := {u"), .. M(N)} c P
notation ;("™): each pu(™ = (,u( ), )T e P < RP
compute “snapshots” ¢, == v (™) ell,n=1,..,N

~ perform “truth” approximation N « N times offline

reduced (trial) space: Uy := span{¢y, ...,{n}
~~» approximation

determine test space Vi (p) for stability (~ size of C, and ;)
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* given new parameter
e reduced approximation: seek uy(u) € Uy such that

bun (), vn; p) = {f(n),vn) Yon € Vn(p) (3.1)
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Online reduced approximation - |

* given new parameter

reduced approximation: seek uy(u) € Ux such that

bun (), vn; p) = {f(n),vn) Yon € Vn(p) (3.1)

* we cannot hope to solve (3.1) in linear complexity
e assume complexity is O(N*) (“e” some power, typically e = 3)
meaningful if N* « A" and N* independent of N: online-efficient
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Online reduced approximation - I

complexity ,- direct simulation

RBM

offline complexity

#u
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Why should that work at all? — Affine decomposition

(@) b(p) is called affine (in the parameter)

if3Q° e N, ¥2: P — R & continuous BLFs_,lgqub:
b(u, v; 1) Z 19” - YuePueU,veV
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Why should that work at all? — Affine decomposition

(@) b(w) is called affine (in the parameter)

if3Q" e N, 92 : P — R & continuous BLFs_,lgqéQb:
b(u, v; 1) Zﬂb - YuePueld,veV

(b) similar for f(u)

(c) The parametric problem (1.2) is called affine (in the parameter)
if both b(r) and f(u) are affine in the parameter. (Otherwise: approximate by EIM?)

4Barrault, Maday, Nguyen, and Patera 2004.
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Why should that work at all? — Affine decomposition

(@) b(w) is called affine (in the parameter)

if3Q" e N, 92 : P — R & continuous BLFs_,lgqéQ":
b(u, v; 1) Zﬂb - YuePueld,veV

(b) similar for f(u)

(c) The parametric problem (1.2) is called affine (in the parameter)
if both b(r) and f(u) are affine in the parameter. (Otherwise: approximate by EIM?)

4Barrault, Maday, Nguyen, and Patera 2004.

Lemma 4.2 (Reduced residual is affine)
Let (1.2) be affine, then "N (1) :== f(pu) — B(p) un(p) is affine.
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F = {uN(u): peP} “solution manifold”

Cu .
& inf M () = wwlu

* recall Xu/Zikatanov: [[u™ (1) — wn (1) <
BZ' wNEUN
* benchmark: Kolmogorov N -width
dn(F) := wuelg ||u (1) — wnllu (5.1)
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o F:={uN(u): peP} “solution manifold”

Cu .
& inf M () = wwlu

* recall Xu/Zikatanov: [[u™ (1) — wn (1) <
BZ' wNEUN

* benchmark: Kolmogorov N -width

dn(F) := sup inf [ (1) — wiu (5.1)

[LEP ’LUNEUN
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What is the benchmark? - |

o F:={uN(u): peP} “solution manifold”

* recall Xu/Zikatanov: |[u™ (1) — un (1)|lu < Cu g N (1) — wi

BZ' wyeUn
* benchmark: Kolmogorov N -width
— . . N _
dn(F):= b sup inf Tt () - wilu (5.1)

dim(Upn )=N
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What is the benchmark? - I

Theorem 5.1 (Kolmogorov N -width?)

Let
* b(-,-; u) be bounded, inf-sup stable and affine (with Q° terms)
e Uy, Vi are LBB-stable,

then30 < ¢,C < 0!

dn(F) < Cexp(—cNYQ") (2.2.2)
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What is the benchmark? - lli
Theorem 5.2 (Transport equation?)

For u; + pu, =0, u(0,x) =0, u(t,0) = 1, it holds

dn(F) > gN2.
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What is the benchmark? - lli
Theorem 5.2 (Transport equation?)

For u; + pu, =0, u(0,x) =0, u(t,0) = 1, it holds

Theorem 5.3 (Wave equation?)

For i, — pug, = 0, u(0,2) = 0 and
1 <0,
u(0,z) := At
-1 x>0,
it holds
1 1
ZN‘l/Q <dy(F) < 5(N - 1)~v2,

v
17726



18/26 Model reduction of PPDEs — Advances, trends and challenges | Analysis: The benchmark — The Kolmogorov N -width
p.

Offline-online decomposition

* goal: compute the reduced (linear) approximation

M=

un(p) = o (1) &n, an () € R coefficients

n=1
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p.

Offline-online decomposition

* goal: compute the reduced (linear) approximation

M=

un(p) = o (1) &n, an () € R coefficients

n=1

* by linear system By (u) an (i) = (1)

By(u)=---= Y, 0595 (n) BRGE:  Brv.as RV
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A posteriori error estimation

® aim: a posteriori error estimator_

¢ for selection of the sample set Sy
e for the certification of the reduced approximation
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A posteriori error estimation

® aim: a posteriori error esz‘imator_

e for selection of the sample set Sy
e for the certification of the reduced approximation

An (1) needs to be sharp and online-efficient

M)

(reduced residual)

L ()l s () = £() — By

possible choice Ay (u) = 5
12

e fast computation

* online sharp bounds for 3;; (successive constraint method)"
* Riesz representation offline and affine decomposition for |rx (1) |

* An(p) is even a surrogate for the error w.r.t. the truth
C
o () = un (@) < An () < B—f,‘lluN () —un (Wl (52)
I
(Huynh, Rozza, Sen, and Patera 2007
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Greedy selection of the reduced basis

Algorithm 5.4 (Weak greedy method)

@ © F @

input: training sample Py.in < P, parameter v € (0, 1], tolerance € > 0

: chose /L(l) € Ptrain
. Initialize S; < {pM}, U, := span{&}, N :=1
: while t rue do

if max Ay(u) < e then return
HE Ptrain

pN+)  arg max Ay (i)
HEPirain

compute snapshot &y 41 := uN (N +1D)
compute supremizers ny.q, ¢ = 1,...,Qf

Sni1 < Sy U {pWN*YY, Unyq := span{Un, En+1}
N«—N+1

- end while

output: sample set Sy, reduced trial space Uy, supremizers
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Weak-Greedy convergence
Can we reach the benchmark? Yes, we can! — by (weak) greedy!

Theorem 5.5 (Weak-Greedy convergence?)

Let0 < <1,do(F) < M, then
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Weak-Greedy convergence
Can we reach the benchmark? Yes, we can! — by (weak) greedy!

Theorem 5.5 (Weak-Greedy convergence?)

Let0 <~ < 1,do(F)< M, then

o jf dy(F) <Me N  N=>0 M,a,a>0, then

i JuM (1) — un ()| x < C M exp(—cNP)

where 8 := ;55,0 < 0 < 1, c:= min{|log 0], (49)"“a},
C := max{e?™ ,¢'/2}, g := [2y71671]2, No := [(8¢)**1].
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The thermal block

D~

° U=V =Hi(2)and b(u,v;u) = > J;) Vu(z) - Vo(z) dx

1 P

P
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The thermal block

P
U=V =H}2)and b(u,v; p) = Z ,upf Vu(z) - Vo(z) dx
p=1 2
b(-,-; i) is symmetric and coercive by p, > po > 0forallp=1,..., P
Lax-Milgram theorem ~~ well-posedness

truth: conforming finite elements
in linear complexity, i.e., O(N) (pcg, multigrid)
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The thermal block

P
U=V =H}2)and b(u,v; p) = Z ,upf Vu(z) - Vo(z) dx
p=1 2
b(-,-; i) is symmetric and coercive by p, > po > 0forallp=1,..., P
Lax-Milgram theorem ~~ well-posedness

truth: conforming finite elements
in linear complexity, i.e., O(N) (pcg, multigrid)
N-width decays exponentially!
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Time-dependent problems - |

e parameterized parabolic problem (A(u) elliptic)

up + A(p)u = f(t;n), te€(0,T)=:1, u(0) = ug (5.3)
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Time-dependent problems - |

e parameterized parabolic problem (A(u) elliptic)
w+ Alpu = f(tp), te(©,T)=1, u(0)=uy  (5.3)

* reduce in space and do time stepping: POD-Greedy!?!

Haasdonk and Ohlberger 2008
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Time-dependent problems - |

e parameterized parabolic problem (A(u) elliptic)
w+ Alpu = f(tp), te(©,T)=1, u(0)=uy  (5.3)

* reduce in space and do time stepping: POD-Greedy!?!
e usually ~ error bound grows (exponentially) over time 4

Haasdonk and Ohlberger 2008
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Space/Time-variational formulation
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Space/Time-variational formulation
* treat time as variational variable!®! (not via semigroup theory)

BIDautray and Lions 1992; Schwab and Stevenson 2009; KU and Patera 2012; KU and Patera 2014
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BIDautray and Lions 1992; Schwab and Stevenson 2009; KU and Patera 2012; KU and Patera 2014

24/26



24126 Model reduction of PPDEs — Advances, trends and challenges | Analysis: The benchmark — The Kolmogorov N -width

Time-dependent problems - Il

Space/Time-variational formulation
* treat time as variational variable!®! (not via semigroup theory)
~ Lebesgue-Bochner spaces for in time and space (X = H}(£2))

V= Lot X)i= {os 1o X ol o= [ Io(0Bedt < 0]
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Space/Time-variational formulation
* treat time as variational variable®! (not via semigroup theory)
~ Lebesgue-Bochner spaces for in time and space (X = H{(£2))

V= Lot X) = fos Lo X ol o= [ o0 Beat < 0]
U= W(O —{UELQIX) Ut—UELQ(IX —O}

¢ test & integrate over space and time (u e U,v € V):

f Cug(8)+ A(u(t), v(t)) dt = j CFt ) olt)) dt
0 0 )

t
=:b(u,v;u) =:{f(p),v)

BIDautray and Lions 1992; Schwab and Stevenson 2009; KU and Patera 2012; KU and Patera 2014
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Time-dependent problems - Il
Space/Time-variational formulation
* treat time as variational variable®! (not via semigroup theory)
~ Lebesgue-Bochner spaces for in time and space (X = H{(£2))

V= Lot X) = fos Lo X ol o= [ o0 Beat < 0]
U= W(O —{UELQIX) ’Ut—UELQ(IX —O}

¢ test & integrate over space and time (u e U,v € V):

f Cug(8)+ A(u(t), v(t)) dt = j CFt ) olt)) dt
0 0 )

t
=:b(u,v;u) =:{f(p),v)

~ inf-sup (Banach—Necas): well-posed, isomorphism

BIDautray and Lions 1992; Schwab and Stevenson 2009; KU and Patera 2012; KU and Patera 2014
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Time-dependent problems - Il
Space/Time-variational formulation
* treat time as variational variable®! (not via semigroup theory)
~ Lebesgue-Bochner spaces for in time and space (X = H{(£2))

V= Lot X) = fos Lo X ol o= [ o0 Beat < 0]
U=We):={veLy(I; X): v, =0 € Ly(I; X"),v(0) = 0}

¢ test & integrate over space and time (u e U,v € V):

f Cug(8)+ A(u(t), v(t)) dt = j CFt ) olt)) dt
0 0 )

t
=:b(u,v;u) =:{f(p),v)

~ inf-sup (Banach—Necas): well-posed, isomorphism
e exponential decay of dy (F)

BIDautray and Lions 1992; Schwab and Stevenson 2009; KU and Patera 2012; KU and Patera 2014
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e truth: tensor-product system in d + 1 dimensions ~- uniform LBB
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Space-Time — Some numerics

e truth: tensor-product system in d + 1 dimensions ~- uniform LBB
* similar for optimal controll“l

Parameterized parabolic problem

Rational Krylov Space Method Crank Nicolson
N, N¢ | s pmem rank Time (s) Direct lterative
41300 300 | 13 14 25.96 123.43 59.10
500 | 13 14 30.46 143.71 78.01
700 | 13 14 28.17 153.38 93.03
347361 300 | 14 15 820.17 | 14705.10 792.42
500 | 14 15 828.34 | 1521547 1041.47
700 | 14 15 826.93 | 15917.52 1212.57

~N © ©|© © ©

“IBeranek, Reinhold, and KU 2023
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Space-Time — Some numerics

e truth: tensor-product system in d + 1 dimensions ~ uniform LBB

* similar for optimal controll“l

Parameterized parabolic problem

Rational Krylov Space Method Crank Nicolson
Nn  N¢ | ts pimem rank — Time (s) Direct lterative
41300 300 | 13 14 9 25.96 123.43 59.10
500 | 13 14 9 30.46 143.71 78.01
700 | 13 14 9 28.17 153.38 93.03
347361 300 | 14 15 9 820.17 | 14705.10 792.42
500 | 14 15 9 828.34 | 1521547 1041.47
700 | 14 15 7 826.93 | 15917.52 1212.57

~ efficient tensor solvers beat time stepping!

“IBeranek, Reinhold, and KU 2023
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Space-Time — Some numerics

e truth: tensor-product system in d + 1 dimensions ~ uniform LBB

* similar for optimal controll“l

Parameterized parabolic problem

Rational Krylov Space Method Crank Nicolson
Nn  N¢ | ts pimem rank — Time (s) Direct lterative
41300 300 | 13 14 9 25.96 123.43 59.10
500 | 13 14 9 30.46 143.71 78.01
700 | 13 14 9 28.17 153.38 93.03
347361 300 | 14 15 9 820.17 | 14705.10 792.42
500 | 14 15 9 828.34 | 1521547 1041.47
700 | 14 15 7 826.93 | 15917.52 1212.57

~ efficient tensor solvers beat time stepping!
¢ allows reduction in space and time!

“IBeranek, Reinhold, and KU 2023
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Conclusion / outlook
Summary
* RBM allows enormous reduction (multi-query / realtime / cold computing)
* keys:
* well-posedness / isomorphism
e offline / online-decomposition (truth, affine decomposition)
* error estimator / week greedy (certification)
* analysis of Kolmogorov N-width ~ week greedy

e elliptic v/, parabolic (in space-time) v*

Outlook
* “tough” problems
* transport, wave, Schrédinger, nonlinear...
* “non-standard” variational forms
* nonlinear model reduction

* combine with data assimilation (digital twins)
® use in industrial problems
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