*New birational invariants
Ludmil Katzarkov - University of Miami

Outline

Birational Geometry

Homological Mirror Symmetry

Atoms

Examples

Chen-Ruan Cohomology and (equivariant) rationality, joint with Leonardo Cavenaghi, Lino Grama, and Maxim Kontsevich

What is next?

Birational Geometry

Recall

Recall that an algebraic variety X is said to be rational \mathbb{C} if $\mathbb{C}(X)=\mathbb{C}\left(x_{1}, \ldots, n\right)$ where $n=\operatorname{dim}_{\mathbb{C}} X$.

Example

* $\operatorname{dim}_{\mathbb{C}} X=1$. X a cubic in $\mathbb{P}^{2} . h^{1,0}(X)=1$ implies that X is not rational.
* $\operatorname{dim}_{\mathbb{C}} X=2$. X a cubic in $\mathbb{P}^{3} . X$ is rational.
* $\operatorname{dim}_{\mathbb{C}} X=3$. X smooth cubic in \mathbb{P}^{4}.

$$
\mathrm{H}^{2,1}(X) / \mathrm{H}_{3}^{*}(X)=\operatorname{Jac}(X) \neq \operatorname{Jac}(C)
$$

Hodge Diamond

	1	
	1	
		5
	1	
	1	

Example

* $\operatorname{dim}_{\mathbb{C}} X=5 . X$ a cubic in \mathbb{P}^{5} and with a plane. Hodge Diamond:

	1	
	1	
1	21	1
	1	
	1	

Homological Mirror Symmetry

Homological Mirror Symmetry

$$
D^{b}\left(\mathbb{P}^{2}\right) \longrightarrow F S\left(\mathbb{C}^{2}, W=x+y+\frac{1}{x y}\right)
$$

1	
1	
1	
1	
2	$1+1$
1	

* In general, the convergence of series in the definition of quantum product is not known. One possible fix is to work in an algebraically closed non-archimedean field $K:=\bigcup_{N \geq 1} \mathbb{Q}\left(\left(y^{1 / N}\right)\right)$.
* Let us consider the K-analytic super manifold F_{X} with coordinates q_{1}, \ldots, q_{r} and t_{i} for $i \notin\{1, \ldots, r\}$ where $0<\left|q_{i}\right|<1,0 \leq\left|t_{i}\right|<1$ for j such that Δ_{i} is an even class. Quantum multiplication gives an associative commutative product \star on the tangent bundle $T F_{X}$ identified with $H^{\bullet}(X)$ via $\Delta_{i} \mapsto\left(q_{i} \partial_{q_{i}}\right)$ if $i \in\{1, \ldots, r\}$ and $\partial_{t_{i}}$ otherwise.
* Another important structure is the Euler vector field given by the cohomology class:

$$
E u:=c_{1}(T X)+\sum_{i: \operatorname{deg} \Delta_{i} \neq 2} \frac{\operatorname{deg} \Delta_{i}-2}{2} t_{i} \Delta_{i}
$$

Decomposition theorem

* Denote $M:=F_{X}$. The multiplication $\star \in \Gamma\left(M,\left(T^{*} M\right) \otimes 2 \otimes T M\right)$ and the Euler field $E u \in \Gamma(M, T M)$ are related by $\mathrm{Lie}_{E u}(\star)=\star$.
* Let us consider a point $p \in M_{\text {even }}$ and a finite collection of disjoint open discs $\left(D_{\alpha}\right) \in K$ such that the spectrum of the operator $E u \star$. acting on $T_{p} M$ is contained in the union $\bigcup_{\alpha} D_{\alpha}$. Then, locally near p, the same is true, and we get a decomposition of $T M$ in the vicinity of p into a direct sum of subspaces. The general result is that this decomposition comes from a canonical decomposition $(M, \star, E u)=\bigoplus_{\alpha}\left(M_{\alpha}, \star_{\alpha}, E u_{\alpha}\right)$ near p of (quotient) varieties endowed with products and Euler fields.

Blow up formulae

* Let $Z \subset X$ be a smooth closed subvariety of codimension $m \geq 2$.
* By making a blowup with center at Z, we obtain a new smooth projective variety $X_{e}=\mathrm{BI}_{Z} X$.
* It is well-known that there is a canonical identification of cohomology spaces (breaking Z-grading and cup-product):

$$
H^{\bullet}\left(X_{e}\right) \simeq H^{\bullet}(X) \oplus M(m-1) \cdot H^{\bullet}(Z)
$$

* If we consider the spectrum of $\left.(E u \star \cdot)\right|_{T_{p} F_{\text {even }}} X_{e}$ for a point $p \in F_{\text {even }} X_{e}$, corresponding to an ample class on \widetilde{X} sufficiently close to the semi-ample class $[\widetilde{X} \rightarrow X]$, where $* \omega_{X}$ is an ample class, we obtain a picture like this:

Blow up formulae 1

* Eigenvalues close to 0 correspond to classes in $H^{\bullet}(X)$.
* Eigenvalues close to the rescaled ($m-1$)-st roots of 1 correspond to classes in $H^{\bullet}(Z)$.
* The calculation is very easy, similar to the calculation of the quantum product for $\mathbb{C P}^{n}$ at the beginning of this lecture.
* The only relevant curves are constant maps and lines in the projectivization of the normal bundle to $Z \subset X$.

By the general decomposition theorem, we conclude that $M\left(X_{e}\right)$ is locally isomorphic to the product of m different F-manifolds with Euler fields, which have the same dimensions as $M(X)$ and $(m-1)$ copies of $M(Z)$.

Atoms

Atoms

* Let X be a complex projective variety. Consider the subspace of its even cohomology $H^{2 \bullet}(X, \mathbb{Q})$ spanned by the Hodge classes:

$$
\mathcal{H}_{\text {Hodge }}(X):=\bigoplus_{i} H^{i, i}(X) \cap H^{2 i}(X, \mathbb{Q})
$$

* This subspace gives a purely even submanifold $M_{X \text {, Hodge }} \subset M_{X}$ over K, of dimension equal to the rank of $\mathcal{H}_{\text {Hodge }}(X)$.
* The spectrum of the operator $E_{u p} \star$. where $p \in M_{X, \text { Hodge }}$ achieves a certain maximal value μ at a dense open nonempty connected subset $M_{o}^{\text {Hodge }} \subset M_{X, \text { Hodge }}$. Eigenvalues of $E_{u p} \star$. give a μ-fold spectral cover of $M_{o}^{\text {Hodge }}$, possibly disconnected.
* Definition: the set of local atoms Atoms X is the set of connected components of the spectral cover described above.
* Important example: if $K_{X}=\operatorname{det} T^{*} X$ is numerically effective (has non-zero intersection with any curve), then Atoms X_{X} consists just of one point. Reason: quantum product preserves filtration $H^{\geq \bullet}(X)$.

Atom 1

* Now consider the following huge set:

$$
\begin{aligned}
\mathcal{G}:= & \text { iso classes of } X / C \\
& \text { Atoms } X / \text { Aut } X
\end{aligned}
$$

* Iritani's theorem implies that one can relate certain elements of $M_{X_{e}}$ with some elements of M_{X} or M_{Z}. This generates a certain equivalence relation on the set above, and we denote by Atoms ${ }_{C}$ the set of equivalence classes. This set is naturally filtered by the minimal dimension of a variety in which an atom can appear.
* Well-known fact: birational equivalences between smooth projective varieties are generated by blowups with smooth centers of codimension ≥ 2. Hence, the non-rationality criterion: If for an N-dimensional variety X (here $N \geq 2$) at least one of the atoms of X does not appear in varieties of dimension $\leq N-2$, then X is not rational.

Invariants of Atoms

* Our goal is to prove the non-rationality of certain 4-dimensional varieties. Hence, we have to study atoms coming from all ≤ 2-dimensional varieties, i.e., from points, curves, and surfaces. Moreover, it is sufficient to consider only one representative in each birational class of surfaces.
* For every atom α (in general), we have the following invariants:
* the rank ρ_{α} of the space of Hodge classes $\mathcal{H}_{\text {Hodge }}(X) \otimes_{\mathbb{Q}} K$ in the corresponding generalized eigenspace of $E_{u} \star$,
* the Hodge polynomial $P_{\alpha} \in \mathbb{Z}\left[t, t^{-1}\right]$ whose coefficient at t^{k} is equal to the rank of the generalized α-eigenspace in $\oplus_{p, q: p-q=k} H^{p, q}(X)$.
* Using these two types of invariants, we can distinguish certain atoms of the generic cubic 4 -fold from those coming from points, curves, and surfaces.

Atom <2

* For any atom α coming from points or curves, we obviously have $\operatorname{Coeff}_{t}\left(2 P_{\alpha}\right)=0$.
* For minimal models X of all surfaces, except surfaces of general type and K3 surfaces, we have $\operatorname{Coeff}_{t}\left(2 P_{\alpha}\right)=0$ for any atom coming from X, because $H^{2,0}(X)=0$.
* For the minimal resolution X of ADE singularities of the minimal model of a K3 surface or a surface of general type, we have $K_{X} \geq 0$, hence only one atom α, and then $\rho_{\alpha} \geq 3$, as X has two non-trivial algebraic cycles of dimensions 0 and 2 and at least one non-trivial algebraic cycle of dimension 1.

Generic 4 dim cubic

* Generic cubic 4-fold $X \subset \mathbb{C P}^{5}$ has the following Hodge diamond (and the decomposition into the sum of Hodge classes and the transcendental part):

1
$\begin{array}{cccccc}1 & 20 & 1 & 1 & 1 & 1 \\ & 1 & & & & \end{array}$

* Classical Givental's calculation: at a special (maybe non-generic) point of $M_{X, \text { Hodge }}$ the spectrum of E_{u} is:

$$
\begin{array}{ccc}
& 1 & \\
1 & 20 & 1 \\
& 1 &
\end{array}
$$

Hence, the middle part has $\rho=2{\text {, } \operatorname{Coeff}_{t}\left(2 P_{\alpha}\right)=1 \Rightarrow \text { it cannot come from } \leq 2, ~(2)}$ dimensions.

Algebraically nonclosed fields

* By Y. André's theory of motivated cycles (1996), for any field k of characteristic 0 , we have a pro-reductive algebraic group G / \mathbb{Q} and a universal Weil cohomology theory for k-varieties with values in representations of G. One has $\pi_{0}(G)=\operatorname{Gal}(k / \bar{k})$.
* Action of G on $H^{2}\left(\mathbb{P}^{1}\right)$ gives an epimorphism $G \rightarrow \mathbb{G}_{m}=G L(1)$, denote by $G_{n c}$ the kernel of this map. Then the image of algebraic cycles in $H^{\bullet}(X)$ is contained in $\left(H^{\text {even }}(X)\right)^{\text {Gnc }}$.
* Gromov-Witten invariants are given by algebraic cycles \Rightarrow algebraic group $G_{n c}$ acts on M_{X}. We define local atoms, as well as Atoms k by replacing $M_{X, \text { Hodge }} \rightsquigarrow\left(M_{X}\right)^{G_{n c}}$ (the fixed locus).
* A basic invariant of an atom α : an isomorphism class of a representation [R_{α}] of G_{nc} over K (typically reducible). In the special case $k=\mathbb{C}$, one can recover invariants $\rho_{\alpha}=\operatorname{dim}\left(R_{\alpha}^{G_{n c}}\right)$ (number of Hodge classes) and the Hodge polynomial P_{α}.
* The total representation of $G_{n c}$ in $H^{\bullet}(X)$ splits into a direct sum of "atomic" ones.

Examples

Examples

Example

* Consider a smooth hypersurface $X_{\text {geom }}$ of degree $(1,1,1,1)$ in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$, defined over an algebraically closed field k. It is the blowup of $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ at an elliptic curve E, and hence it has 8 point-like atoms and one more complicated atom α_{E} associated with E.
* Now, consider a model X of $X_{\text {geom }}$ defined over a non-closed field k such that the Galois group $\operatorname{Gal}(k / \bar{k})$ acts by a transitive group of permutations of 4 factors in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$. Then at the most naive point of M_{X} with coordinates $q_{i}=1, t_{j}=0$, there are 3 different eigenvalues of $E_{u} \star \cdot$, with multiplicities $1,4,7$. The last piece has Hodge polynomial $5+t+t^{-1}$ and only 2 algebraic classes defined over k. This implies that this representation of $G_{n c}$ cannot split furthermore into atomic representations coming from 0 - and 1 -dimensional varieties over k, \Rightarrow nonrationality of X / k.

Example

*

11111
Hypersurface in $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ with a S_{5}-action. The atom over zero has only two algebraic cycles.

* $X=\widehat{\mathbb{P}_{C}^{3}} \quad \mathbb{Z}_{2} \quad 2: 1$

Asymptotic of the quantum differential equation

The asymptotic $\sigma_{1}, \ldots, \sigma_{N}$ of the solutions of the quantum differential equation

$$
\left(\frac{\partial}{\partial u}-\frac{K}{u^{2}}+\frac{G}{u}\right) \psi=0
$$

are birational invariants.

Theorem

* For a Fano hypersurface of degree d

$$
\delta:=\operatorname{dim} X-2 \frac{N-d}{d}
$$

* Assume that $\delta>\operatorname{dim} X-2$. Then X is not rational.

Example

X a 4-dimensional quadric. We have $\delta=4-2 \frac{6-4}{4}=3>1$.

Chen-Ruan Cohomology and (equivariant) rationality, joint with Leonardo Cavenaghi, Lino Grama, and Maxim Kontsevich

Chen-Ruan cohomology and the Burnside group

* Chen-Ruan cohomology of an orbifold X is the orbifold cohomology (with real or complex coefficients) of the inertial orbifold $I X$. It is motivated by the role that orbifolds play as target spaces in perturbative string theory, as in the algebraic operation of orbifolds 2d CFTs.
* Inertia orbifold is a particular model for the free loop space object of an orbifold X
* M. Kontsevich, V. Pestun, and Y. Tschinkel introduced (2019) new invariants in equivariant birational geometry.
Assume that a finite group G acts (birationally and generically free) on a projective variety Y (of dimension d) such that $X=Y / G$ is an orbifold. Let Y^{G} be the fixed point for this G-action. We decompose Y^{G} into irreducible subvarieties components'

$$
Y^{G}=\sqcup_{l} F_{l} .
$$

The G-action induces, for each I, a G-action in $T_{y} Y, y \in F_{\alpha}$ with characters $\left\{a_{j, l}\right\}, j=1, \ldots, d$. The symbols $\left\{\left[a_{1, l}, \ldots, a_{d, l}\right]\right\}$, under some relations define elements in a group $\mathcal{B}_{d}(G)$ whose classes $\beta(Y):=\sum_{l}\left[a_{1, l}, \ldots, a_{d, l}\right]$ are equivariant birational invariants. An enhancement of $B_{d}(G)$ leads to the Burnside group.

A criterium

We connect the group $\mathcal{B}_{d}(G)$ with Chen-Ruan cohomology via the following

Theorem

Assume that G is abelian. Consider a generically free birational action of G in \mathbb{P}^{d}.
Write

$$
Y^{G}=\sqcup_{l} F_{l}, \mathbb{P}^{d}{ }^{G}=\sqcup_{m} G_{m} .
$$

Let $\mathrm{H}^{*}(\cdot)$ stand to the cohomology ring of (\cdot) and consider the respective induced G-actions on it. If

$$
\prod_{l} \mathrm{H}^{*}\left(F_{l}\right)^{G} \not \not \prod_{m} \mathrm{H}^{*}\left(G_{m}\right)^{G}
$$

then

$$
Y \not \chi_{G} \mathbb{P}^{d},
$$

i.e., $\beta(Y) \neq \beta\left(\mathbb{P}^{d}\right)$.

Idea of the proof.

Translate the statement into eigenvalues for the action on the fixed point set.
Collect this information from twisted sectors. Realize the relation of this with β

An Application

Example (Fixed point set for linear finite group actions on \mathbb{P}^{n})

Lemma

Let G be a group with the following G-irreducible complex representation $\psi=\sum_{j} n_{j} \psi_{j}$, i.e., $\psi: G \rightarrow \mathrm{GL}\left(\mathbb{C}^{d_{j}}\right)$. Then,

$$
\mathbb{P}^{\sum_{j} n_{j}-1}{ }^{G}=\sqcup_{j: d_{j}=1} \mathbb{P}^{n_{j}-1}
$$

Proposition

If G is abelian and ψ is as former, then

$$
\mathbb{P}^{\sum_{j} n_{j}-1}{ }^{G}=\sqcup_{j=1}^{\sum_{j} n_{j}-1}\{[0: \ldots: 1: 0: \ldots: 0]\}
$$

Thus, for any commutative ring R the singular cohomology ring of $\mathbb{P}^{\sum_{j} n_{j}-1}{ }^{G}$ is given by

$$
\mathrm{H}^{*}\left(\mathbb{P}^{\sum_{j} n_{j}-1}{ }^{G} ; R\right) \cong R[x] /\left(x^{2}\right) \oplus 0 \oplus \ldots \oplus 0
$$

where x is a generator of degree 2 .
Take $R=\mathbb{C}\left(\mathbb{P}^{n}\right)$. The G-action in \mathbb{P}^{n} induces a G-action in $\mathbb{C}\left(\mathbb{P}^{n}\right)$. Consider the quantity

$$
C\left(\mathbb{P}^{n}\right)^{G}[x] /\left(x^{2}\right) \oplus 0 \oplus \ldots \oplus 0
$$

An Application

Example (Fixed point set for (cyclic permutation) actions on $\mathbb{P}^{1} \times \ldots \times \mathbb{P}^{1}$)

Write for each \mathbb{P}^{1} in the factor its coordinates as $\left[u_{0}: u_{1}\right]$. Suppose we are given d-factors. Let \mathbb{C}_{d} act on $\mathbb{P}^{1} \times \ldots \mathbb{P}^{1}$ via cyclic permuting the coordinates of each factor. We have that

$$
\mathbb{P}^{1} \times \ldots \mathbb{P}^{C_{d}} \cong \mathbb{P}^{1}
$$

Indeed, if $\left[u_{0}^{j}: u_{1}^{j}\right]$ stands to the general coordinates in the j-th factor, we readily check that $\mathbb{P}^{1} \times \ldots \mathbb{P}^{1 C_{d}}=\left\{\left(\left[u_{0}^{1}: u_{1}^{1}\right], \ldots,\left[u_{0}^{1}: u_{1}^{1}\right]\right)\right\} \cong\left\{\left[u_{0}: u_{1}\right] \in \mathbb{P}^{1}\right\}$.

Consequently, for a chosen commutative ring R, we have that

$$
\mathrm{H}^{*}\left(\mathbb{P}^{1} \times \ldots \times \mathbb{P}^{1_{d}}\right) \cong \frac{R[x]}{\left(x^{2}\right)}
$$

where x is a generator of degree 2. Pick $R=\mathbb{C}\left(\mathbb{P}^{1}\right)$ and let $G=C_{d}$ act on it accordingly. Consider the quantity

$$
\frac{\mathbb{C}\left(\mathbb{P}^{1}\right)^{C_{d}}[x]}{\left(x^{2}\right)}
$$

An application

Theorem

For any linear action of $G=C_{4}$ in \mathbb{P}^{4} and the permuting coordinates C_{4} action on $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ we have

$$
\mathbb{P}^{4} \nsim c_{4} \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

Let $X(1,1,1,1)$ be given by the blowup of $\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}$ on an elliptic curve. Assume that C_{4} acts in it via restricting the cyclic coordinate permutation in $\mathbb{P}^{1} \times \ldots \times \mathbb{P}^{1}$. We have that for any C_{4}-linear action in \mathbb{P}^{3}

$$
X(1,1,1,1) \nsim \mathbb{P}^{3} .
$$

Proof.

$$
\frac{\mathbb{C}\left(\mathbb{P}^{1}\right)^{C_{4}}[x]}{\left(x^{2}\right)} \not \approx \frac{C\left(\mathbb{P}^{1}\right)^{C_{4}}[x]}{\left(x^{2}\right)} \oplus 0 \oplus 0 \oplus 0 .
$$

Cubic with a plane

Theorem

* Assume that the Γ conjecture holds for X and for any $Z \subset X$. Then the Γ conjecture holds for \widehat{X}_{Z}.
* Let X be a 4-dimensional quadric bundle. If there exists a class B such that $\langle B, B\rangle=\frac{1}{2}$ then X is not rational.

Example

The former applies to, for instance,

* 4-dimensional cubic with a plane
* Intersection of three quadrics in \mathbb{P}^{7}.

What is next?

What is next?

* Seek finer birational invariants combining group actions with atoms theory.
* The concept of gerbes is related to Chen-Ruan cohomology via the following. Let X be an orbifold. The group of gerbes with connection over X are classified by the Deligne cohomology group $\mathrm{H}^{3}\left(X, \mathbb{Z}(3)_{D}^{\infty}\right)$. Discrete torsion of B-fields (as in the works of Vafa and Witten) are the curvature of these gerbe connections.
* Gerbes with connections correspond with twisted bundles \mathcal{L} over X. The Grothendieck group generated by the isomorphism classes of \mathcal{L} is the \mathcal{L} twisted K-theory ${ }^{\mathcal{L}} K_{\text {grp }}(X)$. Under mild hypothesis on X, it holds that

$$
{ }^{\mathcal{L}} K_{\mathrm{grp}}(X) \otimes \mathbb{C} \cong \mathrm{H}_{C R}^{*}(X ; \mathbb{C}) .
$$

* The ring tmf can be used to recover "global information" for orbifolds X. This means that we can use it combined with the theory of Chen-Ruan cohomology to classify all the possible T^{2}-fibratios whose base is X. This may allow us to relate equivariant birational invariants with smooth invariants.

Thank you!

