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Networked Hyperbolic Systems

Hyperbolic systems are a class of partial differential equations (PDEs) that describe wave
propagation and other phenomena where information travels with finite speed.

When these systems are interconnected in a network, they form networked hyperbolic systems.
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Real-world Applications

©

Project ConFlex (2017-2022) and
ModConFlex (2023-2027): Modeling
and Control for Flexible Structures
Interacting with Fluids

¢ Project SFB TRR154 (2018-2026):
Network of Large NASA Flexible Flight Mathematical modelling, simulation and
Deflection Strings Device optimization using the example of gas
(Nonlinear coupled (Geometrically Exact networks

©

Project DFG WA5144/1-1 (2022-2024):
Analysis and Control of Nonlinear
Hyperbolic Systems with Degeneration
on Networks

Sino-German Mobility Project CIN-PDE
(2022-2025): Control, Inversion and
Numerics for Partial Differential
Equations (Coming workshop in
October 8th. -10th. at Shanghai)

wave equations) Beams)

©

Flexible Robotic Arm
Gas transport networks Open Canal
(Isothermal Euler (Saint-Venant Equation)
Equations)



Significant Interests

» Modeling and Analysis:
1 Physics-driven & Data-driven (e.g. Physic Laws & Machine Learning).

2 For analysis, difficulties may arise on networks with
- nonlinear elements,
- hon-trivial boundary conditions and coupling,
- complex topological structure.
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Significant Interests

» Modeling and Analysis

» Control Theory and Optimal Design

1 Feasibility — Controllability (To find at least one way to reach the target, e.g
y(x,T) = yq(x) (Exact Controllability), or y(N;,t) = yq(t)(Nodal Profile Control));
2 Optimality — Optimal control (To find the best way, in some sense, to reach the target.

e.g. controllability time, minimum number of controls, control design on networks,
constrained optimization)



=AU

Friedrich-Alexander-Universita:

] - - - Mathematics of Data | MoD
Example: Networks of vibrating strings
Two boundary control problems (linearcase)
=g (Clamped node)
Null Controllability Controllability of Nodal Profile [3
Control Target| {(T, x) = yf(T, x)=0 yg(t, L=y, t>T
l1 l2
(sharp) controllability time| 7% — 2(1; + max{l;,,}) T — 13 + min{ll, 12}

I>T" yzt - yjca; = 0, (¢, z) € (0,T) x (0,1;), 1=1,2,3,

z=0:y'(t,0) =y*,0) =y°(t0), te(0,T),
minimum number of 0 1 2 _
required controls 2 1 yz (£,0) + 92 (%,0) + 52(8,0) =0, te (0.1),

x =13 :y°(t,1l3) =0, te (0,7),

r =1yt 1) =u'(t), te (0, 7), i=1,2,

+ René Ddger, Enrique Zuazua. Wave Propagation, Observation and Control in 1-d Flexible Multi-Structures (20006)

» Yue Wang, Giinter Leugering. Boundary controllability and observability of nodal profile for wave equation (2022)

e e ——

'Key Techniques: Set suita‘ble Hilbert space, duality betweeﬁ controllability and observaility, observability Inequaty.
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Example: Networks of vibrating strings

Nonlinear Case |

Consider the following coupled system of 1-D quasilinear wave equations ===

(1=1,...,n):

I3

where 'l HUM method (J.Lions, 1980s) and duality method

1 T . _ (E.Zuazua, 1990s) can not be applied on this case.
» vy =(y,...,y"™)" is an unknown vector function of (¢, x),

» K'= K'(y*,y") are given C? functions of y* and 3,
O qri(yi i
> 5 K (y*,y%) > 0,

» u' can be considered as 0 (no control) or control function.



Difficulties may arise in...

» Nonlinearity.

> Weak solutions. [of quasilinear hyperbolic systems — shock waves — an irreversible

process — Impossible to get exact boundary controllability for any arbitrarily given initial
and final states [A. Bressan, G. M. Coclite, '02]

cccccccccccccccc
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Difficulties may arise in... R

» Nonlinearity.

> Weak solutions. [of quasilinear hyperbolic systems — shock waves — an irreversible
process — Impossible to get exact boundary controllability for any arbitrarily given initial
and final states [A. Bressan, G. M. Coclite, '02] — weaken the definition — case by case
(the scalar convex conservation law [F. Ancona, A. Marson '98,’99, T. Horsin, '98], the
p-system in isentropic gas dynamics [O. Glass, '07]].



Friedrich-Alexander-Universita:
eeeeeeeeeeeeee

Mathematics of Data | MoD

Difficulties may arise in...

» Nonlinearity.

> Weak solutions. [of quasilinear hyperbolic systems — shock waves — an irreversible
process — Impossible to get exact boundary controllability for any arbitrarily given initial
and final states [A. Bressan, G. M. Coclite, '02] — weaken the definition — case by case
(the scalar convex conservation law [F. Ancona, A. Marson '98,'99, T. Horsin, '98], the
p-system in isentropic gas dynamics [O. Glass, '07]].

> Classical solution exists only locally in time (P. D. Lax, '64; F. John, '90; T. Li, '94) —
semi-global classical solution (7" > 0 might be suitably large) [M. Cirina, '70, T.Li, Y.Jin,
B.Rao, '00, '01] — Local exact controllability in the quasilinear case.



Difficulties may arise in...

» Nonlinearity.

> Weak solutions. [of quasilinear hyperbolic systems — shock waves — an irreversible
process — Impossible to get exact boundary controllability for any arbitrarily given initial
and final states [A. Bressan, G. M. Coclite, '02] — weaken the definition — case by case
(the scalar convex conservation law [F. Ancona, A. Marson '98,'99, T. Horsin, '98], the
p-system in isentropic gas dynamics [O. Glass, '07]].

> Classical solution exists only locally in time (P. D. Lax, '64; F. John, '90; T. Li, '94) —
semi-global classical solution (7" > 0 might be suitably large) [M. Cirina, '70, T.Li, Y.Jin,
B.Rao, '00, '01] — Local exact controllability in the quasilinear case.

» Networked Structure.

>  Coupling at the junction. Complexity and Nonlinearity in interface conditions.
> Complex topological structure of networks G = (1, £) may change the controllability results
[Lagnese-Leugeing-Schmidt, '94]
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Example: Networks of vibrating strings o
Consider the following coupled system of 1-D quasilinear wave equations (¢ = 1, ..., n):

yie — (K'(Y',42))e = F(y.y2.y1), «€[0,Li,t €[0,T]

yir(£,0) = G'(t,y(,0),y.(t,0), y:(t,0)) Second-order differential operators

+/O H'(t,s,y(s.0))ds, t € [0, 7] (temporal) non-locality
y'(t, L) = u'(t), t € [0,T]
(yi,yg)(o,x) — (¢Z(ZE)7¢Z($))7 S [OvL’i]°

where
>y = (y yeens Y ) is an unknown vector function of( x),
> K = Kz(y y.) are given C? functions of y* and v,
> 5 K (' yz) >0,
> FZ, G', H" are given C* functions of their arguments and 0 value at null state (i.e. 0 is an
equiblium).
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Example: String-mass-spring system

v — Ki(y). =0, 0<a<L,t>0 i=1,2,
r=0:y,(0,t) = Ki(y,(0,8)—r(y' (0,t) — y*(0,1)), I i
ynamical transmission conaitions
v (0,1) = Ko (yz(0, ) +r(y' (0,1) — y*(0,1)),
r =Ly =u'(t), =1, 2.
xr = 0 string  y,(t, x)

Controls

K spring

AN
v

string  y2(t, x)



Example: String-mass-spring system

» If the spring stiffness tends to infinity, formally the system tends to the classical string-mass problem. !

> For string-mass system it is known that the mass smoothens the waves while crossing the mass-point.?
» |f the spring stiffness tends to zero, the strings become uncoupled.

» This system is controllable by only 1 control, and in this case, we discovered asymmetric solution space (smoothing
effect of mass on waves) and controllable space.3

1G. Leugering, 1998; F. Almusallams, 2015; Y.Wang, T.Li, 2018
25. Hansen, E.Zuazua 1995
3G.Leugering,S.|\/|icu, |.Roventa, Y.Wang, 2022

eeeeeeeeeeee for
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Other examples for dynamical boundary conditions

» Kelvin Model: a classical class of viscoelastic solid models. » Maxwell Model: a classical class of viscoelastic fluid models.
’ v — Ki(yh)e =0, 0<z<L,t>0, i=12 (v~ Ki(yp): =0, 0<@ <L, =12
1
) #=0 yie(t,0) = K1(ys(£,0)) — w(y' (t,0) — 4*(t,0)) + p(yi (t,0) — ¥ (¢, 0)), @ =0:y(0,1) =K1 (3 (£, 0))—r(y (1, 0) = y°(1,0))
yir(t,0) = Ka(yz (t,0)) + r(y (t,0) — y*(t,0)) + p(y: (t,0) — yi (¢, 0)), < u / ~20 (4 (1, 0) — 42(r, 0))dr
r=L ' =u'(t), i =1,2.
o J vz (0,1) =
\x =L yi:ui(t), i=1,2

x = 0 string  y1(t, ) x = L r =0 string vy (t, x) r = L

(4
dash-pot I—-

K spring

,u dash-pot
, M

string  yo(t, @)
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Exact boundary controllability

— (K'(y",¥.))e = F(y,¥2,¥t), x€[0,L],t€[0,T]
(£,0) = G'(t,y(t,0), y2(¢,0), y:(£,0))

t
+/ H'(t,s,y(s,0))ds, t €|0,T]
0

T < [O, Lz]

. t
The system (E) is locally exact controllable v,
» with n controls |G.Leugering, T.Li, Y.Wang, '18,'19].
o, Uy

A 2L, e

Controllability Time (sharp): 7% = max S
i=1,..n \/ K (0,0) A I — i
X Rgﬂ ¢2,¢~o ___________ ______________________ R}.
)ﬁ:\/ P19 i
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Wellposedness e

T . (

Y, yi, y;f)T Then we get

We introduce w* = (wi,wéa wé)

with (¢, ) € [0,T] x |0, L;]. This, in turn, can be rewritten in the form of a quasilinear
hyperbolic system

where A* has 3 distinct real eigenvalues:




Wellposedness ctd.

We may integrate the boundary conditions w.r.t. time and obtain a kind of non-local
(of time) boundary condition in the first order system (FOS):

» Local existence of C'! solution to (FOS) (T.Li, '85): 3! C! solution on R(§) = {(t,2)|0 <t < 6,0 < x < L},
where 0 depends on the initial and boundary data.
» For given T' > 0, NO results on existence of semi-global classical solutions before.

Lemma: A uniform priori estimate of solution to (FOS) [Y.W.19]

ow
lw(t, ) 2 Jw(t, ) + H o, >|| <), 0<t<T,

where || - || denotes C'°-norm.

eeeeeeeeeeeeee
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Exact boundary controllability

y;fét o (Kz(yzay;:))fl? — F(Y?YCB?Yt)? T < [OaLZ]vt = [OaT]
y;t(ta O) — Gz(ta Y(ta 0)7 yw(ta 0)7 Yt(ta O))

(E) - /Ot H'(t,s,y(s,0))ds, t €[0,T]

T < [O, Lz]

The system (E) is locally exact controllable
» with n controls |G.Leugering, T.Li, Y.Wang, '18,'19].

» This result can be improved by reducing the number of controls to n — 1, but
the space of controlled initial data is asymmetric [G.Leugering, S.Micu, 1.Robenta, Y.Wang,
'22] [G.Leugering, C.Rodriguez, Y.Wang, '22].
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Extension: dynamical boundary conditions in 1st-order hyperbolic systems

» Project Conflex. [G.Vergara-Hermosilla, G.Leugering, Y.Wang, COCV '21].
» One dimensional nonlinear shallow water system, describing the free surface flow of water as well as the flow
under a fixed gate structure.

Z
coming wave

control

-l 0 lo-r lo losr ]
8tC+amq — O’ CO(tao) — Cl(tao)a QO(tao) — Q1(t70)7
2
0tq + O (q /h) T ghawc =0, qQ(ta lo + ’I") — Q1(t7 lo — ’I”) — Qw(t)a
2 o /1
where ((t, x) is the free surface elevation, h(t, x) is [ q; | QC'] v=2,@=botr =g, (t),
the fluid height, q(t, ) is the horizontal discharge. 2h? Ji=1,e=1,—r de 7 '
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Remark: Controllability of Nodal Profile

Nodal Control Problem: Let 7' > T™ > 0. For given desired profile function y,(?)
to find boundary controls u', ..., 4™ so that

Fw',...,u™ =y"t,L,) =y,0),t € [T*T]

or Fu',...,u™=y"tL)=y,t),te€[T*T].

E
E2 E2
Theorem T
In a neighbourhood of an equilibrium (around 0), the system (E) is locally Eq By
exact boundary controllable of nodal profile by only 1 control when O ?
(controllability time, sharp) ) S S
T >T.
Fig. | Charged node | Controlled node Controllability Time T
(2) E Bi(j#A1) | T>—FH—q
K, (0,0) K7 (0,0)
(b) E, O T > ——=
K, (0,0)
(C) E; El(in—situ) T >0
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E(d10)/\ d71
d11
d31
¢
d41 de1 < d10,1
ds1

* Optimal controllability time T
* Minimum number of controls.
* Placement of controls.

* Calculation of controls.

» Nodal Profile Control: Our aim is to fit (a part of) the boundary traces to a given profile after
a suitably long time ¢ = T' by means of boundary controls. [Project: Control theory on
planar or spacial string networks: controllability and partial nodal control for quasilinear
hyperbolic systems. (Individual funding & NSFC-1121101.Joint work with T.Li.]
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Extension: Flow Control on gas network and Control Desiqgt.

City 2
D » The coupling of gas pipes.

» State function [isothermal Euler equations]

City 1 > p(t,x): the density of the gas,

J J > q(t,x): the flux in the pipe.
Control

» Nodal Controls u(t): Pressure increases at the compressor stations.

J

Control

> Q: Can we find controls to satisfy the given demand of the cities?
Aim: T he boundary traces of state to exactly fit any given profile as
function of time on a node after a suitable timet = I' by means of
boundary controls. [= Exact boundary controllability of nodal profile]

> Answer: Yes! (in local sense, and at least after a waiting time T™).
[M.Gugat 2010, 2014, T.Li 2010

* Minimum number of controls.
* Placement of controls.
* Calculation of controls.
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Significant Interests

Modeling and Analysis
Control Theory and Optimal Design

== e B ——— — — — — L —— |

tKey Issue: developing and applylng mathematlcal methods mcludlng nonllnear |
functional analysis, new control theory and strategy to model, understand and control )
the dynamics of PDEs.
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Significant Interests

» Modeling and Analysis

» Control Theory and Optimal Design

» Accurate and Fast Prediction of Numerical Solutions/ Optimal Control for

Network PDEs

1 A stochastic method inspired by Random Batch Method
2 PINN approach



A Stochastic Algorithm for the
Efficient Simulation for Networked
Linear hyperbolic systems




Origins of the Random Batch Method

Initial Motivation: Simulation and control of large interacting particle systems can
be computationally demanding.

There are N(N — 1)/2 interaction forces between N particles.
= Computational cost grows rapidly when NN is large.



Origins of the Random Batch Method

Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics, 2020}

» Divide the NV particles randomly into batches of size P > 2.
» Consider only interactions between particles in the same batch.

» Do a simulation over a short time interval of length A.



Origins of the Random Batch Method

Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics, 2020]

o
/

» Divide the N particles randomly into batches of size P > 2.
» Consider only interactions between particles in the same batch.
» Do a simulation over a short time interval of length A.

» Repeat.



Origins of the Random Batch Method

Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics, 2020]

» the RBM-solution converges to the solution of the original problem as i — 0.
» the RBM reduces the computational cost from O(N?) to O(PN).



RBM for Optimal Control

» The RBM can speed up the solution of optimal control problems governed by
interacting particles systems [D. Ko, E. Zuazua, Math. Models Methods Appl. Sci., Vol. 31, No. 8,
2021] (only numerical experiments).

» T he first convergence proof is given in [D.Veldman, E.Zuazua, Numerische Mathematik, 2022]
for finite dimensional linear-quadratic optimal control in the operator-splitting
setting.

min [ (la(t) — 2a()) + u(o)

u

©(t) = Ax(t) + Bu(t), x(0) = z

» Whether this algorithm can accelerate the simulation and optimization of nonlinear
dynamics and networked infinite-dimensional systems, its convergence theory and
applications are still open issues! (A is unbounded operator).



RBM for Hyperbolic equations: Toy Example S e
Consider the transport equation
ye(t, ) +v(x)y.(t,x) =0, te (0, T),z € R,
y(0, ) = yo(x), r € R,

where v(x) is bounded and Lipschitz, yq is globally Lipschitz.
» We split the generator of the semi-group as

—0(@)2- = 3 —m(2)5-

where the v,,,(x) are Lipschitz and bounded.
> In each time step, we randomly choose batch By, subset of {1, .., M}, of size P and consider the velocity

field as
M

Vp(w, ) = - > um(z), t € te_1,tk).

me By,

Let v, (.7, x) be the solution resulting fromv,(@, 7, x), then

[y () — ¥(2) \ioo] < Ch E(sit,w)es™ - tini(4, @)

§ tin,h,i(wa t7 x)




Toy example: visualization

h=0.01

splitting of the velocity field

> 05 -

1.5 ——
s 1} ]
1
D
0.5 '
0.5 0
X

0.5

h=0.001
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RBM for Networks

Coupled wave equations on diamond networks [D. W. M. Veldman, Y. Wang, 2024]

Diamond Directed Graph

eeeeeeeeeeeeee

(g (b, @) — 2 ysi(t,x) =0 e; € E,
Y Djice,yS (t,v5) = u%(t) v; €V,
e.€E(v;)
Y (t,v5) =y (L, v5), Ve, ex € E(vj),v; €V,
Y0, 1) =y (x), ' (0,7) =y (o), e; € B,

{w:t(tﬁx) — Ce, W eim(tﬁx) =0,

ws (t, ) + c.,ws L (t,z) = 0.

Riemann Variables for the Wave Equation
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Numerical lllustration

Coupled wave equations on diamond [D. W. M. Veldman, Y. Wang, 2024]

*  Split the velocity field per edge.
* P =4 of M= 7 edges are active simultaneously.

t=0 t=0
E: o ——— - = ’{f?. == 72
-1 B o 2 §-1 1 o s 2
0 0.5 i 1 z 2= oo ) 5 1 s 2 aa =0
X y L .. 7 Y
_?.“_%7‘“%-——,— =t e — 1
{ ns D e U g F T T ——— N
1 1 2 5 : 0 y 5 1 15 5 , : 3_?_0 ’
» h=0.01,dz =0.1 » h = 0.001,dxr = 0.01
> full Model (Black): 0.36 s > full Model (Black): 551 s
» RBM-approximation: 0.27 s > RBM-approximation: 397 s
. . . 0
» reduction: 24% > reduction: 28%
. 0
» error: 22% » error: 18%



Convergence Results

 |f the original system admits an H'! solution y(1, x),
then

lim P[]y, ') =y 12, > €1 =0

. If the original system admits an H? solution, then

[ yfi(r) = yd0)|°] < Ch

 Remark: Markovs inequality
PIX > a] <

=[X ]

A

min J() = —[ly = y,1P o+ <2 [u Py +
! 5 i) 5 1 0.1y

rrrrrrrrrrrrrr

51 2
E ‘ U, ‘LZ(O,T)

+ Ifsy > 0ands; =0, then

lim Pt = u* |, ) > ] = 0.

« Ifs; > 0, then

_[‘u;lk —u* ‘Lz(O,T)] < Ch

y: original solution

Yhr

solution to randomized system

u*: optimal control to original system

S
.

: optimal control to randomized system



Summary and Perspectives

» The application of the RBM to (networked) hyperbolic PDEs combines

> operator splitting for PDEs
> stochastic methods for large-scale optimization
> characteristic method for 1d Hyperbolic type PDEs.

» We efficiently approximate the solution to networked linear hyperbolic equations
and associated optimal control problems, and obtain the convergence results

> yn(w,t) converges to y(t) for h — 0
> Convergence in the optimal controls can be proven along the lines of [E.Zuazua, D.Veldman
2022], but some regularity properties need to be verified.

» Extensions to nonlinear setting;:

> semi-linear case is straight forward, e.g. y: + Ay, = f(¢,x,y) with f Lipschitz in y.
> quasi-linear case is more challenging but appears in many real-world applications (nonlinear
transport equations / conservation laws, and networks of incompressible Euler equations)

» Extension to non-overlapping domain decomposition on complex spatial structures
and XPINNs
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Projects on Real-time capable methods and

algorithms
e o s -
- - - O OV® o
« Simulation, inverse problems, and control . @ pooar I
- = | meur (=) (@) ,,,,,,,,,,,,,,,,,,,,,,
for (degenerate) 1-D wave equations using O
PINNs.. . ‘
https://qgithub.com/DCN-FAU-AvVH/ SRR R N
PINNs wave equation e i -
ARV TR | e
 Dania Sana (Jun. - Sep. 2022) B
supervised by Y. Wang and E. Zuazua |
* Internship for young female researchers at FAU-MoD (Center for Mathematics 8 V Pt \
of Data) o e

« PGML: Physics-Guided Machine Learning (2024-2027)

focusing on
Simulation and modeling of electrochemical cells and of mechanical systems

« SHARE at FAU (Schaffler Hub for Advanced Research at Friedrich-Alexander University)


https://github.com/DCN-FAU-AvH/PINNs_wave_equation
https://github.com/DCN-FAU-AvH/PINNs_wave_equation

Friedrich-Alexander-Universitat
E Research Center for
T //~—\ Mathematics of Data | MoD

Thank yOU! ERLANGEN. JUNE 10 - 14, 2024



Toy example: visualization

splitting of the velocity field

1.3

-0.5
-0.5 0

h=0.001

0.5
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Lemma: A uniform priori estimate of solution to (FOS) [Y.W.19]

ow

Jw(t, )||1 = |Jw(t, )| + —

t, )| <o), o<t<T

where || - || denotes C°-norm.
Main ldea in the Proof: We apply

7 =(0,,/K!,, 1), 1J=(1,0,0), 17 =(0,—,/K' 1)

to (FOS) and define

They follow

along



Uniform Priori Estimate (ctd.)

Let

For (t,z) € R(11), we estimate |v;(t, x)
Ai <,=,> 0). It will arrive at (0, ), or (t«, L), or (t«,0). In different cases, we could obtain

vi (L, z)| < lv(0,-)] +01/ vi(T) dr,

or

t
vi(t, z)| < Allvi (0, )] + [[w']] + Cz/ vi(r)dr, Vvt e[0,T1],
O

where v(7) = supg<;<, [[v(¢-)]].
Using Gronwall inequality it follows that

o(t, )| < Cmax{[|u|, [0(0,)[|} = Cap,  Vte€[0,T1],

with C' > 1.

Then repeating N = [17:1} - 1 times, we have

lv(t)] < CN ao, vt € (N — 1)Ty,T).



