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Networked Hyperbolic Systems
Hyperbolic systems are a class of partial differential equations (PDEs) that describe wave 
propagation and other phenomena where information travels with finite speed.

When these systems are interconnected in a network, they form networked hyperbolic systems.
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Real-world Applications



1   Physics-driven & Data-driven (e.g. Physic Laws & Machine Learning).


2   For analysis, difficulties may arise on networks with 
     - nonlinear elements,  
     - non-trivial boundary conditions and coupling,  
     - complex topological structure.

Three main interests | 2

A(y) = F(u) y ∼ yd
yu

! Modeling and Analysis:
1 Physics-driven & Data-driven (e.g. Physic Laws & Machine Learning).
2 Difficulties may arise in ... Nonlinearity, Strong coupling, Networked structure.
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Three main interests | 2

A(y) = F(u) y ∼ yd
yu

! Modeling and Analysis
! Control Theory and Optimal Design

1 Feasibility −→ Controllability (To find at least one way to reach the target, e.g
y(x, T ) = yd(x) (Exact Controllability), or y(Ni, t) = yd(t)(Nodal Profile Control));

2 Optimality −→ Optimal control (To find the best way, in some sense, to reach the target.
e.g. controllability time, minimum number of controls, control design on networks,
constrained optimization)
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Null Controllability Controllability of Nodal Profile

Control Target

(sharp) controllability time

minimum number of 
required controls  2 1

Example: Networks of vibrating strings

Two boundary control problems (linear case) 

Duality Method on Nodal Control Problem | 5

Three string Network with two Neumann controls

(Clamped node)

l1 l2

l3






yi
tt − yi

xx = 0, (t, x) ∈ (0, T ) × (0, li), i = 1, 2, 3,

x = 0 : y1(t, 0) = y2(t, 0) = y3(t, 0), t ∈ (0, T ),
y0

x(t, 0) + y1
x(t, 0) + y2

x(t, 0) = 0, t ∈ (0, T ),
x = l3 : y3(t, l3) = 0, t ∈ (0, T ),
x = li : yi

x(t, li) = ui(t), t ∈ (0, T ), i = 1, 2,

(1)

Yue Wang Nodal Control FAU-DCN

yi(T, x) = yi
t(T, x) = 0 y3

x (t, l3) = yd, t > T

T ≥ T*
T* = 2(l3 + max{l1, l2}) T* = l3 + min{l1, l2}

René Dáger, Enrique Zuazua. Wave Propagation, Observation and Control in 1-d  Flexible Multi-Structures (2006)

Yue Wang, Günter Leugering. Boundary controllability and observability of nodal profile for wave equation (2022)

Key Techniques: Set suitable Hilbert space, duality between controllability and observability, observability Inequality.



Example: Networks of vibrating strings
Nonlinear Case

Duality Method on Nodal Control Problem | 5

Three string Network with two Neumann controls

(Clamped node)

l1 l2

l3






yi
tt − yi

xx = 0, (t, x) ∈ (0, T ) × (0, li), i = 1, 2, 3,

x = 0 : y1(t, 0) = y2(t, 0) = y3(t, 0), t ∈ (0, T ),
y0

x(t, 0) + y1
x(t, 0) + y2

x(t, 0) = 0, t ∈ (0, T ),
x = l3 : y3(t, l3) = 0, t ∈ (0, T ),
x = li : yi

x(t, li) = ui(t), t ∈ (0, T ), i = 1, 2,

(1)

Yue Wang Nodal Control FAU-DCN

1. René Dáger, Enrique Zuazua. Wave Propagation, Observation and Control in 1-d  Flexible Multi-Structures (2006)

2.   Yue Wang, Günter Leugering. Boundary controllability and observability of nodal profile for wave equation (2022)

Networks of nonlinear vibrating strings | 14

Consider the following coupled system of 1-D quasilinear wave equations
(i = 1, ..., n):

(E)






yi
tt − (Ki(yi, yi

x))x = F (y, yx, yt), x ∈ [0, Li], t ∈ [0, T ]
∑

Ki(yi(t, 0), yi
x(t, 0)) = 0, t ∈ [0, T ]

yj(t, 0) = yi(t, 0), i #= j,

yi(t, Li) = ui(t), t ∈ [0, T ]
(yi, yi

t)(0, x) = (φi(x),ψi(x)), x ∈ [0, Li].

where
! y = (y1, ..., yn)T is an unknown vector function of (t, x),
! Ki = Ki(yi, yi

x) are given C2 functions of yi and yi
x,

! ∂
∂yi

x
Ki(yi, yi

x) > 0,
! ui can be considered as 0 (no control) or control function.

Yue Wang Nodal Control FAU-DCN

! !  HUM method (J.Lions, 1980s) and duality method 
(E.Zuazua, 1990s) can not be applied on this case.



Di�culties may arise in... | 6

I Nonlinearity.
> Weak solutions. [of quasilinear hyperbolic systems æ shock waves æ an irreversible

process æ Impossible to get exact boundary controllability for any arbitrarily given initial
and final states [A. Bressan, G. M. Coclite, ’02]

æ weaken the definition æ case by case
(the scalar convex conservation law [F. Ancona, A. Marson ’98,’99, T. Horsin, ’98], the
p-system in isentropic gas dynamics [O. Glass, ’07]].

> Classical solution exists only locally in time (P. D. Lax, ’64; F. John, ’90; T. Li, ’94) æ
semi-global classical solution (T > 0 might be suitably large) [M. Cirinà, ’70, T.Li, Y.Jin,
B.Rao, ’00, ’01] æ Local exact controllability in the quasilinear case.

I Networked Structure.
> Coupling at the junction. Complexity and Nonlinearity in interface conditions.
> Complex topological structure of networks G = (V, E) may change the controllability results

[Lagnese-Leugeing-Schmidt, ’94]
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I Nonlinearity.
> Weak solutions. [of quasilinear hyperbolic systems æ shock waves æ an irreversible

process æ Impossible to get exact boundary controllability for any arbitrarily given initial
and final states [A. Bressan, G. M. Coclite, ’02] æ weaken the definition æ case by case
(the scalar convex conservation law [F. Ancona, A. Marson ’98,’99, T. Horsin, ’98], the
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> Classical solution exists only locally in time (P. D. Lax, ’64; F. John, ’90; T. Li, ’94) æ
semi-global classical solution (T > 0 might be suitably large) [M. Cirinà, ’70, T.Li, Y.Jin,
B.Rao, ’00, ’01] æ Local exact controllability in the quasilinear case.

I Networked Structure.
> Coupling at the junction. Complexity and Nonlinearity in interface conditions.
> Complex topological structure of networks G = (V, E) may change the controllability results

[Lagnese-Leugeing-Schmidt, ’94] 1
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Example: Networks of vibrating strings
New boundary conditions + coupling Generalization | 12

Consider the following coupled system of 1-D quasilinear wave equations (i = 1, ..., n):

(E)






yi
tt − (Ki(yi, yi

x))x = F (y, yx, yt), x ∈ [0, Li], t ∈ [0, T ]
yi

tt(t, 0) = Gi(t, y(t, 0), yx(t, 0), yt(t, 0))

+
∫ t

0
Hi(t, s, y(s, 0))ds, t ∈ [0, T ]

yi(t, Li) = ui(t), t ∈ [0, T ]
(yi, yi

t)(0, x) = (φi(x),ψi(x)), x ∈ [0, Li].

where
! y = (y1, ..., yn)T is an unknown vector function of (t, x),
! Ki = Ki(yi, yi

x) are given C2 functions of yi and yi
x,

! ∂
∂yi

x
Ki(yi, yi

x) > 0,
! F i, Gi, Hi are given C1 functions of their arguments and 0 value at null state (i.e. 0 is an

equiblium).
Yue Wang CoNet_MoLeAp FAU-Erlangen

Second-order differential operators


(temporal) non-locality



Example: String-mass-spring systemModeling 3/3: coupling/interface condition - elastic spring | 9






yi
tt − Ki(yi

x)x = 0, 0 ≤ x ≤ L, t > 0, i = 1, 2,

x = 0 :y1
tt(0, t) = K1(y1

x(0, t))−κ(y1(0, t) − y2(0, t)),
y2

tt(0, t) = K2(y2
x(0, t))+κ(y1(0, t) − y2(0, t)),

x = L :yi = ui(t), i = 1, 2.

string y1(t, x)

string y2(t, x)

springκ

x = 0 x = L

Controls

Figure: Two strings connected via masses and an elastic spring

Dynamical transmission conditions



Modeling 3/3: coupling/interface condition - elastic spring | 9






yi
tt − Ki(yi

x)x = 0, 0 ≤ x ≤ L, t > 0, i = 1, 2,

x = 0 :y1
tt(0, t) = K1(y1

x(0, t))−κ(y1(0, t) − y2(0, t)),
y2

tt(0, t) = K2(y2
x(0, t))+κ(y1(0, t) − y2(0, t)),

x = L :yi = ui(t), i = 1, 2.

! If the spring stiffness tends to infinity, formally the system tends to the classical string-mass problem. 1

! For spring-mass system it is known that the mass smoothens the waves while crossing the mass-point.2
! If the spring stiffness tends to zero, the strings become uncoupled.
! The spring coupling can be seen as a weakening of the classical transmission conditions at a multiple joint.3

1G. Leugering, 1998; F. Almusallams, 2015; Y.Wang, T.Li, 2018
2S. Hansen, E.Zuazua 1995
3G.Leugering,S.Micu, I.Roventa, Y.Wang, 2022

Yue Wang CoNet_MoLeAp FAU-Erlangen

Example: String-mass-spring system

This system is controllable by only 1 control, and in this case, we discovered asymmetric solution space (smoothing 
effect of mass on waves) and controllable space.3

string-mass



Other examples for dynamical boundary conditions
Modeling 3/3: interface condition - viscoelastic spring | 10

! Kelvin Model: a classical class of viscoelastic solid models.





yi
tt − Ki(yi

x)x = 0, 0 ≤ x ≤ L, t > 0, i = 1, 2,

x = 0 :y1
tt(t, 0) = K1(y1

x(t, 0)) − κ(y1(t, 0) − y2(t, 0)) + µ(y1
t (t, 0) − y2

t (t, 0)),
y2

tt(t, 0) = K2(y2
x(t, 0)) + κ(y1(t, 0) − y2(t, 0)) + µ(y1

t (t, 0) − y2
t (t, 0)),

x = L :yi = ui(t), i = 1, 2.

string y1(t, x)

string y2(t, x)

springdash-pot

µ κ

x = 0 x = L

Controls

Figure: Networked strings and a Kelvin-type springYue Wang CoNet_MoLeAp FAU-Erlangen

Modeling 3/3: interface condition - viscoelastic spring | 11

! Maxwell Model: a classical class of viscoelastic fluid models.





yi
tt − Ki(yi

x)x =0, 0 ≤ x ≤ L, i = 1, 2,

x = 0 : y1
tt(0, t) =K1(y1

x(t, 0))−κ(y1(t, 0) − y2(t, 0))

+κ2

µ

∫ t

0
e− κ

µ (t−τ)(y1(τ, 0) − y2(τ, 0))dτ

y2
tt(0, t) = · · ·

x = L : yi = ui(t), i = 1, 2.

string y1(t, x)

string y2(t, x)

spring

dash-potµ

κ

x = 0 x = L

Controls

Yue Wang CoNet_MoLeAp FAU-Erlangen

Viscoelastic spring | 9

I Kelvin Model: a classical class of viscoelastic solid models.

Y
____]

____[

y
i
tt ≠ Ki(yi

x)x = 0, 0 Æ x Æ L, t > 0, i = 1, 2,

x = 0 :m1y
1
tt(t, 0) = K1(y1

x(t, 0))≠Ÿ(y1(t, 0) ≠ y
2(t, 0)) + µ(y1

t (t, 0) ≠ y
2
t (t, 0)),

m2y
2
tt(t, 0) = K2(y2

x(t, 0))+Ÿ(y1(t, 0) ≠ y
2(t, 0)) + µ(y1

t (t, 0) ≠ y
2
t (t, 0)),

x = L :yi = u
i(t), i = 1, 2.

string y1(t, x)

string y2(t, x)

springdash-pot

µ Ÿ

x = 0 x = L

Controls

Figure: Networked strings and Kelvin-type spring

Viscoelastic spring | 10

I Maxwell Model: a classical class of viscoelastic fluid models.

Y
________]

________[

y
i
tt ≠ Ki(yi

x)x =0, 0 Æ x Æ L, i = 1, 2,

x = 0 : m1y
1
tt(0, t) =K1(y1

x(t, 0))≠Ÿ(y1(t, 0) ≠ y
2(t, 0))

+Ÿ
2

µ

⁄ t

0
e

≠ Ÿ
µ (t≠·)(y1(·, 0) ≠ y

2(·, 0))d·

m2y
2
tt(0, t) = · · ·

x = L : y
i = u

i(t), i = 1, 2.

string y1(t, x)

string y2(t, x)

spring

dash-potµ

Ÿ

x = 0 x = L

Controls



Exact boundary controllability
Remarks | 19

(E)

Y
__________]

__________[

y
i
tt ≠ (Ki(yi

, y
i
x))x = F (y, yx, yt), x œ [0, Li], t œ [0, T ]

y
i
tt(t, 0) = G

i(t, y(t, 0), yx(t, 0), yt(t, 0))

+
⁄ t

0
H

i(t, s, y(s, 0))ds, t œ [0, T ]

y
i(t, Li) = u

i(t), t œ [0, T ]
(yi

, y
i
t)(0, x) = („i(x), Â

i(x)), x œ [0, Li].

The system (E) is locally exact controllable
I with n controls [G.Leugering, T.Li, Y.Wang, ’18,’19].

I This result can be improved by reducing the number of controls to n ≠ 1, but

the space of controlled initial data is asymmetric [G.Leugering, S.Micu, I.Robenta, Y.Wang,
’22] [G.Leugering, C.Rodriguez, Y.Wang, ’22].

Controllability Time (sharp): T* = max
i=1,...n

2Li

Ki
yx

(0,0)

x

t

x

t

x

t

R1
I

R1
II

R2
I

R2
II

R
3
I

R
3
II

�1, 1

�1, 1

�2, 2

�2, 2

�3, 3

�3, 3

Dirichlet B.C.

f2

f3

T
T � T

T

x

t

x

t

x

t

�1

�1

�2

�2

�3

�3

T



Wellposedness | 13

We introduce w
i = (wi

1, w
i
2, w

i
3)T := (yi

, y
i
x, y

i
t)T

. Then we get

ˆ

ˆt

Q

ca
w

i
1

w
i
2

w
i
3

R

db +

Q

ca
0 0 0
0 0 ≠1
0 ≠K

i
wi

2
0

R

db
ˆ

ˆx

Q

ca
w

i
1

w
i
2

w
i
3

R

db =

Q

ca
w

i
2

0
F

i(wi) + K
i
wi

1
w

i
2

R

db

with (t, x) œ [0, T ] ◊ [0, Li]. This, in turn, can be rewritten in the form of a quasilinear

hyperbolic system

w
i
t + A

i(x, w
i)wi

x = F̃ (wi),

where A
i

has 3 distinct real eigenvalues:

⁄
≠
i = ≠

Ò
K

i
wi

2
(wi

1, w
i
2), ⁄

0
i = 0, ⁄

+
i =

Ò
K

i
wi

2
(wi

1, w
i
2).



Wellposedness ctd. | 14

We may integrate the boundary conditions w.r.t. time and obtain a kind of non-local
(of time) boundary condition in the first order system (FOS):

(FOS)

Y
___________]

___________[

w
i
t + A

i(x, w
i)wi

x = F̃ (wi), x œ [0, Li], t œ [0, T ]

w
i
2(t, 0) = Â

i(0) +
⁄ t

0
G

i(·, w
i(·, 0)) d·

+
⁄ t

0

⁄ ·

0
H

i(·, s, w
i
1(s, 0)) ds d·, t œ [0, T ]

w
i
1(t, Li) = u

i(t), t œ [0, T ]
w

i(0, x) = w
0,i(x) = („i(x), Â

i(x), „
iÕ(x)), x œ [0, Li].

I Local existence of C1 solution to (FOS) (T.Li, ’85): ÷! C1 solution on R(”) = {(t, x)|0 Æ t Æ ”, 0 Æ x Æ L},
where ” depends on the initial and boundary data.

I For given T > 0, NO results on existence of semi-global classical solutions before.
Lemma: A uniform priori estimate of solution to (FOS) [Y.W.’19]

Îw(t, ·)Î1 , Îw(t, ·)Î +
...ˆw

ˆx
(t, ·)

... Æ C(T ), 0 Æ t Æ T, (1)

where Î · Î denotes C0-norm.
Main Idea in the Proof: We apply

l≠
i = (0,

Ò
Ki

wi
2
, 1), l0

i = (1, 0, 0), l+
i = (0, ≠

Ò
Ki

wi
2
, 1)

to (FOS) and define Riemann variables as

vi = li(w)w, v̄i = li(w)wx.

They follow
Dvi

Dit
=

nÿ

j,k=1

—ijk(w)v̄j v̄k +
nÿ

j=1

—̃ij(w)F̃j(w) (i = 1, ..., n),

Dv̄i

Dit
=

nÿ

j,k=1

“ijk(w)v̄j v̄k +
nÿ

j=1

“̃ij(w)v̄j (i = 1, ..., n),

along the characteristic curves, where
D

Dit
= ˆ

ˆt
+ ⁄i(u) ˆ

ˆx
.



Exact boundary controllability
Remarks | 19

(E)

Y
__________]

__________[

y
i
tt ≠ (Ki(yi

, y
i
x))x = F (y, yx, yt), x œ [0, Li], t œ [0, T ]

y
i
tt(t, 0) = G

i(t, y(t, 0), yx(t, 0), yt(t, 0))

+
⁄ t

0
H

i(t, s, y(s, 0))ds, t œ [0, T ]

y
i(t, Li) = u

i(t), t œ [0, T ]
(yi

, y
i
t)(0, x) = („i(x), Â

i(x)), x œ [0, Li].

The system (E) is locally exact controllable
I with n controls [G.Leugering, T.Li, Y.Wang, ’18,’19].

I This result can be improved by reducing the number of controls to n ≠ 1, but

the space of controlled initial data is asymmetric [G.Leugering, S.Micu, I.Robenta, Y.Wang,
’22] [G.Leugering, C.Rodriguez, Y.Wang, ’22].



Extension: dynamical boundary conditions in 1st-order hyperbolic systems
Extension 3/3: shallow water systems with a partially immersed obstacle | 24

I Project Conflex. [G.Vergara-Hermosilla, G.Leugering, Y.Wang, COCV ’21].
I One dimensional nonlinear shallow water system, describing the free surface flow of water as well as the flow

under a fixed gate structure.

;
ˆt’ + ˆxq = 0,

ˆtq + ˆx

!
q2/h

"
+ ghˆx’ = 0,

where ’(t, x) is the free surface elevation, h(t, x) is
the fluid height, q(t, x) is the horizontal discharge.

’0(t, 0) = ’1(t, 0), q0(t, 0) = q1(t, 0),

I
q2(t, l0 + r) = q1(t, l0 ≠ r) = qw(t),

# q2
i

2h2
i

+ g’i

$i=2,x=l0+r

i=1,x=l0≠r
= ≠–

d
dt

qw(t),

where – = 2r/hw .



Remark: Controllability of Nodal Profile Remark: Another Controllability Properties on Networks | 20

Nodal Control Problem: Let T > T ú > 0. For given desired profile function yd(t)
to find boundary controls u1, ..., um so that

F(u1, ..., um) = yn(t, Ln) = yd(t), t œ [T ú, T ]

t

x = 0x = l1 x = l2

x = ln

t = T

T ú

B.C.

yn
x

--
x=ln

= ȳd(t)(Target!)

Yue Wang NetHyper FAU-Erlangen

ℱ(u1, . . . , um) = yn(t, Ln) = yd(t), t ∈ [T*, T]

or ℱ(u1, . . . , um) = yn
x (t, Ln) = yd(t), t ∈ [T*, T] .Nodal Controllability | 16

E1

E2

· · ·
Ej

· · ·
EN−1EN

O
E1

E2

· · ·O

E1

E2

· · ·O

Fig. Charged node Controlled node Controllability Time T

(a) E1 Ej(j != 1) T > L1√
K1

y1
x

(0,0)
+ Lj√

Kj

y
j
x

(0,0)

(b) E1 O T > L1√
K1

y1
x

(0,0)

(c) E1 E1(in-situ) T > 0

Yue Wang Nodal Control FAU-DCN

Nodal Controllability | 16

Theorem
In a neighbourhood of an equilibrium (around 0), the system (E) is locally
exact boundary controllable of nodal profile by only 1 control when
(controllability time, sharp)

T > T̄ .

! Remark 1: The wellposedness of IBVP: the existence and uniqueness
of semi-global classical solution with small norm (Y.Wang, 2017).

! Remark 2: HUM method (J.Lions, 1980s) and duality method
(E.Zuazua, 1990s) can not be applied on this case.

! Local controllability: (φ,ψ) and ȳi are close to the equilibrium point
(Y.Wang, Li, Leugering, 2019).

Yue Wang Nodal Control FAU-DCN



Constructive Method in Nodal Control Problem | 18

E(d10)

d11

d31

d81
d91

d71

d10,1

d51

d21

d61d41

* Optimal controllability time T ∗.
* Minimum number of controls.

* Placement of controls.
* Calculation of controls.

! Nodal Profile Control: Our aim is to fit (a part of) the boundary traces to a given profile after
a suitably long time t = T by means of boundary controls. [Project: Control theory on
planar or spacial string networks: controllability and partial nodal control for quasilinear
hyperbolic systems. (Individual funding & NSFC-1121101.Joint work with T.Li.]

Yue Wang Nodal Control FAU-DCN



Extension: Flow Control on gas network and Control Design
Origins of Nodal Control Problems | 1

Motivation from Application

! Q: Can we find controls to satisfy the given demand of the cities?
Aim: The boundary traces of state to exactly fit any given profile as
function of time on a node after a suitable time t = T by means of
boundary controls. [= Exact boundary controllability of nodal profile]

! Answer: Yes! (in local sense, and at least after a waiting time T ∗).
[M.Gugat 2010, 2014, T.Li 2010]

Yue Wang Nodal Control FAU-DCN
*  Minimum number of controls. 

*  Placement of controls. 
*  Calculation of controls.

Origins of Nodal Control Problems | 1

Motivation from Application

! The coupling of gas pipes.
! State function [isothermal Euler equations]

> ρ(t, x): the density of the gas,
> q(t, x): the flux in the pipe.

! Nodal Controls u(t): Pressure increases at the compressor stations.

Yue Wang Nodal Control FAU-DCN



Three main interests |

A(y) = F(u) y ≥ yd
yu

I Modeling and Analysis
I Control Theory and Optimal Design

Accurate and Fast Prediction of Numerical Solutions/ Optimal Control for

Significant Interests

Key issue: developing and applying mathematical methods, including nonlinear 
functional analysis, new control theory and strategy to model, understand and control 
the dynamics of PDEs.  



Three main interests

A(y) = F(u) y ≥ yd
yu

I Modeling and Analysis
I Control Theory and Optimal Design
I Accurate and Fast Prediction of Numerical Solutions/ Optimal Control for

Networked PDEs, say, real-time capable methods and algorithms.
1 Physical Informed NNs

Significant Interests

Accurate and Fast Prediction of Numerical Solutions/ Optimal Control for 
Network PDEs 
1   A stochastic method inspired by Random Batch Method 
2   PINN approach



A Stochastic Algorithm for the 
Efficient Simulation for Networked 
Linear hyperbolic systems



Origins of the Random Batch Method | 3

Initial Motivation: Simulation and control of large interacting particle systems can
be computationally demanding.

There are N(N ≠ 1)/2 interaction forces between N particles.
∆ Computational cost grows rapidly when N is large.

Yue Wang RBM_hyper | EUCCO 2023 FAU-Erlangen



Origins of the Random Batch Method | 4

Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics, 2020]

I Divide the N particles randomly into batches of size P Ø 2.
I Consider only interactions between particles in the same batch.
I Do a simulation over a short time interval of length h.

I Repeat.

Yue Wang RBM_hyper | EUCCO 2023 FAU-Erlangen
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Origins of the Random Batch Method | 4

Proposed simulation method: The Random Batch Method
[Shi Jin, Lei Li, Jian-Guo Liu, J. of Computational Physics, 2020]

I the RBM-solution converges to the solution of the original problem as h æ 0.
I the RBM reduces the computational cost from O(N2) to O(PN).

I Divide the N particles randomly into batches of size P Ø 2.
I Consider only interactions between particles in the same batch.
I Do a simulation over a short time interval of length h.
I Repeat.

Yue Wang RBM_hyper | EUCCO 2023 FAU-Erlangen



RBM for Optimal Control | 5

I The RBM can speed up the solution of optimal control problems governed by
interacting particles systems [D. Ko, E. Zuazua, Math. Models Methods Appl. Sci., Vol. 31, No. 8,
2021] (only numerical experiments).

I The first convergence proof is given in [D.Veldman, E.Zuazua, Numerische Mathematik, 2022]
for finite dimensional linear-quadratic optimal control in the operator-splitting
setting.

min
u

⁄ T

0
(|x(t) ≠ xd(t)|2) + |u(t)|2dt,

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

.
I Whether this algorithm can accelerate the simulation and optimization of nonlinear

dynamics and networked infinite-dimensional systems, its convergence theory and
applications are still open issues! (A is unbounded operator).

Yue Wang RBM_hyper | EUCCO 2023 FAU-Erlangen



RBM for Hyperbolic equations: Toy Example | 6

Consider the transport equation
yt(t, x) + v(x)yx(t, x) = 0, t œ (0, T ), x œ R,

y(0, x) = y0(x), x œ R,

where v(x) is bounded and Lipschitz, y0 is globally Lipschitz.
I We split the generator of the semi-group as

≠v(x) ˆ

ˆx¸ ˚˙ ˝
A

=
Mÿ

m=1
≠vm(x) ˆ

ˆx¸ ˚˙ ˝
Am

,

where the vm(x) are Lipschitz and bounded.
I In each time step, we randomly choose batch Bk, subset of {1, .., M}, of size P and consider the velocity

field as
vh(Ê, x) = M

P

ÿ

mœBk

vm(x), t œ [tk≠1, tk).

Yue Wang RBM_hyper | EUCCO 2023 FAU-Erlangen

Let                   be the solution resulting from              , then vh(ω, t, x)

𝔼[ |yh(t) − y(t) |2
L∞ ] ≤ Ch

yh,t(ω, t, x)

Sketch of proof for Theorem 1 | 18

I Consider the characteristics terminating at (t, x) for s œ [0, t]
›̇h,i(Ê, s; t, x) = ¸h,i(Ê, s, ›h,i(Ê, s; t, x)), ›̇i(s; t, x) = ⁄i(s, ›i(s; t, x)),
›h,i(Ê, t; t, x) = ›i(t; t, x) = x.

(t, x)

0 x L

tin,h,i(Ê, t, x)

tin,i(t, x)

›i(s; t, x)

›̄i(s; t, x) ›h,i(Ê, s; t, x)

›̄h,i(Ê, s; t, x)

s
(t, x)

0 x L

tin,h,i(Ê, t, x)

tin,i(t, x)

›i(s; t, x)

›̄i(s; t, x)

›h,i(Ê, s; t, x)
›̄h,i(Ê, s; t, x)

yi(t, x) =
⁄ t

tin,i(t,x)
[Gy + Buint + f ]i(s, ›i(s; t, x)) ds +

;
y0,i(›i(0; t, x)) if tin,i(t, x) = 0,

[Kyout + Pub + g]i(tin,i(t, x)) if tin,i(t, x) > 0.

Yue Wang RBM_hyper | EUCCO 2023 FAU-Erlangen



Toy example: visualization
Toy Example: Visualization h = 0.01 | 10

v(x) © 1 = v1(x) + v2(x)

Yue Wang RBM_hyper | EUCCO 2023 FAU-Erlangen

h=0.01 h=0.001



RBM for Networks
Coupled wave equations on diamond networks [D. W. M. Veldman, Y. Wang, 2024]

v1

v2

v5v3

v4

v6

e1

e2

e3

e4

e5

e6

e7

Diamond Directed Graph

(j 2 {1, 2, . . . , |V |}), E the set of edges ei enumerated as ei (i 2 {1, 2, . . . , |E|}), and
L = R|E| the vector of edge lengths `ei . The set of edges connected to the vertex vj 2 V
is denoted by E(vj) and the degree of vj is |E(vj)|. We assume that |E(vj)| > 1 for all
vertices vj . The set of edges is then also described by the incidence matrixD 2 R|V |⇥|E|

with the element defined as

Dji =

8
><

>:

�1, if node vj is the start point of edge ei;

1, if node vj is the end point of edge ei;

0, otherwise,

(1)

Example 2.1. (Diamond directed Graph) Consider the diamond network in Figure
1 with vertices V = {v1, v2, ..., v6} and edges E = {e1, ..., e7}. With the directions for
the edges as in Figure 1, we obtain the incidence matrix

D =

2

6666664

�1 0 0 0 0 0 0
1 �1 �1 0 0 0 0
0 1 0 �1 �1 0 0
0 0 1 1 0 �1 0
0 0 0 0 1 1 �1
0 0 0 0 0 0 1

3

7777775
. (2)

v1

v2

v5v3

v4

v6

e1

e2

e3

e4

e5

e6

e7

Figure 1. The diamond graph considered in Example 2.1

On each edge ei, we introduce a coordinate x 2 [0, `ei ] for which x = 0 corresponds
to the starting point and x = `ei corresponds to the end point. The transversal dis-
placement of the string on the edge ei 2 E is denoted yei : [0,1) ⇥ [0, `ei ] 7! R. The
solutions yei(t, x) satisfy the following equations

8
>>>>>><

>>>>>>:

yei
tt
(t, x)� c2eiy

ei
xx(t, x) = 0 ei 2 E,

X

ei2E(vj)

Djiceiy
ei
x (t, vj) = ūvj (t) vj 2 V,

yei(t, vj) = yek(t, vj), 8ei, ek 2 E(vj), vj 2 V,

yei(0, x) = yei0 (x), yei
t
(0, x) = yei1 (x), ei 2 E,

(3)

3Net

Riemann Variables for the Wave Equation



Numerical Illustration
Coupled wave equations on diamond [D. W. M. Veldman, Y. Wang, 2024]

Numerical Illustration | 20

Coupled wave equations on diamond networks

Yue Wang RBM_hyper | EUCCO 2023 FAU-Erlangen

I Split the velocity field per edge.
I P = 4 of the M = 7 edges are active

simultaneously.
I h = 0.01, dx = 0.1
I full Model (Black): 0.36 s
I RBM-approximation: 0.27 s
I reduction: 24%
I error: 22%

Split the velocity field per edge.

P = 4 of M= 7 edges are active simultaneously.

Numerical Illustration | 21

Coupled wave equations on diamond networks

Yue Wang RBM_hyper | EUCCO 2023 FAU-Erlangen

I Split the velocity field per edge.
I P = 4 of the M = 7 edges are active

simultaneously.
I h = 0.001, dx = 0.01
I full Model (Black): 551 s
I RBM-approximation: 397 s
I reduction: 28%
I error: 18%



Convergence Results 

• If the original system admits an  solution , 
then


• If the original system admits an  solution, then


• Remark: Markovs inequality 

                           

H1 y(t, x)

H2

ℙ[X ≥ a] ≤
𝔼[X]

a

• If  and , then


          


• If , then


           


s0 > 0 s1 = 0

lim
h→0

ℙ[ |u*h − u* |L2(0,T) > ε] = 0.

s1 > 0

𝔼[ |u*h − u* |L2(0,T) ] ≤ Ch

lim
h→0

ℙ[ |yei
h (t) − yei(t) |L2(0,ℓei)

> ε] = 0

𝔼[ |yei
h (t) − yei(t) |2 ] ≤ Ch

: original solution 
: solution to randomized system 
: optimal control to original system 
: optimal control to randomized system

y
yh
u*
u*h

min
u

J(u) =
1
2

∥y − yd∥2
L2(Q) +

s0

2
|u |2

L2(0,T) +
s1

2
|ut |

2
L2(0,T)



Summary and Perspectives | 22

I The application of the RBM to (networked) hyperbolic PDEs combines
> operator splitting for PDEs
> stochastic methods for large-scale optimization
> characteristic method for 1d Hyperbolic type PDEs.

I We e�ciently approximate the solution to networked linear hyperbolic equations
and associated optimal control problems, and obtain the convergence results

> yh(Ê, t) converges to y(t) for h æ 0 (in LŒ and in expectation).
> Convergence in the optimal controls can be proven along the lines of [E.Zuazua, D.Veldman

2022], but some regularity properties need to be verified.
I Extensions to nonlinear setting:

> semi-linear case is straight forward, e.g. yt + �yx = f(t, x, y) with f Lipschitz in y.
> quasi-linear case is more challenging but appears in many real-world applications (nonlinear

transport equations / conservation laws, and networks of incompressible Euler equations)
I Extension to non-overlapping domain decomposition on complex spatial structures

and XPINNs [in discussion with Günter Leugering].
Yue Wang RBM_hyper | EUCCO 2023 FAU-Erlangen



Projects on Real-time capable methods and 
algorithms

• Simulation, inverse problems, and control 
for (degenerate) 1-D wave equations using 
PINNs.  
https://github.com/DCN-FAU-AvH/
PINNs_wave_equation


• Dania Sana (Jun. - Sep. 2022)  
supervised by Y. Wang and E. Zuazua 


• Internship for young female researchers at FAU-MoD (Center for Mathematics 
of Data)

x

t

INPUT σ

σ

σ

σ

σ

σ

Neural Network

y

PDE
∂2y
∂t2 − c2 ∂2y

∂x2

∂2y
∂t2

∂2y
∂x2

y(0, x; θ)− y0 IC
∂y(t,Γ;θ)

∂n − yN BC

I
∂y
∂n

y(t, x; θ)− yDATAy

DATA

LPDE + LIC + LBC + LDATA

LOSS

• PGML: Physics-Guided Machine Learning (2024-2027) 
focusing on  
Simulation and modeling of electrochemical cells and of mechanical systems 

• SHARE at FAU (Schäffler Hub for Advanced Research at Friedrich-Alexander University)

https://github.com/DCN-FAU-AvH/PINNs_wave_equation
https://github.com/DCN-FAU-AvH/PINNs_wave_equation


Thank you! Trends in the Mathematical Sciences 
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Toy example: visualization
Toy Example: Visualization h = 0.01 | 10

v(x) © 1 = v1(x) + v2(x)

Yue Wang RBM_hyper | EUCCO 2023 FAU-Erlangen

h=0.001



Lemma: A uniform priori estimate of solution to (FOS) [Y.W.’19]

Îw(t, ·)Î1 , Îw(t, ·)Î +
...ˆw

ˆx
(t, ·)

... Æ C(T ), 0 Æ t Æ T, (1)

where Î · Î denotes C0-norm.
Main Idea in the Proof: We apply

l≠
i = (0,

Ò
Ki

wi
2
, 1), l0

i = (1, 0, 0), l+
i = (0, ≠

Ò
Ki

wi
2
, 1)

to (FOS) and define Riemann variables as

vi = li(w)w, v̄i = li(w)wx.

They follow
Dvi

Dit
=

nÿ

j,k=1

—ijk(w)v̄j v̄k +
nÿ

j=1

—̃ij(w)F̃j(w) (i = 1, ..., n),

Dv̄i

Dit
=

nÿ

j,k=1

“ijk(w)v̄j v̄k +
nÿ

j=1

“̃ij(w)v̄j (i = 1, ..., n),

along the characteristic curves, where
D

Dit
= ˆ

ˆt
+ ⁄i(u) ˆ

ˆx
.



Uniform Priori Estimate (ctd.) | 16

Let
T1 = min

i=1,...,n;
ÎwÎÆ÷0

L

|⁄i(w)|
> 0.

For (t, x) œ R(T1), we estimate |vi(t, x)| by integrating (backward) along the characteristic curve (three cases,
⁄i <, =, > 0). It will arrive at (0, –), or (tú, L), or (tú, 0). In di�erent cases, we could obtain

|vi(t, x)| Æ Îv(0, ·)Î + C1

⁄ t

0
vi(·) d·,

or

|vi(t, x)| Æ AÎvi(0, ·)Î + ÎuÕÎ + C2

⁄ t

0
vi(·) d·, ’t œ [0, T1],

where v(·) = sup0ÆtÆ· Îv(t, ·)Î.
Using Gronwall inequality it follows that

|v(t, x)| Æ C max{ÎuÕÎ, Îv(0, ·)Î} , C–0, ’t œ [0, T1],

with C > 1.
Then repeating N =

#
T
T1

$
+ 1 times, we have

|v(t)| Æ CN –0, ’t œ [(N ≠ 1)T1, T ].


