A general theory of norm and time optimal control problems for linear PDE systems

Marius Tucsnak

Trends in Mathematical Sciences

June 10, 2024

1 Introduction

- 2 Notation and preliminaries
- 3 Main abstract results
- 4 Some ideas of the proof
- 5 Exactly controllable systems
- 6 Application to Schrödinger and Kirchhoff systems

First example of time optimal control

A rocket car on a train track

Steer the rocket car from rest to rest, from the initial position z_0 to the final position z_1 , with a bounded acceleration:

$$\ddot{z}(t) = u(t), \quad z(0) = z_0, \quad \dot{z}(0) = 0,$$

 $z(\tau) = z_1, \quad \dot{z}(\tau) = 0, \quad -1 \leqslant u(t) \leqslant 1.$

The solution is to apply <u>max acceleration</u>, i.e., $u^*(t) = 1$ until the unique switching point, and then <u>max braking</u>, i.e., $u^*(t) = -1$. This solution, can be "uncomfortable" for the passengers...

A PDE example: controlling the temperature in a room

Statement of the norm optimal control problem

Given $\psi \in L^2(\Omega)$ and $\tau > 0$ the norm optimal control problem for the system described by (1)-(3) consists in determining $\hat{u} \in L^{\infty}([0,\infty) \times \Gamma)$ such that

$$\|\hat{u}\|_{L^{\infty}([0,\infty)\times\Gamma)} = \min_{\substack{u\in L^{\infty}([0,\infty)\times\Gamma)\\z(\tau,\cdot)=0}} \|u\|_{L^{\infty}([0,\infty)\times\Gamma)}.$$

If the above optimal control problem admits a solution \hat{u} for some $\tau>0,$ we denote by $N^\infty(\tau)$ the optimal cost, i.e., we set

$$N^{\infty}(\tau) = \|\hat{u}\|_{L^{\infty}([0,\infty)\times\Gamma)}.$$

Statement of the time optimal control problem

Given $\psi \in L^2(\Omega)$, M > 0 and setting

 $\mathcal{U}_M := \left\{ u \mid u \in L^{\infty}((0,\infty) \times \Gamma) \quad \text{s.t. } \|u\|_{L^{\infty}((0,\infty) \times \Gamma)} \leqslant M \right\}.$

the time optimal control problem for the system described by (1)-(3) consists in determining $(\tau^{\infty}(M), u_M^{\infty}) \in (0, \infty) \times \mathcal{U}_M$ such that u_M^{∞} drives the initial state ψ to zero in time $\tau^{\infty}(M)$, i.e., the state trajectory z_M^{∞} associated to u_M^{∞} satisfies $z_M^{\infty}(\tau, \cdot) = 0$, and

$$\tau^{\infty}(M) := \min_{u \in \mathfrak{U}_M} \left\{ \tau \mid \exists u \in \mathfrak{U}_M \text{ with } z(\tau, \cdot) = 0 \right\}.$$

First main results

Proposition 1

With the above notation, we have:

- For every τ > 0 and ψ ∈ L²(Ω) \ {0} the norm optimal control problem for (1)-(3) admits at least one solution. Moreover, û can be chosen s.t. |û(t, x)| = N[∞](τ)a.e..
- Por every ψ ∈ L²(Ω) \ {0}, the time optimal control problem for (1)-(3) admits at least one solution (τ[∞](M), u_M[∞]). Moreover, u_M[∞] can be selected s.t. |u_M[∞](t, x)| = M a.e.).
- $\begin{tabular}{ll} \begin{tabular}{ll} \end{tabular} & \end{tabular} \end{tabular} N^\infty, \tau^\infty \mbox{ defined via the two assertions above satisfy } \end{tabular} \end{tabular} \begin{tabular}{ll} \end{tabular} \end{tabular}$

$$N^{\infty}(\tau^{\infty}(M)) = M \qquad (M > 0)$$

$$\tau^{\infty}(N^{\infty}(\tau)) = \tau \qquad (\tau > 0).$$

Bibliography(I)

- G. Schmidt, The "bang-bang" principle for the time-optimal problem in boundary control of the heat equation, *SICON*, 1980.
- V. J. Mizel and T. I. Seidman, An abstract bang-bang principle and time-optimal boundary control of the heat equation, *SICON*, 1997.
- G. Wang, Y. Xu and Y. Zhang, Attainable subspaces and the bang-bang property of time optimal controls for heat equations, *SICON*, **53** (2015), 592–621.
- G. Wang and E. Zuazua, On the equivalence of minimal time and minimal norm controls for internally controlled heat equations, *SICON*, **50** (2012), 2938–2958.
- J. Apraiz, L. Escauriaza, G. Wang and C. Zhang, Observability inequalities and measurable sets, *JEMS*, **16** (2014).

General framework

- X (the state space) and U are Hilbert spaces.
- T = (T_t)_{t≥0} is a strongly continuous semigroup on X generated by A.
- $B \in \mathcal{L}(U; X_{-1})$ is an **admissible control operator for** \mathbb{T} and $u \in L^2([0, \infty), U)$ is an input function.

Some background

Let $\dot{z}(t) = Az(t) + Bu(t)$, or $z(t) = \mathbb{T}_t z(0) + \Phi_t u$, where

 $\Phi_t \in \mathcal{L}(L^2([0,\infty),U);X), \quad \Phi_t u = \int_0^t \mathbb{T}_{t-\sigma} Bu(\sigma) \, \mathrm{d}\sigma.$

 (\mathbb{T}, Φ) is said exactly controllable in time τ if $\operatorname{Ran} \Phi_{\tau} = X$. This is equivalent to the existence of $K_{\tau} > 0$ such that for $\varphi \in \mathcal{D}(A^*)$, $K_{\tau}^2 \int_0^{\tau} \|B^* \mathbb{T}_t^* \varphi\|^2 \, \mathrm{d}t \ge \|\varphi\|^2$ (exact observability)

 (\mathbb{T}, Φ) is approximatively controllable in time τ if $\overline{\operatorname{Ran} \Phi_{\tau}} = X$, or, $(B^* \mathbb{T}_t^* \varphi = 0 \text{ for } t \in [0, \tau] \Rightarrow \varphi = 0)$ (approx. observability)

More background

Let $U = L^2(0)$, where 0 is a compact Riemannian manifold. The L^{∞} reachable space in time τ of Σ , denoted $\mathcal{R}^{\infty}_{\tau}$ is

$$\mathfrak{R}^{\infty}_{\tau} = \Phi_{\tau} \left(L^{\infty}([0,\infty) \times \mathfrak{O}) \right).$$

 $\mathcal{R}^\infty_{ au}$, endowed with the norm

$$\|\xi\|_{\mathcal{R}^{\infty}_{\tau}} = \inf_{\substack{u \in L^{\infty}([0,\infty) \times \mathcal{O}) \\ \Phi_{\tau}u = \xi}} \|u\|_{L^{\infty}([0,\tau] \times \mathcal{O})} \qquad (\xi \in \mathcal{R}^{\infty}_{\tau}),$$

is a normed space.

 $\Sigma = (\mathbb{T}, \Phi)$ is said L^{∞} null controllable in time τ if $\mathcal{R}^{\infty}_{\tau} \supset \operatorname{Ran} \mathbb{T}_{\tau}$.

Bibliography(II)

- Fattorini, H. O.: *Time-optimal control of solutions of operational differential equations*, J. Soc. Indust. Appl. Math. Control, 1964.
- Fattorini, H. O.: A remark on the "bang-bang" principle for linear control systems in infinite-dimensional space, SICON, 1968.
- G. Schmidt, The "bang-bang" principle for the time-optimal problem in boundary control of the heat equation, *SICON*, 1980.
- Mizel, V. J. and Seidman, T. I.: An abstract bang-bang principle and time-optimal boundary control of the heat equation, SIAM J. Control Optim., 1997.
- Lions J.-L.: Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Gauthier-Villars, Paris, 1968.
- Fattorini, H. O.: Infinite dimensional linear control systems. The time optimal and norm optimal problems, North-Holland Mathematics Studies, 201, Amsterdam, 2005.

Leading assumptions

[H1] $U = L^2(\mathcal{O})$, where \mathcal{O} is a compact Riemannian manifold.

[H2] \mathbb{T} is analytic and its generator A has compact resolvents.

[H3] For $\tau > 0$ we have $\mathcal{R}^{\infty}_{\tau} = X$, i.e., (\mathbb{T}, Φ) is L^{∞} null controllable in any time.

[H4] If $\tau > 0$, $\psi \in X$ are such that $(\Phi_{\tau}^*\psi)(t,x) = 0$ for (t,x) in a subset of positive measure of $[0,\tau] \times 0$ then $\psi = 0$. A stronger hypothesis: null controllability from measurable sets **[H5]** For every $\tau > 0$ and every set of positive measure $e \subset [0,\tau] \times X$ there exists $K_{\tau,e} > 0$ such that $K_{\tau,e} \int_{e} |(\Phi_{\tau}^*\psi)(t,x)| \, \mathrm{d}x \, \mathrm{d}t \ge ||\mathbb{T}_{\tau}^*\psi||_X \qquad (\psi \in X).$

Norm optimal controls. Problem statement

Given $\psi \in X$, we define $N^\infty: (0,\infty) \to [0,\infty)$ by

$$N^{\infty}(\tau) := \|\mathbb{T}_{\tau}\psi\|_{\mathcal{R}^{\infty}_{\tau}}.$$

Thanks to [H3], N^{∞} is clearly well defined and takes values in $[0,\infty)$. Moreover, N^{∞} clearly depends on the choice of $\psi \in X$ but, to avoid notational complexity, this dependence will not appear explicitly in what follows. A norm optimal control at time τ is an input function \hat{u} such that

$$\Phi_{\tau}\hat{u} + \mathbb{T}_{\tau}\psi = 0, \qquad \|\hat{u}\|_{L^{\infty}([0,\tau]\times \mathcal{O})} = N^{\infty}(\tau).$$

The typical questions to be solved are the existence of such controls and the study of their properties (such as optimality conditions or the bang-bang-property).

Norm optimal controls. Main result

Theorem 1

Let $\tau > 0$ and let $\Sigma = (\mathbb{T}, \Phi)$ a well-posed control LTI system with state space X and input space U satisfying assumptions [H1]-[H4]. Then for every $\psi \in X \setminus \{0\}$ the norm optimal control problem $(NP)^{\tau}$ admits at least one solution. Moreover, this control \hat{u} can be chosen to have the bang-bang property, i.e.,

 $|\hat{u}(t,x)| = N^{\infty}(\tau) \qquad \quad ((t,x) \in (0,\tau) \times \mathcal{O} \text{ a.e.}).$

Finally, if [H5] replaces [H3] and [H4] then the solution of the norm optimal control problem $(NP)^{\tau}$ is unique.

Time optimal controls. Problem statement

Let M > 0 and denote

$$\mathfrak{U}_M := \left\{ u \mid u \in L^{\infty}((0,\infty) \times \mathfrak{O}) \quad \text{s.t. } \|u\|_{L^{\infty}((0,\infty) \times \mathfrak{O})} \leqslant M \right\}.$$

Solving the time optimal control problem $(TP)^M$ consists in determining $(\tau^{\infty}(M), u_M^{\infty}) \in (0, \infty) \times \mathcal{U}_M$ such that u_M^{∞} drives the initial state ψ to zero in time $\tau^{\infty}(M)$, i.e.,

$$\mathbb{T}_{\tau^{\infty}(M)}\psi + \Phi_{\tau^{\infty}(M)}u_{M}^{\infty} = 0,$$

and

$$(TP)^M$$
: $\tau^{\infty}(M) := \min_{u \in \mathcal{U}_M} \{ \tau \mid \exists u \in \mathcal{U}_M \text{ with } \mathbb{T}_{\tau} \psi + \Phi_{\tau} u = 0 \}.$

Here the main questions are the existence of optimal pairs, describing their qualitative properties (namely bang-bang) and establishing the relation between time and norm optimal controls.

Time optimal controls. Main result

Theorem 2

Given $\psi \in X \setminus \{0\}$, the time optimal control problem $(TP)^M$ admits at least one solution $(\tau^{\infty}(M), u_M^{\infty})$ if and only if $M > \hat{N} := \inf_{\tau > 0} N^{\infty}$. Moreover,

$$N^{\infty}(\tau^{\infty}(M)) = M \qquad (M > \hat{N})$$

$$\tau^{\infty}(N^{\infty}(\tau)) = \tau \qquad (\tau \in (0,\infty)).$$

and u_M^∞ can be selected such that it has the bang-bang property

 $|u^\infty_M(t,x)| = M \qquad \qquad ((t,x) \in [0,\tau^\infty(M)] \times \mathbb{O} \text{ a.e.}).$

Finally, if [H5] replaces [H3] and [H4] then this solution is unique.

The multiplier space (I)

For $\tau > 0$, the *multiplier space* Z_{τ} is the completion of X for

$$\|\eta\|_{Z_{\tau}} = \int_{0}^{\tau} \int_{\mathbb{O}} \left| \left(\Phi_{t}^{*} \eta \right) (t, x) \right) \right| \mathrm{d}x \, \mathrm{d}t = \int_{0}^{\tau} \int_{\mathbb{O}} \left| \left(B^{*} \mathbb{T}_{t}^{*} \eta \right) (x) \right) \right| \mathrm{d}x \, \mathrm{d}t$$

Proposition 2

Let $\tau > 0$. Then \Re_{τ}^{∞} is the dual of Z_{τ} with respect to the pivot space X, i.e.,

$$\mathcal{R}^{\infty}_{\tau} = \{ \xi \in X \mid \text{ s.t. } \sup_{\substack{\eta \in X \\ \|\eta\|_{Z_{\tau}} \leqslant 1}} |\langle \eta, \xi \rangle_X| < \infty \},$$

$$\|\xi\|_{\mathcal{R}^{\infty}_{\tau}} = \sup_{\substack{\eta \in X \\ \|\eta\|_{Z_{\tau}} \leqslant 1}} |\langle \eta, \xi \rangle_X| \qquad (\xi \in \mathcal{R}^{\infty}_{\tau}).$$

The multiplier space (II)

Proposition 3

For every h > 0 and every $\eta \in X$ we have

$$\int_{0}^{\tau+h} \int_{\mathfrak{O}} \left| \left(\Phi_{\tau+h}^{*} \eta \right) (t, x) \right| \, \mathrm{d}x \, \mathrm{d}t$$
$$\leqslant \left(1 + \kappa_h K_{\tau}^{-1} \right) \int_{0}^{\tau} \int_{\mathfrak{O}} \left| \left(\Phi_{\tau}^{*} \eta \right) (t, x) \right| \, \mathrm{d}x \, \mathrm{d}t,$$

where κ_h and K_{τ} are the constants depending only on h and τ , respectively. Moreover, Z_{τ} and \Re^{∞}_{τ} do not depend on $\tau > 0$.

Proof of Proposition 3

For every $\eta\in \mathcal{D}(A^*)$ and $\tau,\ h>0$ we have

$$\begin{split} &\int_{0}^{\tau+h} \int_{0} |B^{*} \mathbb{T}_{t}^{*} \eta| \, \mathrm{d}x \, \mathrm{d}t \\ &\leqslant \int_{0}^{\tau} \int_{0} |B^{*} \mathbb{T}_{t}^{*} \eta| \, \mathrm{d}x \, \mathrm{d}t + [h\mu(\mathbb{O})]^{\frac{1}{2}} \left[\int_{\tau}^{\tau+h} \int_{0} |B^{*} \mathbb{T}_{t}^{*} \eta|^{2} \, \mathrm{d}x \, \mathrm{d}t \right]^{\frac{1}{2}}, \\ &\int_{\tau}^{\tau+h} \int_{0} |B^{*} \mathbb{T}_{t}^{*} \eta|^{2} \, \mathrm{d}x \, \mathrm{d}t = \int_{0}^{h} \int_{0} |B^{*} \mathbb{T}_{t}^{*} \mathbb{T}_{\tau}^{*} \eta|^{2} \, \mathrm{d}x \, \mathrm{d}t \leqslant \kappa_{h}^{2} ||\mathbb{T}_{\tau}^{*} \eta||_{X}^{2}. \end{split}$$

The two above inequalities imply our first conclusion. From this we deduce that for every τ_1 , $\tau_2 > 0$ the norms $\|\cdot\|_{Z_{\tau_1}}$ and $\|\cdot\|_{Z_{\tau_2}}$ are equivalent on X, thus our second conclusion.

Extending the adjoint semigroup (I)

Proposition 4

Let $\tau > 0$. Then for every $t \in (0, \tau]$ the operator \mathbb{T}_t^* uniquely extends to an operator $\mathbb{S}_t \in \mathcal{L}(\mathbb{Z}_\tau, X)$. Moreover, we have

$$\|\mathbb{S}_{\tau}\eta\|_X \leqslant K_{\tau}\|\eta\|_{Z_{\tau}} \qquad (\eta \in Z_{\tau}).$$

Moreover, the family $(\mathbb{S}_{\sigma})_{\sigma \ge 0}$ obtained by setting $\mathbb{S}_0 = \mathbb{I}_{Z_{\tau}}$ forms a C^0 semigroup on Z_{τ} .

Extending the adjoint semigroup (II)

Corollary 3

For every $t \in [0, \tau]$ we define the operator Ψ_t by

$$(\Psi_t \eta)(\sigma) = \begin{cases} B^* \mathbb{S}_{t-\sigma} \eta & (\sigma \in [0, t), \eta \in Z_t), \\ 0 & (\sigma > t, z_0 \in Z_t), \end{cases}$$

were \mathbb{S} is the C^0 -semigroup introduced in Proposition 4. Then

$$\Psi_t \in \mathcal{L}(Z_\tau, L^1([0,\infty) \times \mathcal{O})), \qquad \Psi_t|_X = \Phi_t^*,$$

$$\left(1+\kappa_{\tau-t}K_t^{-1}\right)\|\Psi_t\eta\|_{L^1([0,\infty)\times\mathfrak{O})} \geqslant \|\eta\|_{Z_{\tau}},$$

i.e., (\mathbb{S}, Ψ) is L^1 exactly observable on Z_{τ} .

A dual minimization problem and a maximum principle

For $\tau>0$ and $\psi\in X$ we set

$$J_{\psi}^{\tau}(\eta) = \frac{1}{2} \|\eta\|_{Z_{\tau}}^2 + \langle \psi, \mathbb{S}_{\tau}\eta \rangle_X \qquad (\eta \in Z_{\tau}).$$

Theorem 4

For every $\psi \in X$ and $\tau > 0$ the functional J_{ψ}^{τ} admits at least one minimizer $\hat{\eta} \neq 0$ on Z_{τ} . Moreover, setting

$$\gamma(t,x) = \left(B^* \mathbb{S}_{\tau-t} \widehat{\eta}\right)(x),$$

$$\hat{u}(t,x) = \left(\int_0^\tau \int_{\mathfrak{O}} |\gamma(\sigma,y)| \, \mathrm{d}y \, \mathrm{d}\sigma\right) \frac{\gamma(t,x)}{|\gamma(t,x)|},$$

then \hat{u} is a norm optimal control solving $(NP)^{\tau}$.

Conclusions for the parabolic case

- We obtain the existence of *pointwise* bang-bang norm optimal controls in a very general context, without assuming null controllability from measurable sets.
- Assuming null controllability from measurable sets, we prove also their uniqueness.
- The existence and the properties of time optimal controls are obtained by exploiting their relation with norm optimal controls.

Main result for exactly controllable systems

Theorem 5 (J. Lohéac and M.T., SICON (2013))

Assume that $B \in \mathcal{L}(U, X)$ and that (A, B) is exactly controllable in any time $\tau > 0$. Let $u^*(t)$ be the time optimal control, defined on $[0, \tau^*]$. Then there exists $z \in X$, $z \neq 0$ such that

$$\operatorname{Re} \left\langle B^* \mathbb{T}^*_{\tau^* - t} z, u^*(t) \right\rangle = \max_{\|\mathbf{u}\| \leq 1} \operatorname{Re} \left\langle B^* \mathbb{T}^*_{\tau^* - t} z, \mathbf{u} \right\rangle$$

Moreover, assume that (A, B) is approximatively controllable from sets of positive measure. Then $u^*(t)$ is bang-bang, unique and given by

$$u^{*}(t) = \frac{1}{\|B^{*}\mathbb{T}^{*}_{\tau^{*}-t}z\|}B^{*}\mathbb{T}^{*}_{\tau^{*}-t}z \qquad (t \in [0,\tau^{*}] \quad a.e.).$$

Idea of the proof

• For each $\tau > 0$, we endow X with the norm

 $|||z||| = \inf\{||u||_{L^{\infty}([0,\tau],U)} \mid \Phi_{\tau}u = z\}.$

Note that $|||\cdot|||$ is equivalent with the original norm $\|\cdot\|.$ \bullet For $\tau>0$ we set

 $B^{\infty}(\tau) = \{ \Phi_{\tau} u \mid \|u\|_{L^{\infty}([0,\tau],U)} \leq 1 \},\$

and we show that if (τ^*, u^*) is an optimal pair then $\Phi_{\tau^*} u^* \in \partial B^{\infty}(\tau^*)$.

• Using the fact that $B^\infty(\tau^*)$ has a non empty interior, we apply a geometric version of the Hahn-Banach theorem to get the conclusion.

The Schrödinger equation with internal control

Proposition 5 (J. Loheac and M.T., 2013)

Let $\Omega \subset \mathbb{R}^m$ be a rectangular domain $\mathcal{O} \subset \Omega$ be open and non-empty, or let \mathcal{O} satisfy the BLR geometric optics condition. Let $z_0, z_1 \in L^2(\Omega)$. Then the time optimal control problem

 $\dot{z} = i\Delta z + \chi_{\mathbb{O}} u$ in $[0, \infty) \times \Omega$,

 $z=0 \quad \text{ on } (0,\infty)\times\partial\Omega,$

 $z(0,x) = z_0(x), \quad z(\tau,x) = z_1(x) \qquad (x \in \Omega)$

 $\|\boldsymbol{u}(\cdot,\boldsymbol{t})\|_{L^2(\mathbb{O}} \leqslant 1 \qquad a.e. \ .$

admits a unique solution u^* . Moreover, u^* is bang-bang.

Main steps of the proof of Proposition 5 (I):

We apply Theorem 5 which requires

- **1** Admissibility: bounded control operator, so obvious here.
- L[∞] exact controllability in any time: known from works of S. Jaffard (1990) and Lebeau (1994).
- Approximative controllability with controls supported in any set of positive measure e ⊂ [0,∞): this is harder. By duality this reduces to a unique continuation problem, which consists in showing that if

$$\begin{split} \dot{z} &= i\Delta z & \text{ in } [0,\infty)\times\Omega, \\ z &= 0 & \text{ on } (0,\infty)\times\partial\Omega, \\ z &= 0 & \text{ in } e\times \mathcal{O}, \end{split}$$

then z = 0.

Main steps of the proof of Proposition 5 (II):

Let $(\varphi_n)_{n\in I}$ be an orthonormal basis (in $L^2(\Omega)$) formed of eigenvalues of the Dirichlet Laplacian and let $(\lambda_n)_{n\in I}$ be a corresponding sequence of eigenvalues with $\lambda_n \to \infty$. Then

$$z(t, \cdot) = \sum_{n \in I} a_n e^{i\lambda_n t} \varphi_n \qquad (t \in \mathbb{R}),$$

where $a_n=\langle z(0,\cdot),\varphi_n\rangle_X$ for every $n\in I.$ We thus know that for all $v\in L^2(\mathbb{O})$

$$g(t) = \sum_{n \in I} a_n \langle \varphi_n, v \rangle_{L^2(\mathbb{O})} e^{i\lambda_n t} \qquad (t \in e).$$

Since $g \in \mathcal{H}^{\infty}(\mathbb{C}_+) \cap C(\overline{\mathbb{C}_+})$ it follows that g(t) = 0 for $t \in \mathbb{R}$. It follows that z(t, x) = 0 for $\underline{t \in \mathbb{R}}$ and $x \in \mathcal{O}$ which ends the proof.

1D Schrödinger with space-time constraints

Problem statement. Let $0 \leq \alpha < \beta \leq \pi$ and $z_0, z_1 \in L^2[0, \pi]$. Consider the time optimal control problem

$$\begin{aligned} \dot{z} &= i z_{xx} + \chi_{[\alpha,\beta]} u & \text{ in } [0,\infty) \times [0,\pi], \\ z(t,0) &= z(t,\pi) = 0 & \text{ on } (0,\infty), \\ z(0,x) &= z_0(x), \quad z(\tau,x) = z_1(x) & (x \in (0,\pi)) \\ &|u(t,x)| \leq 1 & a.e. . \end{aligned}$$

Admissibility: bounded control operator, so obvious here.

2 L^{∞} exact controllability in any time? Equivalent to the fact that for every $\tau > 0$ there exists $K_{\tau} > 0$ such that for $a \in l^2$

?
$$K_{\tau} \int_{0}^{\tau} \int_{\alpha}^{\beta} \sum_{n \ge 1} \left| a_n e^{in^2 t} \sin(nx) \right| \, \mathrm{d}x \, \mathrm{d}t \ge \|a\|_{l^2}$$
 ?

1D Schrödinger with boundary control

Problem statement. Consider the time optimal control problem

$$\begin{aligned} \dot{z}(t,x) &= i z_{xx}(t,x) & (t \ge 0, \ x \in (0,\pi)), \\ z_x(t,0) &= u(t), \quad z_x(t,\pi) = 0 & (t > 0). \\ z(0,x) &= z_0(x), \quad z(\tau,x) = z_1(x) & (x \in (0,\pi)) \\ &|u(t)| \le 1 & a.e. \ . \end{aligned}$$

- Admissibility: Already seen.
- 2 L^{∞} exact controllability in any time? Equivalent to the fact that for every $\tau > 0$ there exists $K_{\tau} > 0$ such that for $a \in l^2$

?
$$K_{\tau} \int_{0}^{\tau} \sum_{n \ge 1} \left| a_{n} e^{in^{2}t} \right| \, \mathrm{d}t \ge \|a\|_{l^{2}}$$
 ?

The Kirchhoff plate equation

Proposition 6 (Micu, Roventa and M.T., 2023)

Let $\Omega \subset \mathbb{R}^m$ be a rectangular domain $\mathcal{O} \subset \Omega$ be open and non-empty, or let \mathcal{O} satisfy the BLR geometric optics condition. Let $f_0, f_1 \in W^{2,2}(\Omega) \cap W_0^{1,2}(\Omega)$ and $g_0, g_1 \in L^2(\Omega)$. Then the time optimal control problem

$$\begin{split} \ddot{z} + \Delta^2 z &= \chi_0 u \quad (\text{in } \Omega \times [0, \infty)), \\ z(x, t) &= \Delta z(x, t) = 0 \quad \text{on } \partial\Omega \times (0, \infty), \\ z(x, 0) &= f_0(x), \ \dot{z}(x, 0) = g_0(x), \quad z(x, \tau) = f_1(x), \ \dot{z}(x, \tau) = g_1(x) \\ &\| u(\cdot, t) \| \leqslant 1 \qquad a.e. \ . \end{split}$$

admits a unique solution u^* . Moreover, u^* is bang-bang.

Main steps of the proof of Proposition 6:

() Denote $\psi = \dot{w}$ and by setting

$$\gamma = \dot{\psi} - iA_0\psi, \tag{4}$$

where ${\cal A}_0$ is the "variational" extension of the Dirichlet Laplacian. Then

$$\dot{\gamma}(t) + iA_0\gamma(t) = 0 \qquad (t \ge 0),$$

in a weak sense.

② If $\dot{w}(t,x) = 0$ for $t \in e$ and $x \in O$ then there exists a set of positive measure $\tilde{e} \subset e$ such that

$$\langle \gamma(t,\cdot), \varphi \rangle = 0$$
 $(t \in \tilde{e}, \ \varphi \in W_0^{2,2}(\mathbb{O})).$

3 Adapt the Privalov's theorem based procedure (used for Schrödinger) to prove first that $\gamma = 0$ and then that w = 0.

Comments, extensions and open questions

- Clamped boundary conditions ($w = \frac{\partial w}{\partial \nu} = 0$ on $\partial \Omega$): impossible to reduce the unique continuation to the similar question for Schrödinger.
- Boundary control: L^{∞} exact controllability is an open question.
- More natural constraint $|u(t,x)| \leq 1$ for almost every (t,x): both L^{∞} exact controllability and approximate controllability from measurable sets are open questions.