Control of disease and pest dynamics

María Soledad Aronna

Escola de Matemática Aplicada FGV EMAp, Fundação Getulio Vargas Rio de Janeiro, Brazil

Conference Trends in Mathematical Sciences, Friedrich-Alexander-Universität Erlangen-Nürnberg, June 2024

ESCOLA DE MATEMÁTICA APLICADA

SEXTOU!

"IT HAS FRIDAYED!"

"ES HAT GEFREITAGT!"

Scope of this talk

• Present some models for disease and crop pest control and apply different control techniques: classical optimal control, continuous-time and impulsive feedback stabilization, optimal control on networks, etc.

• Comment on difficulties when dealing with control-affine problems and other challenges.

Joint work with:

Y. Dumont (CIRAD, France), L. Moschen (U. Paris-Sorbonne, France)

Scope of this talk

• Present some models for disease and crop pest control and apply different control techniques: classical optimal control, continuous-time and impulsive feedback stabilization, optimal control on networks, etc.

• Comment on difficulties when dealing with control-affine problems and other challenges.

Joint work with:

Y. Dumont (CIRAD, France), L. Moschen (U. Paris-Sorbonne, France)

Outline

1 Disease and pest control through the Sterile Insect Technique (SIT)

- The model
- Release strategies
- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

- Basic reproduction number
- Introducing vaccination
- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem
- Other disease/pest control problems

④ Conclusion and perspectives

Outline

Disease and pest control through the Sterile Insect Technique (SIT)
The model

- Release strategies
- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

- Basic reproduction number
- Introducing vaccination
- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem

3 Other disease/pest control problems

4 Conclusion and perspectives

Introduction

Sterile Insect Technique (SIT)

- Use of radiation to generate sterile male adult insects, followed by release of sterile males into the wild
- In the wild, the females that mate with sterile male produce **no or less** offspring
- The aim of the process is reducing the size of the insect population

population.

Source: International Atomic Energy Agency

Some SIT projects around the world

- SIT trials started in the 50s against many species of insects for population reduction or eradication. Some target species: screw-worm fly, *Aedes* mosquito, *Culex* mosquito, *Anopheles* mosquito, Tsetse fly.
- La Réunion, France: SIT against *Aedes albopictus "TIS 2B project"* & SIT against the damaging fruit fly *Bactrocera dorsalis* project *"GEMDOTIS"*.

Figure: La Réunion Island

Some considerations

On SIT:

- In general, high radiation is required to achieve full sterility
- High radiation has an impact in competitiveness/fitness of the irradiated males, that have to compete against wild males
- Lower radiation has a reduced impact in fitness, but may generate partially fertile males

Goal of this work:

- Propose a model for SIT implementation that takes into account partial sterility of to-be-released males
- Evaluate possible SIT release strategies and analytically establish their effectiveness/failure

Some considerations

On SIT:

- In general, high radiation is required to achieve full sterility
- High radiation has an impact in competitiveness/fitness of the irradiated males, that have to compete against wild males
- Lower radiation has a reduced impact in fitness, but may generate partially fertile males

Goal of this work:

- Propose a model for SIT implementation that takes into account partial sterility of to-be-released males
- Evaluate possible SIT release strategies and analytically establish their effectiveness/failure

The model with sterile insects (SIT)

M,F: male and female wild fertile insects; M_S : sterile male

$$\begin{aligned} \frac{dM}{dt}(t) &= r\rho F(t) \frac{M(t)}{M(t) + \gamma M_S(t)} e^{-\beta(M(t) + F(t))} - \mu_M M(t) \\ \frac{dF}{dt}(t) &= (1 - r)\rho F(t) \frac{M(t)}{M(t) + \gamma M_S(t)} e^{-\beta(M(t) + F(t))} - \mu_F F(t) \\ \frac{dM_S}{dt}(t) &= \Lambda(t) - \mu_S M_S(t) \end{aligned}$$

Parameter	Description
$r \in (0,1)$	sex ratio
ρ	mean number of viable eggs by female per day
μ_M, μ_F	death rates
β	characteristic of the competition effect per individual
μ_S	death rate for sterile insects: $\mu_S \ge \mu_M$
$\gamma \in (0,1]$	competitiveness index of sterile male mosquitoes
$\Lambda(t)$	sterile male release rate

The model with SIT and ϵ -residual fertility

M, F: male and female wild fertile insects; M_S : sterile male

$$\begin{aligned} \frac{dM}{dt} &= r\rho F \frac{M + \epsilon \gamma M_S}{M + \gamma M_S} e^{-\beta(M+F)} - \mu_M M \\ \frac{dF}{dt} &= (1 - r)\rho F \frac{M + \epsilon \gamma M_S}{M + \gamma M_S} e^{-\beta(M+F)} - \mu_F F \\ \frac{dM_S}{dt} &= \Lambda - \mu_S M_S \end{aligned}$$

Parameter	Description
ϵ	residual fertility

Outline

Disease and pest control through the Sterile Insect Technique (SIT)

The model

Release strategies

- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

- Basic reproduction number
- Introducing vaccination
- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem

3 Other disease/pest control problems

4 Conclusion and perspectives

Time continuous closed-loop strategies

Proposition (Continuous-time nonlinear feedback)

Let $\theta > 0$ be such that

$$\theta + \epsilon < \mathcal{N}_F^{-1}.$$

If M_S satisfies

$$M_S(t) \ge \kappa (M(t) + F(t)) M(t),$$

where

$$\kappa(x) := rac{1}{\gamma} rac{e^{-eta x} - (\mathcal{N}_F^{-1} - heta)}{(\mathcal{N}_F^{-1} - heta) - \epsilon e^{-eta x}},$$

then every solution of the closed-loop system for (M, F) converges exponentially to (0,0); and F approaches 0 with rate $(1-r)\rho\theta$.

Impulsive closed-loop strategies

Theorem

Let $\theta > 0$ be such that

$$\theta + \epsilon < \mathcal{N}_F^{-1}.$$

Choose release quantities Λ_n per unit time satisfying

$$\tau \Lambda_n \geq \max \left\{ \kappa_{\operatorname{imp}} \left(M(n\tau) + F(n\tau) \right) - M_S(n\tau), 0 \right\} \quad \text{for all } n \in \mathbb{N},$$

where κ_{imp} is a nonlinear function of $M(n\tau)$ and $F(n\tau)$.

Then, every solution of the system (M, F) with releases

$$\tau \Lambda_n = M_S(n\tau^+) - M_S(n\tau),$$

converges exponentially to (0,0), with decay rate proportional to θ (decay rate = $(1-r)\rho\theta$). Additionally, $\sum_{n\in\mathbb{N}}\Lambda_n < +\infty$.

We extended previous result for: releases at $t = n\tau$, and measurements at $t = np\tau$, for some fixed p.

Impulsive closed-loop strategies

Theorem

Let $\theta > 0$ be such that

$$\theta + \epsilon < \mathcal{N}_F^{-1}.$$

Choose release quantities Λ_n per unit time satisfying

$$\tau \Lambda_n \geq \max \left\{ \kappa_{\operatorname{imp}} \left(M(n\tau) + F(n\tau) \right) - M_S(n\tau), 0 \right\} \quad \text{for all } n \in \mathbb{N},$$

where κ_{imp} is a nonlinear function of $M(n\tau)$ and $F(n\tau)$.

Then, every solution of the system (M, F) with releases

$$\tau \Lambda_n = M_S(n\tau^+) - M_S(n\tau),$$

converges exponentially to (0,0), with decay rate proportional to θ (decay rate = $(1-r)\rho\theta$). Additionally, $\sum_{n\in\mathbb{N}}\Lambda_n < +\infty$.

We extended previous result for: releases at $t = n\tau$, and measurements at $t = np\tau$, for some fixed p.

Impulsive closed-loop strategies

Theorem

Let $\theta > 0$ be such that

$$\theta + \epsilon < \mathcal{N}_F^{-1}.$$

Choose release quantities Λ_n per unit time satisfying

$$\tau \Lambda_n \geq \max \left\{ \kappa_{\operatorname{imp}} \left(M(n\tau) + F(n\tau) \right) - M_S(n\tau), 0 \right\} \quad \text{for all } n \in \mathbb{N},$$

where κ_{imp} is a nonlinear function of $M(n\tau)$ and $F(n\tau)$.

Then, every solution of the system (M, F) with releases

$$\tau \Lambda_n = M_S(n\tau^+) - M_S(n\tau),$$

converges exponentially to (0,0), with decay rate proportional to θ (decay rate = $(1-r)\rho\theta$). Additionally, $\sum_{n\in\mathbb{N}}\Lambda_n < +\infty$.

We extended previous result for: releases at $t = n\tau$, and measurements at $t = np\tau$, for some fixed p.

Outline

Disease and pest control through the Sterile Insect Technique (SIT)

- The model
- Release strategies

Numerical simulations

• Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

- Basic reproduction number
- Introducing vaccination
- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem

3 Other disease/pest control problems

4 Conclusion and perspectives

Aedes Albopictus parameters

Par.	Value	Description
ρ	6.66	Number of viable eggs a female can deposit per day
		r:(1-r) expresses the primary sex ratio
r	0.5	among offsprings
		Regulates the larvae development into adults under
σ	0.05	density dependence and larval competition
K	165.21	Carrying capacity in the rainy season (per hectare)
μ_M	1/13	Mean mortality rate of wild adult male mosquitoes
μ_F	1/15	Mean mortality rate of wild adult female mosquitoes
μ_S	1/8.5	Mean mortality rate of sterile adult male mosquitoes
γ	0.91	Competitiveness index of sterile male mosquitoes

Then $\mathcal{N}_F \approx 49.95$, $\mathcal{N}_M \approx 43.29$.

We need $\epsilon < \mathcal{N}_F^{-1}$, then $\epsilon < 2\%$

The equilibrium $E^* = (M^*, F^*)$ verifies $M^* = 6,000$ and $F^* \approx 6,923$ individuals per hectare.

Impulsive feedback for different values of the residual fertility $\tau = 1$ (day)

Figure: Comparison for $\varepsilon = 0$ vs. $\varepsilon = 0.01$

Long-term strategies for practical implementation

For periodic constant impulsive releases

$$M_S(n\tau^+) = M_S(n\tau) + \tau\Lambda,$$

gives periodic solution $M_{S,per}$. The resulting impulsive system is bounded from above by the autonomous system

$$\frac{dM}{dt} = r\rho \frac{F(M + \epsilon \gamma M_{S,\Lambda})}{M + \gamma M_{S,\Lambda}} e^{-\beta F} - \mu_M M,$$
$$\frac{dF}{dt} = (1 - r)\rho \frac{F(M + \epsilon \gamma M_{S,\Lambda})}{M + \gamma M_{S,\Lambda}} e^{-\beta F} - \mu_F F$$

where $M_{s,\Lambda} > 0$ is a lower bound of $M_{S,\text{per}}(t)$.

For $0 < \Lambda < \Lambda_{\rm crit}^{\varepsilon}$, the system above possesses the ordered equilibria equilibria: $0 < {f E_1} < {f E_2}$.

It is easy to check that latter system is **monotone cooperative** in the subset

$$[\mathbf{0}, \mathbf{E}_1] := \{ (F, M) \in I\!\!R^2_+ : \mathbf{0} < (F, M) < \mathbf{E}_1 \}.$$

Associated optimal control problem

u(t): release rate of sterile insects

$$\begin{split} \min \int_0^T u(t)dt \\ \frac{dM}{dt} &= r\rho \frac{F(M + \epsilon\gamma M_s)}{M + \gamma M_s} e^{-\beta(M+F)} - \mu_M M, \\ \frac{dF}{dt} &= (1 - r)\rho \frac{F(M + \epsilon\gamma M_s)}{M + \gamma M_s} e^{-\beta(M+F)} - \mu_F F \\ \frac{dM_S}{dt} &= -\mu_S M_S(t) + u(t) \\ M(0) &= M_0, \quad F(0) = F_0, \quad M_S(0) = 0, \\ M(T) &\leq M_T, \quad F(T) \leq F_T, \quad \text{desired final values} \end{split}$$

with admissible controls $u \colon [0,T] \to \mathbb{R}^+_0$ measurable.

Optimal vs. closed-loop impulsive strategies

Set $p = 1, \tau = 6$, which means releases and measurements every 6 days.

Figure: Female and sterile male

Optimal vs. closed-loop impulsive costs

Figure: Cost (accumulated sterile insects)

Outline

Disease and pest control through the Sterile Insect Technique (SIT)

- The model
- Release strategies
- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

- Basic reproduction number
- Introducing vaccination
- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem

3 Other disease/pest control problems

4 Conclusion and perspectives

Concluding remarks for the SIT problem

What we did:

- $\bullet\,$ Proposed impulsive strategies in feedback form that converge analytically to 0.
- Constructed long-term strategies based on monotone properties of the system.
- Compared (numerically) to optimal cost.

Ongoing and future work:

- Add cost to each intervention: this gives a mixed continuous-discrete optimal control problem.
- Optimize impulsive control.
- Extend theoretical resultados for control-affine problems in general formulations with vector control and constraints: feedback formula for singular control, sufficient optimality conditions, others.

Outline

1 Disease and pest control through the Sterile Insect Technique (SIT)

- The model
- Release strategies
- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

- Basic reproduction number
- Introducing vaccination
- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem
- Other disease/pest control problems

4 Conclusion and perspectives

Metropolitan region

Metropolitan region: a central city and its surrounding areas, tightly linked by economic and social activities, forming a densely populated area.

Figure: Graph representation of the Rio de Janeiro metropolitan region.

In Rio de Janeiro metropolitan area (13 million), over **2 million work in a different city than they live**. Most of them commute to the capital.

Metropolitan region

Metropolitan region: a central city and its surrounding areas, tightly linked by economic and social activities, forming a densely populated area.

Figure: Graph representation of the Rio de Janeiro metropolitan region.

In Rio de Janeiro metropolitan area (13 million), over **2 million work in a different city than they live**. Most of them commute to the capital.

Our research question and tools

- Which are efficient (or optimal) vaccination strategies in metropolitan regions?
- How and when should vaccines be distributed among cities?
- Should the capital receive vaccines earlier and in larger quantities?

Our tools:

- SIR model on a general network of interconnected cities,
- expression for the *basic reproduction number* \mathcal{R}_0 ;
- optimal control.

Our research question and tools

- Which are efficient (or optimal) vaccination strategies in metropolitan regions?
- How and when should vaccines be distributed among cities?
- Should the capital receive vaccines earlier and in larger quantities?

Our tools:

- SIR model on a general network of interconnected cities,
- expression for the *basic reproduction number* \mathcal{R}_0 ;
- optimal control.

The effective population in *i* during working hours is $P_i^{\text{eff}} = \sum_{j=1}^{K} p_{ji} n_j$.

The proportion of infectious people in i is $I_i^{ ext{eff}} = rac{1}{P_i^{ ext{eff}}} \sum_{j=1}^K p_{ji} I_j n_j$

 $\alpha \in [0,1]$: night-time proportion

$$S'_{i} = \mu - \alpha \beta_{i} S_{i} I_{i} - (1 - \alpha) \sum_{j=1}^{K} \beta_{j} p_{ij} S_{i} I_{j}^{\text{eff}} - \mu S_{i}$$
$$I'_{i} = \alpha \beta_{i} S_{i} I_{i} - \gamma I_{i} - \mu I_{i}$$
$$R'_{i} = \gamma I_{i} - \mu R_{i}$$

¹Nonato, L. G., Peixoto, P., Pereira, T., Sagastizábal, C., & Silva, P. J. "Robot Dance: A mathematical optimization platform for intervention against COVID-19 in a complex network". EURO J. Computational Optim. (2022).

The effective population in *i* during working hours is $P_i^{\text{eff}} = \sum_{j=1}^{K} p_{ji} n_j$.

The proportion of infectious people in i is $I_i^{\rm eff} = \frac{1}{P_i^{\rm eff}} \sum_{j=1}^K p_{ji} I_j n_j$

 $\alpha \in [0,1]$: night-time proportion

$$S'_{i} = \mu - \alpha \beta_{i} S_{i} I_{i} - (1 - \alpha) \sum_{j=1}^{K} \beta_{j} p_{ij} S_{i} I_{j}^{\text{eff}} - \mu S_{i}$$
$$I'_{i} = \alpha \beta_{i} S_{i} I_{i} - \gamma I_{i} - \mu I_{i}$$
$$R'_{i} = \gamma I_{i} - \mu R_{i}$$

¹Nonato, L. G., Peixoto, P., Pereira, T., Sagastizábal, C., & Silva, P. J. "Robot Dance: A mathematical optimization platform for intervention against COVID-19 in a complex network". EURO J. Computational Optim. (2022).

The effective population in *i* during working hours is $P_i^{\text{eff}} = \sum_{j=1}^{K} p_{ji} n_j$.

The proportion of infectious people in i is $I_i^{\rm eff} = \frac{1}{P_i^{\rm eff}} \sum_{j=1}^K p_{ji} I_j n_j$

 $\alpha \in [0,1]: \mathsf{night-time\ proportion}$

$$S'_{i} = \mu - \alpha \beta_{i} S_{i} I_{i} - (1 - \alpha) \sum_{j=1}^{K} \beta_{j} p_{ij} S_{i} I_{j}^{\text{eff}} - \mu S_{i}$$
$$I'_{i} = \alpha \beta_{i} S_{i} I_{i} - \gamma I_{i} - \mu I_{i}$$
$$R'_{i} = \gamma I_{i} - \mu R_{i}$$

¹Nonato, L. G., Peixoto, P., Pereira, T., Sagastizábal, C., & Silva, P. J. "Robot Dance: A mathematical optimization platform for intervention against COVID-19 in a complex network". EURO J. Computational Optim. (2022).

The effective population in *i* during working hours is $P_i^{\text{eff}} = \sum_{j=1}^{K} p_{ji} n_j$.

The proportion of infectious people in i is $I_i^{\rm eff} = \frac{1}{P_i^{\rm eff}} \sum_{j=1}^K p_{ji} I_j n_j$

 $\alpha \in [0,1]: \mathsf{night-time\ proportion}$

$$S'_{i} = \mu - \alpha \beta_{i} S_{i} I_{i} - (1 - \alpha) \sum_{j=1}^{K} \beta_{j} p_{ij} S_{i} I_{j}^{\text{eff}} - \mu S_{i}$$
$$I'_{i} = \alpha \beta_{i} S_{i} I_{i} - \gamma I_{i} - \mu I_{i}$$
$$R'_{i} = \gamma I_{i} - \mu R_{i}$$

¹Nonato, L. G., Peixoto, P., Pereira, T., Sagastizábal, C., & Silva, P. J. "Robot Dance: A mathematical optimization platform for intervention against COVID-19 in a complex network". EURO J. Computational Optim. (2022).

Modelling commuting

Outline

$oldsymbol{1}$ Disease and pest control through the Sterile Insect Technique (SIT)

- The model
- Release strategies
- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

Basic reproduction number

- Introducing vaccination
- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem

3 Other disease/pest control problems

4 Conclusion and perspectives

Basic reproduction number \mathcal{R}_0

\mathcal{R}_0 : epidemic threshold

We consider the parameters that correspond to the **case of isolated cities:**

$$\mathcal{R}_0^i = \frac{\beta_i}{\gamma + \mu}, \qquad i = 1, \dots, K.$$

Starting from the calculation approach in [Van den Driessche & Watmough (2002)]², we get:

Theorem (Bounds for \mathcal{R}_0)

One has

$$\min_{1 \le i \le K} \left(\alpha \mathcal{R}_0^i + (1 - \alpha) \sum_{k=1}^K p_{ik} \mathcal{R}_0^k \right) \le \mathcal{R}_0 \le \max_{1 \le i \le K} \left(\alpha \mathcal{R}_0^i + (1 - \alpha) \sum_{k=1}^K p_{ik} \mathcal{R}_0^k \right).$$

²Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosc., Van den Driessche and Watmough (2002)

Basic reproduction number \mathcal{R}_0

 \mathcal{R}_0 : epidemic threshold

We consider the parameters that correspond to the **case of isolated cities**:

$$\mathcal{R}_0^i = \frac{\beta_i}{\gamma + \mu}, \qquad i = 1, \dots, K.$$

Starting from the calculation approach in [Van den Driessche & Watmough (2002)]², we get:

Theorem (Bounds for \mathcal{R}_0)

One has

$$\min_{1 \le i \le K} \left(\alpha \mathcal{R}_0^i + (1 - \alpha) \sum_{k=1}^K p_{ik} \mathcal{R}_0^k \right) \le \mathcal{R}_0 \le \max_{1 \le i \le K} \left(\alpha \mathcal{R}_0^i + (1 - \alpha) \sum_{k=1}^K p_{ik} \mathcal{R}_0^k \right).$$

²Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosc., Van den Driessche and Watmough (2002)

Basic reproduction number \mathcal{R}_0

 \mathcal{R}_0 : epidemic threshold

We consider the parameters that correspond to the **case of isolated cities**:

$$\mathcal{R}_0^i = \frac{\beta_i}{\gamma + \mu}, \qquad i = 1, \dots, K.$$

Starting from the calculation approach in [Van den Driessche & Watmough (2002)]², we get:

Theorem (Bounds for \mathcal{R}_0)

One has

$$\min_{1 \le i \le K} \left(\alpha \mathcal{R}_0^i + (1-\alpha) \sum_{k=1}^K p_{ik} \mathcal{R}_0^k \right) \le \mathcal{R}_0 \le \max_{1 \le i \le K} \left(\alpha \mathcal{R}_0^i + (1-\alpha) \sum_{k=1}^K p_{ik} \mathcal{R}_0^k \right).$$

²Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosc., Van den Driessche and Watmough (2002)

Simulations for \mathcal{R}_0 bounds

Figure: Analysis of \mathcal{R}_0 bounds using 10,000 random samples for parameters β , P and α (in blue) in the case of 5 cities. Red is for $\alpha = 0.5$.

Outline

$oldsymbol{1}$ Disease and pest control through the Sterile Insect Technique (SIT)

- The model
- Release strategies
- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

• Basic reproduction number

Introducing vaccination

- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem

3 Other disease/pest control problems

4 Conclusion and perspectives

Introducing vaccination

Population of city i is vaccinated at a rate u_i , leading to

$$S'_{i} = \mu - \alpha \beta_{i} S_{i} I_{i} - (1 - \alpha) S_{i} \sum_{j=1}^{K} \beta_{j} p_{ij} I_{j}^{\text{eff}} - u_{i} S_{i} - \mu S_{i}$$
$$I'_{i} = \alpha \beta_{i} S_{i} I_{i} + (1 - \alpha) S_{i} \sum_{j=1}^{K} \beta_{j} p_{ij} I_{j}^{\text{eff}} - \gamma I_{i} - \mu I_{i}$$
$$R'_{i} = \gamma I_{i} + u_{i} S_{i} - \mu R_{i}$$
$$V'_{i} = u_{i} S_{i}$$

$V_i(t)$: vaccinated until time t

Setting:

$$\mathcal{R}_{0,i}^{\mathrm{vac}} := \frac{\mu}{\mu + u_i} \frac{\beta}{\gamma + \mu},$$

we get analogous inequalities for $\mathcal{R}_0^{\mathrm{vac}}$:

$$\min_{i} \left(\alpha \mathcal{R}_{0,i}^{\text{vac}} + (1-\alpha) \sum_{k=1}^{K} p_{ik} \mathcal{R}_{0,k}^{\text{vac}} \right) \le \mathcal{R}_{0}^{\text{vac}} \le \max_{i} \left(\alpha \mathcal{R}_{0,i}^{\text{vac}} + (1-\alpha) \sum_{k=1}^{K} p_{ik} \mathcal{R}_{0,k}^{\text{vac}} \right)$$

Introducing vaccination

Population of city i is vaccinated at a rate u_i , leading to

$$S'_{i} = \mu - \alpha \beta_{i} S_{i} I_{i} - (1 - \alpha) S_{i} \sum_{j=1}^{K} \beta_{j} p_{ij} I_{j}^{\text{eff}} - u_{i} S_{i} - \mu S_{i}$$
$$I'_{i} = \alpha \beta_{i} S_{i} I_{i} + (1 - \alpha) S_{i} \sum_{j=1}^{K} \beta_{j} p_{ij} I_{j}^{\text{eff}} - \gamma I_{i} - \mu I_{i}$$
$$R'_{i} = \gamma I_{i} + u_{i} S_{i} - \mu R_{i}$$
$$V'_{i} = u_{i} S_{i}$$

 $V_i(t)$: vaccinated until time t

Setting:

$$\mathcal{R}_{0,i}^{\mathrm{vac}} := \frac{\mu}{\mu + u_i} \frac{\beta}{\gamma + \mu},$$

we get analogous inequalities for $\mathcal{R}_0^{\rm vac}$:

$$\min_{i} \left(\alpha \mathcal{R}_{0,i}^{\text{vac}} + (1-\alpha) \sum_{k=1}^{K} p_{ik} \mathcal{R}_{0,k}^{\text{vac}} \right) \le \mathcal{R}_{0}^{\text{vac}} \le \max_{i} \left(\alpha \mathcal{R}_{0,i}^{\text{vac}} + (1-\alpha) \sum_{k=1}^{K} p_{ik} \mathcal{R}_{0,k}^{\text{vac}}, \right)$$

Impact of vaccination rates on $\mathcal{R}_0^{\mathrm{vac}}$

Figure: \mathcal{R}_0^{vac} as a function of **constant** vaccination rates

Outline

$oldsymbol{1}$ Disease and pest control through the Sterile Insect Technique (SIT)

- The model
- Release strategies
- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

- Basic reproduction number
- Introducing vaccination

• The Optimal Control Problem

- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem

3 Other disease/pest control problems

4 Conclusion and perspectives

The Optimal Control Problem

Dynamics

$$S'_{i} = \mu - \alpha \beta_{i} S_{i} I_{i} - (1 - \alpha) S_{i} \sum_{j=1}^{K} \beta_{j} p_{ij} I_{j}^{\text{eff}} - u_{i} S_{i} - \mu S_{i}$$
$$I'_{i} = \alpha \beta_{i} S_{i} I_{i} + (1 - \alpha) S_{i} \sum_{j=1}^{K} \beta_{j} p_{ij} I_{j}^{\text{eff}} - \gamma I_{i} - \mu I_{i}$$

$$R'_{i} = \gamma I_{i} + u_{i}S_{i} - \mu R_{i}$$
$$V'_{i} = u_{i}S_{i}$$

Constraints

- Vaccine availability (shipments): $\sum_{i=1}^{K} V_i(t)n_i \leq D(t)$.
- Vaccination capacity: $u_i(t)S_i(t) \leq v_i^{\max}$.

•
$$u_i(t) \ge 0$$
, a.e. $t \in [0, T]$.

$$\min c_v \sum_{i=1}^K n_i V_i(T) + c_h \int_0^T r_h n_i I_i \, dt$$

The Optimal Control Problem in abstract form

$$\min \int_0^T f_0(x(t)) dt + \Psi(x(T)),$$

s.t. $x'(t) = f(x(t)) + h(x(t))u(t),$ a.e. $t \in [0, T]$
 $g(t, x(t)) \le 0,$ for all $t \in [0, T]$
 $m(x(t), u(t)) \le 0,$ a.e. $t \in [0, T]$
 $u(t) \in U,$ a.e. $t \in [0, T]$
 $x(0) = x_0.$

Theoretical results for the Optimal Control Problem

- The optimal control problem has a global minimum: derived from classical results from [Cesari, 1965]³
- Optimality conditions of first order (in the form of a Pontryagin Maximum Principle): derived from [Boccia et al., 2016]⁴
- The optimal solution for K=1 (one city) does not have singular arcs, that is, there is no interval such that

 $0 < u_1^*(t) S_1^*(t) < v_1^{\max}.$

Some progress for the case K>1. Numerically, the assertion holds for the general case, this is,

 $u_i^*(t)S_i^*(t) \in \{0, v_i^{\max}\}, \text{ for a.e. } t \in [0, T], \ i = 1, \dots, K.$

 $^{^3 \}text{Cesari}$, L. "Existence theorems for optimal solutions in Pontryagin and Lagrange problems". J. SIAM Control (1965)

⁴Boccia, A., Pinho, M. D. R. de, and Vinter, R. B. "Optimal control problems with mixed and pure state constraints". SIAM J Control and Optim. (2016)

Theoretical results for the Optimal Control Problem

- The optimal control problem has a global minimum: derived from classical results from [Cesari, 1965]³
- Optimality conditions of first order (in the form of a Pontryagin Maximum Principle): derived from [Boccia et al., 2016]⁴
- The optimal solution for K=1 (one city) does not have singular arcs, that is, there is no interval such that

 $0 < u_1^*(t) S_1^*(t) < v_1^{\max}.$

Some progress for the case K>1. Numerically, the assertion holds for the general case, this is,

 $u_i^*(t)S_i^*(t) \in \{0, v_i^{\max}\}, \text{ for a.e. } t \in [0, T], \ i = 1, \dots, K.$

 $^{^3 \}text{Cesari},$ L. "Existence theorems for optimal solutions in Pontryagin and Lagrange problems". J. SIAM Control (1965)

⁴Boccia, A., Pinho, M. D. R. de, and Vinter, R. B. "Optimal control problems with mixed and pure state constraints". SIAM J Control and Optim. (2016)

Theoretical results for the Optimal Control Problem

- The optimal control problem has a global minimum: derived from classical results from [Cesari, 1965]³
- Optimality conditions of first order (in the form of a Pontryagin Maximum Principle): derived from [Boccia et al., 2016]⁴
- The optimal solution for K = 1 (one city) does not have singular arcs, that is, there is no interval such that

 $0 < u_1^*(t) S_1^*(t) < v_1^{\max}.$

Some progress for the case K > 1. Numerically, the assertion holds for the general case, this is,

 $u_i^*(t)S_i^*(t) \in \{0, v_i^{\max}\}, \quad \text{for a.e. } t \in [0, T], \ i = 1, \dots, K.$

 $^{^3 \}text{Cesari},$ L. "Existence theorems for optimal solutions in Pontryagin and Lagrange problems". J. SIAM Control (1965)

⁴Boccia, A., Pinho, M. D. R. de, and Vinter, R. B. "Optimal control problems with mixed and pure state constraints". SIAM J Control and Optim. (2016)

Outline

$oldsymbol{1}$ Disease and pest control through the Sterile Insect Technique (SIT)

- The model
- Release strategies
- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

- Basic reproduction number
- Introducing vaccination
- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem

3 Other disease/pest control problems

4 Conclusion and perspectives

Metropolitan region assumption

The capital is the largest and most densely populated city, people from the surroundings, either work in the capital or in their own cities:

$$\beta_1 > \max_{i=2,\dots,K} \beta_i, \quad N_1 > \max_{i=2,\dots,K} N_i.$$

Transition matrix structure:

$$P = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ p_{21} & p_{22} & 0 & \cdots & 0 \\ p_{31} & 0 & p_{33} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ p_{K1} & 0 & 0 & \cdots & p_{KK} \end{bmatrix}$$

Numerical simulations are done under this assumption or an approximation of it.

Optimal control: 2 cities

Figure: Optimal trajectories and control for two-city interaction: The fourth subplot illustrates the variables $u_i(t)S_i(t) \in \{0, v_i^{\max}\}, i = 1, 2$. The settings for this experiment are: $\beta = (0.25, 0.18), \alpha = 0.64, p_{21} = 0.2, n_1 = 10^6$ and $n_2 = 10^5$.

Optimal control: 5 cities

Figure: Optimal trajectories and control functions for 5 cities $\beta = (0.4, 0.3, 0.15, 0.15, 0.1)$, $\alpha = 0.64$, $p_{k1} = 0.2$ for each city k > 1, and $n = 10^5(50, 10, 10, 1, 1)$ is the vector of population sizes.

Outline

$oldsymbol{1}$ Disease and pest control through the Sterile Insect Technique (SIT)

- The model
- Release strategies
- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

- Basic reproduction number
- Introducing vaccination
- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem
- 3 Other disease/pest control problems
- 4 Conclusion and perspectives

Transition matrix of the Rio de Janeiro metropolitan area

Figure: Heatmap showing the matrix P in the case of Rio de Janeiro metropolitan area

Fonte: SEBRAE. Mobilidade urbana e mercado de trabalho no Rio de Janeiro

Vaccination strategies comparison

Optimal Time-Control Solution

Figure: Disease Progression in the Rio de Janeiro Metropolitan Area The transmission rate β is randomly chosen between 0 and 0.3, and sorted by city population size.

Outline

$oldsymbol{1}$ Disease and pest control through the Sterile Insect Technique (SIT)

- The model
- Release strategies
- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

- Basic reproduction number
- Introducing vaccination
- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem
- 3 Other disease/pest control problems
- 4 Conclusion and perspectives

Optimal vaccination: comments and perspectives

What we did:

- Studied a model for vaccination in a metropolitan region
- Obtained sharp inequalities for \mathcal{R}_0
- Proved properties of the associated optimal control problem, which is control-affine (no quadratic cost was considered)
- Theoretical results and numerical tests showed that the epidemic is governed by the capital city (the biggest and most densely populated city)

Ongoing and future work:

- $\bullet\,$ Prove non-existence of singular arcs for the general case of N>1 cities.
- Generalizations of the model: infections in transportation, age-structure or other risk groups, various type of vaccines and doses, etc.

Outline

1 Disease and pest control through the Sterile Insect Technique (SIT)

- The model
- Release strategies
- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

- Basic reproduction number
- Introducing vaccination
- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem

3 Other disease/pest control problems

4 Conclusion and perspectives

Other disease/pest control problems

Malaria control through breeding site removal:

Antunes, Aronna & Codeço. *Modeling and control of malaria dynamics in fish farming regions.* SIAM J. Applied Dynam. Systems (2023). Joint project with FIOCRUZ (Oswaldo Cruz Foundation, Brazil)

Dengue fever control through Wolbachia bacteria: Bliman, Aronna *et al. Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control.* J. Math. Biology (2018).

Crop pest control through parasitoids (for sugarcane plantation): work in progress. Joint project with EMBRAPA (Brazilian Agricultural Research Corporation) and Universidade Federal de Pelotas (Brazil).

Other disease/pest control problems

Malaria control through breeding site removal:

Antunes, Aronna & Codeço. *Modeling and control of malaria dynamics in fish farming regions*. SIAM J. Applied Dynam. Systems (2023). Joint project with FIOCRUZ (Oswaldo Cruz Foundation, Brazil)

Dengue fever control through Wolbachia bacteria:

Bliman, Aronna *et al. Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control.* J. Math. Biology (2018).

Crop pest control through parasitoids (for sugarcane plantation): work in progress. Joint project with EMBRAPA (Brazilian Agricultural Research Corporation) and Universidade Federal de Pelotas (Brazil).

Other disease/pest control problems

Malaria control through breeding site removal:

Antunes, Aronna & Codeço. *Modeling and control of malaria dynamics in fish farming regions*. SIAM J. Applied Dynam. Systems (2023). Joint project with FIOCRUZ (Oswaldo Cruz Foundation, Brazil)

Dengue fever control through Wolbachia bacteria:

Bliman, Aronna *et al. Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control.* J. Math. Biology (2018).

Crop pest control through parasitoids (for sugarcane plantation): work in progress. Joint project with EMBRAPA (Brazilian Agricultural Research Corporation) and Universidade Federal de Pelotas (Brazil).

Outline

1 Disease and pest control through the Sterile Insect Technique (SIT)

- The model
- Release strategies
- Numerical simulations
- Concluding remarks for the SIT problem

Optimal vaccination in a metropolitan area

- Basic reproduction number
- Introducing vaccination
- The Optimal Control Problem
- Numerical simulations
- Application within Rio de Janeiro Metropolitan area
- Comments and perspectives for vaccination problem
- Other disease/pest control problems

4 Conclusion and perspectives

Conclusion and perspectives

• We proposed and studied models for disease and pest control involving different control techniques: feedback stabilization, impulsive feedback stabilization and optimal control.

• In many situations in disease/pest control (and more generally, in many biological systems), it comes natural to model by an optimal control problem with control-affine dynamics and several type of constraints: on the control, on the state and control-state mixed.

Many theoretical questions remain open when it comes to control-affine systems: sufficient optimality conditions, convergence of algorithms, (structure) stability of optimal solutions, etc.

• Work in progress on dealing with uncertainty in the parameters, that may have a significant impact in practice and opens to challenging theoretical questions. This include online parameter estimation and control.

• Work in progress on dealing with impulsive optimal control problems.

Some references

Vaccination part:

- Nonato, L. G., Peixoto, P., Pereira, T., Sagastizábal, C., & Silva, P. J. "Robot Dance: A mathematical optimization platform for intervention against COVID-19 in a complex network". EURO J. Computational Optim. (2022)
- Arino, Julien and Van den Driessche, P. "A multi-city epidemic model". Mathem. Population Studies (2003)
- Lemaitre, J.C. et al. "Optimal control of the spatial allocation of COVID- 19 vaccines: Italy as a case study". PLoS Computational Biol. (2022)
- Moschen, L.M. and Aronna, M.S. "Optimal vaccination strategies for epidemics in metropolitan areas". Submitted (2023)

Sterile Insect Technique (SIT) part:

- Aronna, M.S. & Dumont, Y. "On nonlinear pest/vector control via the Sterile Insect Technique: impact of residual fertility". Bull. Mathem. Biol. 2020.
- Bliman, P.A., Cardona-Salgado, D., Dumont, Y., Vasilieva, O. "Implementation of Control Strategies for Sterile Insect Techniques". Mathem. Biosc., 2019.

Others:

- Antunes, F. J., Aronna, M. S., & Codeço, C. T. 'Modeling and control of malaria dynamics in fish farming regions". SIAM J. Applied Dynam. Syst., (2023).
- Bliman, P. A., Aronna, M. S., Coelho, F. C., & da Silva, M. A. "Ensuring successful introduction of Wolbachia in natural populations of Aedes aegypti by means of feedback control". J. Mathem. Biol. (2018)

Latin American Congress on Industrial and Applied Mathematics

2023

FGV SCHOOL OF

SBMAC

JANUARY 30TH -FEBRUARY 3RD 2023 FGV, RIO DE JANEIRO, BRAZIL

Plenary speakers

Alborto Paccanaro -FGV EMAp - Brazil Álvaro José Riacos Villegas -Universidad de los Andes & Quantil -Colombia André Luiz Diniz - CEPEL - Brazil Claudia D'Ambrosio -Ecole Polytechnique & CNRS - France José Luis Aragón Vera -UNAM - Mexico

Juan Carlos De Los Reyes -MODEMAT - Escuela Politécnica Nacional - Ecuador Maya Stein -

CMM - Universidad de Chile - Chile

Ruben Spies -IMAL & CONICET - Argentina Soledad Villar -Johns Hopkins University - USA

Susana Gómez Gómez -UNAM - Mexico Wil Schilders -

TU Eindhoven - The Netherlands

Minicourses

Graph Coloring - Theory and Application Ana Shirley Ferreira da Silva - Universidade Federal do Ceará - Brazil

Numerical solution of coupled problems in the cardiovascular field Christian Vergara - LABS - Politecnico di Milano - Italy

BRAZILIAN ORGANIZING COMMITTEE:

Chair: Maria Soledad Aronna - FGV EMAp Co-chair: Pablo Martin Rodríguez - UFPE Lillane Basso Bartchello - UFRGS Sandra Augusta Santos - UNICAMP José Alberto Cuminato - USP & CeMEAI

SCIENTIFIC COMMITTEE:

Maria Bateban - CNRS & Université Paris Dauphine, France Collina Herraro de Elgueitedo - UFS, Brazil Volkar Mehrmann - TU Berlin, Germany Hétotr Ramirez Caberea - CMM - U, de Chile, Chile Claudia Segattatabal - UNICAMB Rezal Domingo Alberto Tarzía - Universidad Austral, Rosario, Argentina.

LOCAL COMMITTEE:

Dayse Haime Pastore - Cefet/RJ Hugo de la Cruz Cancino - FGV EMAp María Soledad Aronna - FGV EMAp Yuri Fahham Saporito - FGV EMAp

SAVE THE DATE

II Latin American Congress on Industrial and Applied Mathematics (LACIAM)

Chair: Luis Briceño Arias (UTFSM, Santiago, Chile) Co-chair: Cristopher Hermosilla (UTFSM, Valparaíso, Chile) Chair of the Scientific Committee: Maria Soledad Aronna (FGV EMAp, Rio, Brazil)

MORE INFORMATION AND CALL FOR SESSIONS COMING SOON

THANK YOU FOR YOUR ATTENTION!

More talks, slides and references at sites.google.com/view/aronna