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SEXTOU!

“IT HAS FRIDAYED!”

“ES HAT GEFREITAGT!”



Scope of this talk

• Present some models for disease and crop pest control and apply
different control techniques: classical optimal control, continuous-time
and impulsive feedback stabilization, optimal control on networks, etc.

• Comment on difficulties when dealing with control-affine problems and
other challenges.

Joint work with:
Y. Dumont (CIRAD, France), L. Moschen (U. Paris-Sorbonne, France)
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Introduction

Sterile Insect Technique (SIT)

• Use of radiation to generate sterile male adult insects, followed by
release of sterile males into the wild

• In the wild, the females that mate with sterile male produce no or
less offspring

• The aim of the process is reducing the size of the insect population



Source: International Atomic Energy Agency



Some SIT projects around the world
• SIT trials started in the 50s against many species of insects for

population reduction or eradication. Some target species:
screw-worm fly, Aedes mosquito, Culex mosquito, Anopheles
mosquito, Tsetse fly.

• La Réunion, France: SIT against Aedes albopictus "TIS 2B project"
& SIT against the damaging fruit fly Bactrocera dorsalis project
"GEMDOTIS".

Figure: La Réunion Island



Some considerations

On SIT:

• In general, high radiation is required to achieve full sterility

• High radiation has an impact in competitiveness/fitness of the
irradiated males, that have to compete against wild males

• Lower radiation has a reduced impact in fitness, but may generate
partially fertile males

Goal of this work:

• Propose a model for SIT implementation that takes into account
partial sterility of to-be-released males

• Evaluate possible SIT release strategies and analytically establish
their effectiveness/failure
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The model with sterile insects (SIT)

M,F : male and female wild fertile insects; MS : sterile male

dM

dt
(t) = rρF (t)

M(t)

M(t) + γMS(t)
e−β(M(t)+F (t)) − µMM(t)

dF

dt
(t) = (1− r)ρF (t)

M(t)

M(t) + γMS(t)
e−β(M(t)+F (t)) − µFF (t)

dMS

dt
(t)= Λ(t)− µSMS(t)

Parameter Description
r ∈ (0, 1) sex ratio

ρ mean number of viable eggs by female per day

µM , µF death rates

β characteristic of the competition effect per individual

µS death rate for sterile insects: µS ≥ µM
γ ∈ (0, 1] competitiveness index of sterile male mosquitoes

Λ(t) sterile male release rate



The model with SIT and ε-residual fertility

M,F : male and female wild fertile insects; MS : sterile male

dM

dt
= rρF

M + εγMS

M + γMS
e−β(M+F ) − µMM

dF

dt
= (1− r)ρF M + εγMS

M + γMS
e−β(M+F ) − µFF

dMS

dt
= Λ− µSMS

Parameter Description
ε residual fertility
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Time continuous closed-loop strategies

Proposition (Continuous-time nonlinear feedback)

Let θ > 0 be such that
θ + ε < N−1

F .

If MS satisfies
MS(t) ≥ κ

(
M(t) + F (t)

)
M(t),

where

κ(x) :=
1

γ

e−βx − (N−1
F − θ)

(N−1
F − θ)− εe−βx ,

then every solution of the closed-loop system for (M,F ) converges
exponentially to (0, 0); and F approaches 0 with rate (1− r)ρθ.



Impulsive closed-loop strategies

Theorem

Let θ > 0 be such that
θ + ε < N−1

F .

Choose release quantities Λn per unit time satisfying

τΛn ≥ max
{
κimp (M(nτ) + F (nτ))−MS(nτ), 0

}
for all n ∈ N,

where κimp is a nonlinear function of M(nτ) and F (nτ).

Then, every solution of the system (M,F ) with releases

τΛn = MS(nτ+)−MS(nτ),

converges exponentially to (0, 0), with decay rate proportional to θ
(decay rate = (1− r)ρθ). Additionally, ∑n∈N Λn < +∞.

We extended previous result for: releases at t = nτ , and
measurements at t = npτ, for some fixed p.
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Aedes Albopictus parameters

Par. Value Description
ρ 6.66 Number of viable eggs a female can deposit per day

r 0.5
r : (1− r) expresses the primary sex ratio

among offsprings

σ 0.05
Regulates the larvae development into adults under

density dependence and larval competition
K 165.21 Carrying capacity in the rainy season (per hectare)
µM 1/13 Mean mortality rate of wild adult male mosquitoes
µF 1/15 Mean mortality rate of wild adult female mosquitoes
µS 1/8.5 Mean mortality rate of sterile adult male mosquitoes
γ 0.91 Competitiveness index of sterile male mosquitoes

Then NF ≈ 49.95, NM ≈ 43.29.

We need ε < N−1
F , then ε < 2%

The equilibrium E∗ = (M∗, F ∗) verifies M∗ = 6, 000 and F ∗ ≈ 6, 923
individuals per hectare.



Impulsive feedback for different values of the residual fertility
τ = 1 (day)

Figure: Comparison for ε = 0 vs. ε = 0.01



Long-term strategies for practical implementation
For periodic constant impulsive releases

MS(nτ+) = MS(nτ) + τΛ,

gives periodic solution MS,per. The resulting impulsive system is bounded
from above by the autonomous system

dM

dt
= rρ

F (M + εγMS,Λ)

M + γMS,Λ
e−βF − µMM,

dF

dt
= (1− r)ρF (M + εγMS,Λ)

M + γMS,Λ
e−βF − µFF.

where Ms,Λ > 0 is a lower bound of MS,per(t).

For 0 < Λ < Λεcrit, the system above possesses the ordered equilibria
equilibria: 0 < E1 < E2.

It is easy to check that latter system is monotone cooperative in the
subset

[0,E1[:= {(F,M) ∈ IR2
+ : 0 < (F,M) < E1}.



Associated optimal control problem

u(t): release rate of sterile insects

min

∫ T

0

u(t)dt

dM

dt
= rρ

F (M + εγMs)

M + γMs
e−β(M+F ) − µMM,

dF

dt
= (1− r)ρF (M + εγMs)

M + γMs
e−β(M+F ) − µFF

dMS

dt
= −µSMS(t) + u(t)

M(0) = M0, F (0) = F0, MS(0) = 0,

M(T ) ≤MT , F (T ) ≤ FT , desired final values

with admissible controls u : [0, T ]→ R+
0 measurable.



Optimal vs. closed-loop impulsive strategies
Set p = 1, τ = 6, which means releases and measurements every 6 days.
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Optimal vs. closed-loop impulsive costs
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Concluding remarks for the SIT problem

What we did:
Proposed impulsive strategies in feedback form that converge
analytically to 0.

Constructed long-term strategies based on monotone properties of
the system.
Compared (numerically) to optimal cost.

Ongoing and future work:
Add cost to each intervention: this gives a mixed
continuous-discrete optimal control problem.
Optimize impulsive control.
Extend theoretical resultados for control-affine problems in general
formulations with vector control and constraints: feedback formula
for singular control, sufficient optimality conditions, others.
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Metropolitan region

Metropolitan region: a central city and its surrounding areas, tightly
linked by economic and social activities, forming a densely populated area.

Figure: Graph representation of the Rio de Janeiro metropolitan region.

In Rio de Janeiro metropolitan area (13 million), over 2 million work in
a different city than they live. Most of them commute to the capital.



Metropolitan region

Metropolitan region: a central city and its surrounding areas, tightly
linked by economic and social activities, forming a densely populated area.

Figure: Graph representation of the Rio de Janeiro metropolitan region.

In Rio de Janeiro metropolitan area (13 million), over 2 million work in
a different city than they live. Most of them commute to the capital.



Our research question and tools

Which are efficient (or optimal) vaccination strategies in
metropolitan regions?

How and when should vaccines be distributed among cities?

Should the capital receive vaccines earlier and in larger quantities?

Our tools:

SIR model on a general network of interconnected cities,

expression for the basic reproduction number R0;

optimal control.
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Modelling commuting 1

The effective population in i during working hours is P eff
i =

∑K
j=1 pjinj .

The proportion of infectious people in i is Ieff
i = 1

P eff
i

∑K
j=1 pjiIjnj

α ∈ [0, 1] : night-time proportion

For each city i = 1, . . . ,K,

S′i = µ− αβiSiIi − (1− α)

K∑

j=1

βjpijSiI
eff
j − µSi

I ′i = αβiSiIi − γIi − µIi
R′i = γIi − µRi

1Nonato, L. G., Peixoto, P., Pereira, T., Sagastizábal, C., & Silva, P. J. “Robot
Dance: A mathematical optimization platform for intervention against COVID-19 in a
complex network”. EURO J. Computational Optim. (2022).
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Modelling commuting

Si Ii Ri

βiIi γ

µ

µ µ µ

Si Ii Ri

∑K
j=1 βjpijI

eff
j γ

µ

µ µ µ

Night period Day period

α + (1 − α)
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Basic reproduction number R0

R0: epidemic threshold

We consider the parameters that correspond to the case of isolated
cities:

Ri0 =
βi

γ + µ
, i = 1, . . . ,K.

Starting from the calculation approach in [Van den Driessche & Watmough
(2002)]2, we get:

Theorem (Bounds for R0)
One has

min
1≤i≤K

(
αRi0 + (1− α)

K∑
k=1

pikRk0

)
≤ R0 ≤ max

1≤i≤K

(
αRi0 + (1− α)

K∑
k=1

pikRk0

)
.

2Reproduction numbers and sub-threshold endemic equilibria for compartmental
models of disease transmission, Math. Biosc., Van den Driessche and Watmough
(2002)

https://www.sciencedirect.com/science/article/pii/S0025556402001086
https://www.sciencedirect.com/science/article/pii/S0025556402001086
https://www.sciencedirect.com/science/article/pii/S0025556402001086
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Simulations for R0 bounds
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Figure: Analysis of R0 bounds using 10, 000 random samples for parameters β,
P and α (in blue) in the case of 5 cities. Red is for α = 0.5.
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Introducing vaccination
Population of city i is vaccinated at a rate ui, leading to

S′i = µ− αβiSiIi − (1− α)Si

K∑

j=1

βjpijI
eff
j − uiSi − µSi

I ′i = αβiSiIi + (1− α)Si

K∑

j=1

βjpijI
eff
j − γIi − µIi

R′i = γIi + uiSi − µRi
V ′i = uiSi

Vi(t) : vaccinated until time t

Setting:

Rvac
0,i :=

µ

µ+ ui

β

γ + µ
,

we get analogous inequalities for Rvac
0 :

min
i

(
αRvac

0,i + (1− α)
K∑
k=1

pikRvac
0,k

)
≤ Rvac

0 ≤ max
i

(
αRvac

0,i + (1− α)
K∑
k=1

pikRvac
0,k ,

)
.
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Impact of vaccination rates on Rvac
0
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The Optimal Control Problem
Dynamics

S′i = µ− αβiSiIi − (1− α)Si
K∑
j=1

βjpijI
eff
j − uiSi − µSi

I ′i = αβiSiIi + (1− α)Si
K∑
j=1

βjpijI
eff
j − γIi − µIi

R′i = γIi + uiSi − µRi
V ′i = uiSi

Constraints

Vaccine availability (shipments):
∑K
i=1 Vi(t)ni ≤ D(t).

Vaccination capacity: ui(t)Si(t) ≤ vmax
i .

ui(t) ≥ 0, a.e. t ∈ [0, T ].

Cost

min cv

K∑

i=1

niVi(T ) + ch

∫ T

0

rhniIi dt



The Optimal Control Problem in abstract form

min

∫ T

0

f0(x(t)) dt+ Ψ(x(T )),

s.t. x′(t) = f(x(t)) + h(x(t))u(t), a.e. t ∈ [0, T ]

g(t, x(t)) ≤ 0, for all t ∈ [0, T ]

m(x(t), u(t)) ≤ 0, a.e. t ∈ [0, T ]

u(t) ∈ U, a.e. t ∈ [0, T ]

x(0) = x0.



Theoretical results for the Optimal Control Problem

The optimal control problem has a global minimum: derived from
classical results from [Cesari, 1965]3

Optimality conditions of first order (in the form of a Pontryagin
Maximum Principle): derived from [Boccia et al., 2016]4

The optimal solution for K = 1 (one city) does not have singular
arcs, that is, there is no interval such that

0 < u∗1(t)S∗1 (t) < vmax
1 .

Some progress for the case K > 1. Numerically, the assertion holds
for the general case, this is,

u∗i (t)S
∗
i (t) ∈ {0, vmax

i }, for a.e. t ∈ [0, T ], i = 1, . . . ,K.

3Cesari, L. “Existence theorems for optimal solutions in Pontryagin and Lagrange
problems”. J. SIAM Control (1965)

4Boccia, A., Pinho, M. D. R. de, and Vinter, R. B. “Optimal control problems with
mixed and pure state constraints”. SIAM J Control and Optim. (2016)

https://epubs.siam.org/doi/10.1137/0303032
https://epubs.siam.org/doi/10.1137/0303032
https://epubs.siam.org/doi/10.1137/15M1041845
https://epubs.siam.org/doi/10.1137/15M1041845
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arcs, that is, there is no interval such that

0 < u∗1(t)S∗1 (t) < vmax
1 .

Some progress for the case K > 1. Numerically, the assertion holds
for the general case, this is,

u∗i (t)S
∗
i (t) ∈ {0, vmax

i }, for a.e. t ∈ [0, T ], i = 1, . . . ,K.

3Cesari, L. “Existence theorems for optimal solutions in Pontryagin and Lagrange
problems”. J. SIAM Control (1965)

4Boccia, A., Pinho, M. D. R. de, and Vinter, R. B. “Optimal control problems with
mixed and pure state constraints”. SIAM J Control and Optim. (2016)
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Metropolitan region assumption

The capital is the largest and most densely populated city, people
from the surroundings, either work in the capital or in their own
cities:

β1 > max
i=2,...,K

βi, N1 > max
i=2,...,K

Ni.

Transition matrix structure:

P =


1 0 0 · · · 0
p21 p22 0 · · · 0
p31 0 p33 · · · 0
...

...
...

. . .
...

pK1 0 0 · · · pKK



Numerical simulations are done under this assumption or an
approximation of it.



Optimal control: 2 cities
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Figure: Optimal trajectories and control for two-city interaction:
The fourth subplot illustrates the variables ui(t)Si(t) ∈ {0, vmax

i }, i = 1, 2.
The settings for this experiment are: β = (0.25, 0.18), α = 0.64, p21 = 0.2,
n1 = 106 and n2 = 105.



Optimal control: 5 cities
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Figure: Optimal trajectories and control functions for 5 cities
β = (0.4, 0.3, 0.15, 0.15, 0.1), α = 0.64, pk1 = 0.2 for each city k > 1, and
n = 105(50, 10, 10, 1, 1) is the vector of population sizes.



Outline

1 Disease and pest control through the Sterile Insect Technique (SIT)
The model
Release strategies
Numerical simulations
Concluding remarks for the SIT problem

2 Optimal vaccination in a metropolitan area
Basic reproduction number
Introducing vaccination
The Optimal Control Problem
Numerical simulations
Application within Rio de Janeiro Metropolitan area
Comments and perspectives for vaccination problem

3 Other disease/pest control problems

4 Conclusion and perspectives



Transition matrix of the Rio de Janeiro metropolitan area
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Figure: Heatmap showing the matrix P in the case of Rio de Janeiro
metropolitan area

Fonte: SEBRAE. Mobilidade urbana e mercado de trabalho no Rio de Janeiro



Vaccination strategies comparison
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Figure: Disease Progression in the Rio de Janeiro Metropolitan Area
The transmission rate β is randomly chosen between 0 and 0.3, and sorted by
city population size.
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Optimal vaccination: comments and perspectives

What we did:
Studied a model for vaccination in a metropolitan region
Obtained sharp inequalities for R0

Proved properties of the associated optimal control problem, which
is control-affine (no quadratic cost was considered)
Theoretical results and numerical tests showed that the epidemic is
governed by the capital city (the biggest and most densely populated
city)

Ongoing and future work:
Prove non-existence of singular arcs for the general case of N > 1
cities.
Generalizations of the model: infections in transportation,
age-structure or other risk groups, various type of vaccines and
doses, etc.
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Other disease/pest control problems

Malaria control through breeding site removal:
Antunes, Aronna & Codeço. Modeling and control of malaria dynamics
in fish farming regions. SIAM J. Applied Dynam. Systems (2023).
Joint project with FIOCRUZ (Oswaldo Cruz Foundation, Brazil)

Dengue fever control through Wolbachia bacteria:
Bliman, Aronna et al. Ensuring successful introduction of Wolbachia in
natural populations of Aedes aegypti by means of feedback control. J.
Math. Biology (2018).

Crop pest control through parasitoids (for sugarcane plantation):
work in progress. Joint project with EMBRAPA (Brazilian Agricultural
Research Corporation) and Universidade Federal de Pelotas (Brazil).

https://link.springer.com/article/10.1007/s00285-017-1174-x
https://link.springer.com/article/10.1007/s00285-017-1174-x
https://link.springer.com/article/10.1007/s00285-017-1174-x
https://link.springer.com/article/10.1007/s00285-017-1174-x
https://link.springer.com/article/10.1007/s00285-017-1174-x
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Conclusion and perspectives
• We proposed and studied models for disease and pest control involving
different control techniques: feedback stabilization, impulsive feedback
stabilization and optimal control.

• In many situations in disease/pest control (and more generally, in many
biological systems), it comes natural to model by an optimal control
problem with control-affine dynamics and several type of constraints: on
the control, on the state and control-state mixed.

Many theoretical questions remain open when it comes to control-affine
systems: sufficient optimality conditions, convergence of algorithms,
(structure) stability of optimal solutions, etc.

• Work in progress on dealing with uncertainty in the parameters, that
may have a significant impact in practice and opens to challenging
theoretical questions. This include online parameter estimation and
control.

• Work in progress on dealing with impulsive optimal control problems.
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