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I
Recall

Recall that an algebraic variety X is said to be rational C if C(X ) = C(x1, . . . , n)

where n = dimC X .

Example

I dimC X = 1. X a cubic in P2. h1,0(X ) = 1 implies that X is not rational.

I dimC X = 2. X a cubic in P3. X is rational.

I dimC X = 3. X smooth cubic in P4.
H2,1(X )/H∗3(X ) = Jac(X ) 6= Jac(C).
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I
Example

I dimC X = 5. X a cubic in P5 and with a plane. Hodge Diamond:
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Homological Mirror Symmetry



I
Homological Mirror Symmetry

Db(P2) −→ FS(C2,W = x+y+
1
xy

).
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I
F - bundles

I In general, the convergence of series in the definition of quantum product is not
known. One possible fix is to work in an algebraically closed non-archimedean
field K :=

⋃
N≥1 Q((y1/N)).

I Let us consider the K -analytic super manifold FX with coordinates q1, . . . , qr and
ti for i /∈ {1, . . . , r} where 0 < |qi | < 1, 0 ≤ |ti | < 1 for j such that ∆i is an even
class. Quantum multiplication gives an associative commutative product ? on the
tangent bundle TFX identified with H•(X ) via ∆i 7→ (qi∂qi ) if i ∈ {1, . . . , r} and
∂ti otherwise.

I Another important structure is the Euler vector field given by the cohomology
class:

Eu := c1(TX ) +
∑

i :deg∆i 6=2

deg∆i − 2
2

ti∆i
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I
Decomposition theorem

I Denote M := FX . The multiplication ? ∈ Γ(M, (T∗M)⊗ 2⊗ TM) and the Euler
field Eu ∈ Γ(M,TM) are related by LieEu(?) = ?.

I Let us consider a point p ∈ Meven and a finite collection of disjoint open discs
(Dα) ∈ K such that the spectrum of the operator Eu ? · acting on TpM is
contained in the union

⋃
α Dα. Then, locally near p, the same is true, and we get

a decomposition of TM in the vicinity of p into a direct sum of subspaces. The
general result is that this decomposition comes from a canonical decomposition
(M, ?,Eu) =

⊕
α(Mα, ?α,Euα) near p of (quotient) varieties endowed with

products and Euler fields.
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I
Blow up formulae

I Let Z ⊂ X be a smooth closed subvariety of codimension m ≥ 2.

I By making a blowup with center at Z , we obtain a new smooth projective variety
Xe = BlZX .

I It is well-known that there is a canonical identification of cohomology spaces
(breaking Z -grading and cup-product):

H•(Xe) ' H•(X )⊕M(m − 1) · H•(Z)

I If we consider the spectrum of (Eu ? ·)|TpFevenXe for a point p ∈ FevenXe ,
corresponding to an ample class on X̃ sufficiently close to the semi-ample class
[X̃ → X ], where ∗ωX is an ample class, we obtain a picture like this:
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I
Blow up formulae 1

I Eigenvalues close to 0 correspond to classes in H•(X ).

I Eigenvalues close to the rescaled (m − 1)-st roots of 1 correspond to classes in
H•(Z).

I The calculation is very easy, similar to the calculation of the quantum product for
CPn at the beginning of this lecture.

I The only relevant curves are constant maps and lines in the projectivization of the
normal bundle to Z ⊂ X .

By the general decomposition theorem, we conclude that M(Xe) is locally isomorphic
to the product of m different F -manifolds with Euler fields, which have the same
dimensions as M(X ) and (m − 1) copies of M(Z).
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Atoms

I Let X be a complex projective variety. Consider the subspace of its even
cohomology H2•(X ,Q) spanned by the Hodge classes:

HHodge(X ) :=
⊕
i

H i,i (X ) ∩ H2i (X ,Q)

I This subspace gives a purely even submanifold MX ,Hodge ⊂ MX over K , of
dimension equal to the rank of HHodge(X ).

I The spectrum of the operator Eup ? · where p ∈ MX ,Hodge achieves a certain
maximal value µ at a dense open nonempty connected subset
MHodge

o ⊂ MX ,Hodge. Eigenvalues of Eup ? · give a µ-fold spectral cover of
MHodge

o , possibly disconnected.

I Definition: the set of local atoms AtomsX is the set of connected components of
the spectral cover described above.

I Important example: if KX = detT∗X is numerically effective (has non-zero
intersection with any curve), then AtomsX consists just of one point. Reason:
quantum product preserves filtration H≥•(X ).
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Atom 1

I Now consider the following huge set:
G := iso classes of X/C

AtomsX /AutX

I Iritani’s theorem implies that one can relate certain elements of MXe with some
elements of MX or MZ . This generates a certain equivalence relation on the set
above, and we denote by AtomsC the set of equivalence classes. This set is
naturally filtered by the minimal dimension of a variety in which an atom can
appear.

I Well-known fact: birational equivalences between smooth projective varieties are
generated by blowups with smooth centers of codimension ≥ 2. Hence, the
non-rationality criterion: If for an N-dimensional variety X (here N ≥ 2) at least
one of the atoms of X does not appear in varieties of dimension ≤ N − 2, then X

is not rational.
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Invariants of Atoms

I Our goal is to prove the non-rationality of certain 4-dimensional varieties. Hence,
we have to study atoms coming from all ≤ 2-dimensional varieties, i.e., from
points, curves, and surfaces. Moreover, it is sufficient to consider only one
representative in each birational class of surfaces.

I For every atom α (in general), we have the following invariants:

I the rank ρα of the space of Hodge classes HHodge(X )⊗Q K in the
corresponding generalized eigenspace of Eu ? ·,

I the Hodge polynomial Pα ∈ Z[t, t−1] whose coefficient at tk is equal to the
rank of the generalized α-eigenspace in ⊕p,q:p−q=kH

p,q(X ).

I Using these two types of invariants, we can distinguish certain atoms of the
generic cubic 4-fold from those coming from points, curves, and surfaces.
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Atom < 2

I For any atom α coming from points or curves, we obviously have
Coefft(2Pα) = 0.

I For minimal models X of all surfaces, except surfaces of general type and K3
surfaces, we have Coefft(2Pα) = 0 for any atom coming from X , because
H2,0(X ) = 0.

I For the minimal resolution X of ADE singularities of the minimal model of a K3
surface or a surface of general type, we have KX ≥ 0, hence only one atom α,
and then ρα ≥ 3, as X has two non-trivial algebraic cycles of dimensions 0 and 2
and at least one non-trivial algebraic cycle of dimension 1.
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Generic 4 dim cubic

I Generic cubic 4-fold X ⊂ CP5 has the following Hodge diamond (and the
decomposition into the sum of Hodge classes and the transcendental part):

1
1 20 1 1 1 1

1

I Classical Givental’s calculation: at a special (maybe non-generic) point of
MX ,Hodge the spectrum of Eu is:

1
1 20 1

1
Hence, the middle part has ρ = 2, Coefft(2Pα) = 1⇒ it cannot come from ≤ 2
dimensions.
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Algebraically nonclosed fields

I By Y. André’s theory of motivated cycles (1996), for any field k of characteristic
0, we have a pro-reductive algebraic group G/Q and a universal Weil cohomology
theory for k-varieties with values in representations of G . One has
π0(G) = Gal(k/k̄).

I Action of G on H2(P1) gives an epimorphism G � Gm = GL(1), denote by Gnc

the kernel of this map. Then the image of algebraic cycles in H•(X ) is contained
in (Heven(X ))Gnc .

I Gromov-Witten invariants are given by algebraic cycles ⇒ algebraic group Gnc

acts on MX . We define local atoms, as well as Atoms k by replacing
MX ,Hodge  (MX )Gnc (the fixed locus).

I A basic invariant of an atom α: an isomorphism class of a representation [Rα] of
Gnc over K (typically reducible). In the special case k = C, one can recover
invariants ρα = dim(RGnc

α ) (number of Hodge classes) and the Hodge polynomial
Pα.

I The total representation of Gnc in H•(X ) splits into a direct sum of ”atomic”
ones.
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I
Examples

Example

I Consider a smooth hypersurface Xgeom of degree (1, 1, 1, 1) in P1 × P1 × P1 × P1,
defined over an algebraically closed field k. It is the blowup of P1 × P1 × P1 at
an elliptic curve E , and hence it has 8 point-like atoms and one more complicated
atom αE associated with E .

I Now, consider a model X of Xgeom defined over a non-closed field k such that
the Galois group Gal(k/k̄) acts by a transitive group of permutations of 4 factors
in P1 × P1 × P1 × P1. Then at the most naive point of MX with coordinates
qi = 1, tj = 0, there are 3 different eigenvalues of Eu ? ·, with multiplicities
1, 4, 7. The last piece has Hodge polynomial 5 + t + t−1 and only 2 algebraic
classes defined over k. This implies that this representation of Gnc cannot split
furthermore into atomic representations coming from 0- and 1-dimensional varieties
over k, ⇒ nonrationality of X/k.
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I
Example

I
1 1 1 1 1

Hypersurface in P1×P1×P1×P1×P1 with a S5-action. The atom over zero has
only two algebraic cycles.

I X = P̂3
C Z2 2 : 1

1
2

2 2
2
1

2
2 2 1 1

2
· · ·
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Asymptotic of the quantum differential equation

The asymptotic σ1, . . . , σN of the solutions of the quantum differential equation(
∂

∂u
−

K

u2 +
G

u

)
ψ = 0

are birational invariants.

Theorem

I For a Fano hypersurface of degree d

δ := dimX − 2
N − d

d
I Assume that δ > dimX − 2. Then X is not rational.

Example

X a 4-dimensional quadric. We have δ = 4− 2 6−4
4 = 3 > 1.

18



I
Chen-Ruan Cohomology and
(equivariant) rationality, joint with
Leonardo Cavenaghi, Lino Grama,
and Maxim Kontsevich



I
Chen-Ruan cohomology and the Burnside group

I Chen-Ruan cohomology of an orbifold X is the orbifold cohomology (with real or
complex coefficients) of the inertial orbifold IX . It is motivated by the role that
orbifolds play as target spaces in perturbative string theory, as in the algebraic
operation of orbifolds 2d CFTs.

I Inertia orbifold is a particular model for the free loop space object of an orbifold X

I M. Kontsevich, V. Pestun, and Y. Tschinkel introduced (2019) new invariants in
equivariant birational geometry.
Assume that a finite group G acts (birationally and generically free) on a
projective variety Y (of dimension d) such that X = Y /G is an orbifold. Let Y G

be the fixed point for this G -action. We decompose Y G into irreducible
subvarieties components’

Y G = tlFl .

The G -action induces, for each l , a G -action in TyY , y ∈ Fα with characters
{aj,l}, j = 1, . . . , d . The symbols {[a1,l , . . . , ad,l ]}l under some relations define
elements in a group Bd (G) whose classes β(Y ) :=

∑
l [a1,l , . . . , ad,l ] are

equivariant birational invariants. An enhancement of Bd (G) leads to the Burnside
group.
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A criterium

We connect the group Bd (G) with Chen-Ruan cohomology via the following

Theorem

Assume that G is abelian. Consider a generically free birational action of G in Pd .
Write

Y G = tlFl , PdG = tmGm.

Let H∗(·) stand to the cohomology ring of (·) and consider the respective induced
G -actions on it. If ∏

l

H∗(Fl )
G 6∼=

∏
m

H∗(Gm)G

then
Y 6∼G Pd ,

i.e., β(Y ) 6= β(Pd ).

Idea of the proof.
Translate the statement into eigenvalues for the action on the fixed point set.
Collect this information from twisted sectors. Realize the relation of this with β.
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An Application

Example (Fixed point set for linear finite group actions on Pn)

Lemma
Let G be a group with the following G -irreducible complex representation
ψ =

∑
j njψj , i.e., ψ : G → GL(Cdj ). Then,

P
∑

j nj−1G = tj :dj=1Pnj−1.

Proposition
If G is abelian and ψ is as former, then

P
∑

j nj−1G = t
∑

j nj−1
j=1 {[0 : . . . : 1 : 0 : . . . : 0]}

Thus, for any commutative ring R the singular cohomology ring of P
∑

j nj−1G is
given by

H∗(P
∑

j nj−1G ;R) ∼= R[x]/(x2)⊕ 0⊕ . . .⊕ 0
where x is a generator of degree 2.

Take R = C(Pn). The G -action in Pn induces a G -action in C(Pn). Consider the
quantity

C(Pn)G [x]/(x2)⊕ 0⊕ . . .⊕ 0.
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An Application

Example (Fixed point set for (cyclic permutation) actions on P1 × . . .× P1)

Write for each P1 in the factor its coordinates as [u0 : u1]. Suppose we are given
d-factors. Let Cd act on P1 × . . .P1 via cyclic permuting the coordinates of each
factor. We have that

P1 × . . .P1Cd ∼= P1.

Indeed, if [uj0 : uj1] stands to the general coordinates in the j-th factor, we readily
check that P1 × . . .P1Cd = {([u1

0 : u1
1 ], . . . , [u1

0 : u1
1 ])} ∼= {[u0 : u1] ∈ P1}.

Consequently, for a chosen commutative ring R, we have that

H∗(P1 × . . .× P1Cd ) ∼=
R[x]

(x2)
where x is a generator of degree 2. Pick R = C(P1) and let G = Cd act on it
accordingly. Consider the quantity

C(P1)Cd [x]

(x2)
.
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An application

Theorem

For any linear action of G = C4 in P4 and the permuting coordinates C4 action on
P1 × P1 × P1 × P1 we have

P4 6∼C4 P1 × P1 × P1 × P1.

Let X (1, 1, 1, 1) be given by the blowup of P1 × P1 × P1 on an elliptic curve. Assume
that C4 acts in it via restricting the cyclic coordinate permutation in P1 × . . .× P1.
We have that for any C4-linear action in P3

X (1, 1, 1, 1) 6∼ P3.

Proof.

C(P1)C4 [x]

(x2)
6∼=

C(P1)C4 [x]

(x2)
⊕ 0⊕ 0⊕ 0.

23



I
Cubic with a plane

Theorem

I Assume that the Γ conjecture holds for X and for any Z ⊂ X . Then the Γ-
conjecture holds for X̂Z .

I Let X be a 4-dimensional quadric bundle. If there exists a class B such that
〈B,B〉 = 1

2 then X is not rational.

Example
The former applies to, for instance,

I 4-dimensional cubic with a plane

I Intersection of three quadrics in P7.
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What is next?

I Seek finer birational invariants combining group actions with atoms theory.

I The concept of gerbes is related to Chen-Ruan cohomology via the following. Let
X be an orbifold. The group of gerbes with connection over X are classified by
the Deligne cohomology group H3(X ,Z(3)∞D ). Discrete torsion of B-fields (as in
the works of Vafa and Witten) are the curvature of these gerbe connections.

I Gerbes with connections correspond with twisted bundles L over X . The
Grothendieck group generated by the isomorphism classes of L is the L twisted
K-theory LKgrp(X ). Under mild hypothesis on X , it holds that

LKgrp(X )⊗ C ∼= H∗CR(X ;C).

I The ring tmf can be used to recover “global information” for orbifolds X . This
means that we can use it combined with the theory of Chen-Ruan cohomology to
classify all the possible T2-fibratios whose base is X . This may allow us to relate
equivariant birational invariants with smooth invariants.
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Thank you!
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