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1 Introduction

1 Introduction

One of the easiest partial differential equations is the linear transport equation

∂t p+ bi∂i p = 0

p(0, ·) = p0

where we have p : R+0 × R
n → R (one may think for example of a distribution of

particles at time t and at space x) and the vector field b : R+0 × R
n → Rn, which is

called the drift vector field, so it can be thought as the transport vector of the particles.
If b is of C1-regularity, it is very easy to solve this equation by the method of characteristics:
We define ξ : R→ Rn by the following ODE:

ξ′(t) = b(t,ξ(t))

Then one can check, that solutions of the transport equations fulfill

d
dt
[p(t,ξ(t))] = 0

So solutions are constant on the curves in space-time given by ξ (called characteristics).
With this in hand it is possible to derive an explicit formula for solutions the linear
transport equation.
Here one can make an interesting observation: The fact, that the solution of the
transport equation is constant along the characteristics, does not change by replacing
p by β ◦ p with a C1-function β : R→ R. So, for a solution p(x , t), also β(p(x , t)) is a
solution (for a moment ignoring the initial data p0). We call a solution a renormalized
solution, if this concatination is also a solution for any C1-function β .
This concept can be generalized very far, it is also well defined for drift fields b
that have Sobolev-regularity or even BV-regularity (instead of C1-regularity, which is
necessary for the use of the Picard-Lindelöf-theorem in the method of characteristics).
The idea is the following: We define weak solutions of the transport equation. Then
we show that every weak solution also fulfills this renormalization property. After this,
it is possible to show uniqueness of solutions with this renormalization property.
To show the renormalization property, we will use approximation by convolutions
and have to deal with so called commutators, defined as following for a differential
operator or a function c

[ρε, c]( f ) = ρε ∗ (c f )− c(ρε ∗ f )

So a commutator marks the difference between convoluting first and applying c then
and the other way around. It will be important to show that these commutators
converge to 0 as ε→ 0. Therefore we will have some commutator estimates.

All these steps do not only work for a transport equation, but also for a fokker-planck-
equation:

∂t p+ ∂i(pbi)−
1
2
∂i(σikσ jk∂ j p) = 0

1



1 Introduction

Compared to the transport equation, we see that it is in divergence form (which is
equivalent, if we have some regularity conditions on bσ = b − 1

2 div(σσt), see [5],
Section 7) and that we have a diffusion Matrix σ. For intuition, if b = 0 and σ = 1n×n

we get a heat equation, so one can think of σ as a matrix which is describing the
diffusion of the particle distribution p.
After adapting the steps above a little it, it is possible to define also renormalized
solutions for fokker-planck-equations and use them to show uniqueness of solutions.
The main source is [14], which is the first one showing uniqueness for a fokker-planck-
equation with a drift with only BV-regularity in space.
Another source is [5]. There also a Fokker-planck-equation is considered, but with
drift coefficients in a Sobolev-space.
The theory of a BV -drift was first solved in [2], but only for a transport equation. This
is also the source of one of the two big commutator estimates. The other one, used
mainly for the terms from the diffusion term is from [7].
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2 Analytic preparations

2 Analytic preparations

In this chapter we prove some analytic lemmata, which we will need later.

2.1 Functions of bounded variation

So called functions of bounded variation will be very important in the following chapter,
especially in the proof of Ambrosios commutator estimate Theorem 3.18. The definitions
and the statements are from [2] and [3].

Definition 2.1. Let b ∈ L1(U) for U ⊂ Rn open. b is of bounded Variation or a
BV-function, if its distributional derivative is given by a vector-valued finite Radon
measure, so if there is a finite Radon measure Db = (D1 b, ..., Dn b) such that

∫

U

b
∂ ϕ

∂ x i
dx = −

∫

U

ϕ dDi b

for all ϕ ∈ C∞c (U) and i = 1, ..., n.
The space of functions of bounded Variation is called BV (U).
BVloc(U) is the usual local version, so the space of all functions which are of bounded
variation on every compact subset of Rn.

For a Rm×n-valued measure λ we have the total variation |λ| given by

|λ|(C) := sup

¨∞
∑

i=1

|λ(Ci)| : Ci ∈B(Ω) pairwise disjoint, Ci ⊂ C

«

with the Hilbert-Schmidt-norm in the sum. As usual we decompose Db in its singular
and absolute continoous part with respect to the Lebesgue-measure by the Radon-
Nikodym theorem, so lets set Db = Da b + Ds b with |Da b| � L n and |Ds b| ⊥ L n.
Ïb = ∂ b

∂ x i
is the density of Da b with respect to L n.

Lemma 2.2. Let there be b ∈ BVloc(Rn) and z ∈ Rn. Then there holds

∫

K

|b(x + z)− b(x)|dx ≤

�

�

�

�

�

n
∑

i=1

zi Di b

�

�

�

�

�

�

K|z|
�

for a compact K ⊂ Rn and K|z| =
�

x ∈ Rn|dist(x , K)< |z|
	

the |z|-neighborhood of K.

Proof. (see also [3], Lemma 3.24 and Remark 3.25) First we take a sequence bk ∈
C∞(K|z|)∩BV (K|z|) approximating b in the following sense (according to Theorem 5.3
in [10])

• bk→ b in L1(K|z|)

3



2 Analytic preparations

• ‖Dbk‖(K|z|)→ ‖Db‖(K|z|)

Then we have (by adding −bk(x + z) + bk(x + z) − bk(x) + bk(x) and using the L1-
approximation, Fubinis theorem and the approximation of the derivative):

∫

K

|b(x + z)− b(x)|dx ≤ lim
k→∞

∫

K

|bk(x + z)− bk(x)|dx

= lim
k→∞

∫

K

�

�

�

�

�

∫ 1

0

n
∑

i=1

Di bk(x + tz)zi dt

�

�

�

�

�

dx

≤ lim
k→∞

∫ 1

0

∫

K

�

�

�

�

�

n
∑

i=1

Di bk(x + tz)zi

�

�

�

�

�

dx dt

≤ lim
k→∞

∫ 1

0

�

�

�

�

�

n
∑

i=1

zi Di bk

�

�

�

�

�

(K|z|)dt

=

�

�

�

�

�

n
∑

i=1

zi Di b

�

�

�

�

�

(K|z|)

Lemma 2.3. Let there be µ a locally finite measure on R. Then for ε > 0 we define the
following functions:

µ̂ε(t) :=
µ([t, t + ε])

ε

Then for a compact set K ⊂ R we have
∫

K

µ̂ε(t)dt ≤ µ(Kε) (1)

with Kε = {x ∈ R|dist(x , K)< ε} the ε-neighborhood of K.
Additionally, if µ� L 1, µ̂ε converges in L1

loc(R) to the density of µ with respect to L 1

for ε→ 0

Proof. We prove (1) first. We have

µ̂ε(t) =

∫

R

1[−ε,0]
ε
(t − s)dµ(s)

Thus we get using Fubinis theorem
∫

K

µ̂ε(t)dt =

∫

K

∫

R

1[−ε,0]
ε
(t − s)dµ(s)dt =

∫

R

∫

K

1[−ε,0]
ε
(t − s)dt dµ(s)

≤
∫

Kε

∫

K

1[−ε,0]
ε
(t − s)dt dµ(s)

≤
∫

Kε

1dµ(s)

= µ(Kε)
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2 Analytic preparations

This shows (1).
For the second property, let there be f the density of µ with respect to L 1. So for any
compact set, we have to show ‖µ̂ε − f ‖L1(K)→ 0 as ε→ 0:

‖µ̂ε − f ‖L1(K) =

∫

K

|µ̂ε(t)− f (t)|dt =

∫

K

�

�

�

1
ε

∫ t+ε

t

f (s)ds− f (t)
�

�

�dt

≤
1
ε

∫

K

∫ t+ε

t

| f (s)− f (t)|ds dt =
1
ε

∫

K

∫ ε

0

| f (s+ t)− f (t)|ds dt

=
1
ε

∫ ε

0

∫

K

| f (s+ t)− f (t)|dt ds

Now we take a function f̃ ∈ C∞c (R) (which will approximate f as C∞c (R) is dense in
L1(R)). Then we have for fixed t:

∫

K

| f (s+ t)− f (t)|ds

≤
∫

K

| f (s+ t)− f̃ (s+ t)|dt +

∫

K

| f̃ (s+ t)− f̃ (t)|dt +

∫

K

| f̃ (t)− f (t)|dt

≤ 2‖ f − f̃ ‖L1(Kε) +

∫

K

| f̃ (s+ t)− f̃ (t)|dt

By choosing f̃ we can get ‖ f − f̃ ‖L1(Kε) arbitrarily small, so it remains to show

1
ε

∫ ε

0

∫

K

| f (s+ t)− f (t)|dt ds→ 0

for a smooth f :

1
ε

∫ ε

0

∫

K

| f (s+ t)− f (t)|dt ds ≤
1
ε

∫ ε

0

∫

K

‖ f ′‖∞s dt ds

≤
|K |‖ f ′‖∞

ε

∫ ε

0

s ds

=
|K |‖ f ′‖∞

ε

ε2

2
→ 0

as ε→ 0. This was to show.

The following lemma is about splitting BV-functions into components. In one variable,
we also write also b′ for the density of the absolutely continuous part of the derivative
of b:

Lemma 2.4. Let there be b ∈ BVloc(Rn) and x ′ ∈ Rn−1. Then we define bx ′(s) = b(x ′, s)
for s ∈ R. For L n−1-almost every x ′ we have the following:

5



2 Analytic preparations

• bx ′ ∈ BVloc(R)

• b′x ′(s) =
∂ b
∂ xn
(x ′, s) for L 1-almost every s ∈ R

• for any ε > 0 we have bx ′(s + ε)− bx ′(s) = Dbx ′([s, s + ε]) for L 1-almost every
s ∈ R

•
∫

Rn−1 |Ds b′x |dx ′ ≤ |Ds b|

Proof. see Theorem 3.103, Theorem 3.107 and (3.108) in [3]

We will need the following Lemma of Ambrosio on difference quotients of BV-functions
in the proof of the commutator estimate Theorem 3.18. It states, loosely spoken, that
also the difference quotients of a BV-function can be decomposed in a singular and a
absolutely continuous part:

Lemma 2.5. Let b ∈ BVloc(Rn) and z ∈ Rn. Then for ε > 0 the difference quotient in
direction z can be decomposed in functions b1

ε
(z) (the "absolutely continuous" part) and

b2
ε
(z) (the "singular" part) both in L1

loc(R
n):

b(x + εz)− b(x)
ε

= b1
ε
(z)(x) + b1

ε
(z)(x)

b1
ε
(z) and b2

ε
(z) can be chosen with the following properties:

• b1
ε
(z) converges strongly in L1

loc(R
n) to

∞
∑

i=1

∂ b
∂ x i
(x)zi as functions of x as ε→ 0

• For any compact K ⊂ Rn we have

lim sup
ε→0

∫

K

|b2
ε
(z)(x)|dx ≤ |z||Ds b|(K)

• For compact K , K ′ ⊂ Rn and δ > 0 we have the uniform bound

sup
z∈K ′

sup
ε∈(0,δ)

∫

K

|b1
ε
(z)(x)|+ |b2

ε
(z)(x)|dx ≤ sup

z∈K ′
|z||Db|

�

{x : dist(x , K)≤ δ}
�

Proof. ([3], Theorem 2.4 and [6], Proposition 3.2) Lets assume z = en first, we discuss
scaling and rotation-invariance of the theorem later. Additionally let there be x =
(x ′, xn) with x ′ ∈ Rn−1 and xn ∈ R.
Using the definition of µ̂ε and the statement of Lemma 2.3 first we define

b1
ε
(x ′, xn) :=

Û∂ b
∂ xn
(x ′, ·)L 1

ε

(xn) =
1
ε

∫ xn+ε

xn

∂ b
∂ xn
(x ′, s)ds

6



2 Analytic preparations

Then, by Lemma 2.3 we have the convergence of b1
ε

to ∂ b
∂ xn

, what was the first thing
to show.
Next we define bx ′(s) = b(x ′, s) and use Lemma 2.4 to calculate

b(x ′, xn + ε)− b(x ′, xn)
ε

=
bx ′(xn + ε)− bx ′(xn)

ε
=

Dbx ′([xn, xn + ε])
ε

=
Dba

x ′([xn, xn + ε])

ε
+

Dbs
x ′([xn, xn + ε])

ε

=ÕDba
x ′ε(xn) +ÕDbs

x ′ε(xn)

= b1
ε
(x ′, xn) +ÕDbs

x ′ε(xn)

for almost every xn. So we have b2
ε
(x ′, xn) =ÕDbs

x ′ε(xn). Thus we have using (1) and
Lemma 2.4:

∫

K

|b2
ε
|(x ′, xn)dxn dx ′ ≤

∫

Rn−1

∫

{xn:(x ′,xn)∈K}

�

�

�

ÖDs bx ′ε(xn)
�

�

�dxn dx ′

≤
∫

Rn−1

|Ds bx ′ |({xn : (x ′, xn) ∈ Kε})dx ′ ≤ |Ds b|(Kε)

This was the second thing to show. With the exactly same argument we get
∫

K
|b1
ε
|dx ≤

|Da b|(Kε). Thus we have
∫

K

|b1
ε
(en)(x)|+ |b2

ε
(en)(x)|dx ≤ |Ds b|(Kε) + |Da b|(Kε) = |Db|(Kε)

The last equality is from the fact, that for singular measures there holds the triangle
inequality in the variation norm also reverse and is hence an equality. This shows the
last property.
The case for general z is just carefully reproducing the proof by setting bi

ε
(z) = bi

ε|z|

�

z
|z|

�

for the scaling invariance. Then we often relabel ε|z| → ε. The rotation invariance is
obvious as the integrals do not change under rotation.

Next we will need Albertis rank-one-theorem:

Theorem 2.6. Let there be b ∈ BV (Ω,Rm) for Ω ⊂ Rn open. Let Ds b = M |Ds b| be the
singular part of the distributional derivative. Then for M(x) has rank one Ds b-almost
everywhere, i. e. M(x) = η(x)⊗ ξ(x) with |ξ(x)|= |η(x)|= 1 for Ds b a. e. x ∈ Ω.

Proof. [1]

2.2 Convergence Lemmata

We will need the following technical lemma in the existence proof.

7



2 Analytic preparations

Lemma 2.7. Let fk, gk be sequences in L2(Ω) (with Ω an open subset of Rn). Let fk→ f
and gk * g with f , g in L2 and the weak convergence of gk in L2. Then

∫

Ω
fk gk→

∫

Ω
f g.

Proof. We need to show
∫

Ω
fk gk − f g → 0:

∫

Ω

fk gk − f g =

∫

Ω

( fk − f )(gk + g) + f gk − g fk =

∫

Ω

( fk − f )(gk + g) +

∫

Ω

f gk −
∫

Ω

g fk

as all integrals exist (this will be seen in the proof). So we need to check the convergence
of these three integrals:

• for the first one, we have by the Hölder-inequality
∫

Ω

( fk − f )(gk + g)≤ ‖ fk − f ‖2‖gk + g‖2→ 0

as ‖ fk− f ‖2→ 0 by definition and ‖gk+g‖ is bounded, because weak convergent
sequences are bounded.

• The second integral
∫

Ω
f gk converges to

∫

Ω
f g by the the definition of weak

convergence of gk

• The third integral also converges to
∫

Ω
f g, because strong convergence implies

weak convergence

So, summed up we get lim
k→∞

∫

Ω
fk gk − f g = 0. This was to show.

Next we define convergence in measure and prove two useful lemmata:

Definition 2.8. Let there be fn, f : Ω→ R measurable with Ω a measurable subset of
RN . We say fn converges in measure to f, if

lim
n→∞

L N
�

�

| fn − f | ≥ ε
	

�

= 0

for any ε > 0.

According to [8][p. 257], convergence in Lp as well as convergence almost everywhere
implies convergence in measure locally. In this sense, Pratts theorem[8][p. 260] is a
generalization of the dominated convergence theorem.
The first lemma states, that convergence in measure is stable under (uniformly) continuous
functions:

Lemma 2.9. Let there be fn → f in measure and α : R → R uniformly continuous
(or let the fn be uniformly essentially bounded and α only continuous, so α uniformly
continuous on the image of the fn). Then α ◦ fn→ α ◦ f in measure.

8



2 Analytic preparations

Proof. For any ε > 0 we have a δ > 0, such that

| fn(x)− f (x)|< δ⇒ |α( fn(x))−α( f (x))|< ε

So the contraposition is
�

�

�α( fn(x))−α( f (x))
�

�

�≥ ε⇒ | fn(x)− f (x)| ≥ δ

So
�

|α ◦ fn −α ◦ f | ≥ ε
	

⊂
�

| fn − f | ≥ δ
	

, so

lim
n→∞

L N
�

�

|α ◦ fn −α ◦ f | ≥ ε
	

�

≤ lim
n→∞

L N
�

�

| fn − f | ≥ δ
	

�

= 0

Next we have two variants of a convergence theorem:

Lemma 2.10. Let there be fn ∈ L∞(Ω) with a uniform bound, so sup
n∈N
‖ fn‖∞ < ∞

and gn ∈ L1(Ω) again with sup
n∈N
‖gn‖1 < ∞ and a dominating function g ∈ L1(Ω).

Additionally let fn→ 0 in measure. Then

lim
n→∞

∫

Ω

| fn gn|= 0

Proof. For ε > 0 we have
∫

Ω

| fn gn|=
∫

{| fn|>ε}
| fn gn|+

∫

{| fn|≤ε}
| fn gn|

≤
∫

Ω

| fn||gn|1{| fn|>ε} +

∫

{| fn|≤ε}
ε|gn|

≤ sup
n∈N
‖ fn‖∞

∫

Ω

|gn|1{| fn|>ε} + ε sup
n∈N
‖gn‖1

Now we take the limit n→∞. According to the dominated convergence theorem, the
first integral converges to 0, because 1{| fn|>ε} converges pointwise almost everywhere
to zero (because fn→ 0 in measure) and gn is a dominating function. So we have:

lim
n→N

∫

Ω

| fn gn| ≤ ε sup
n∈N
‖gn‖1

Now ε→ 0 proves the lemma.

Lemma 2.11. Let there be fn ∈ L∞(Ω) with a uniform bound and Ω bounded, so
sup
n∈N
‖ fn‖∞ <∞ and gn ∈ Lp(Ω) again with sup

n∈N
‖gn‖p <∞ with p > 1. Additionally

let fn→ 0 in measure. Then

lim
n→N

∫

Ω

| fn gn|= 0

9



2 Analytic preparations

Proof. For ε > 0 we have (with q = p
p−1 Hölder-conjugate to p)

∫

Ω

| fn gn|=
∫

{| fn|>ε}
| fn gn|+

∫

{| fn|≤ε}
| fn gn|

≤
∫

Ω

| fn||gn|1{ fn>ε} +

∫

{| fn|≤ε}
ε|gn|

≤ sup
n∈N
‖ fn‖∞

∫

Ω

|gn|1{| fn|>ε} + ε sup
n∈N
‖gn‖p

�

�

�

�

| fn| ≤ ε
	

�

�

�

1/q

≤ sup
n∈N
‖ fn‖∞ sup

n∈N
‖gn‖p|{| fn|> ε}|1/q + ε sup

n∈N
‖gn‖p

�

�

�

�

| fn| ≤ ε
	

�

�

�

1/q

Now we take the limit n→∞. The first term goes to 0 by the convergence in measure
of the fn, in the second one |{| fn| ≤ ε}|1/q can be estimated by the measure of Ω:

lim
n→N

∫

Ω

| fn gn| ≤ ε sup
n∈N
‖gn‖p|Ω|1/q

Now ε→ 0 proves the lemma.

2.3 Mollification of distributions

We also will need the mollification of distributions on Rn. For more details see [12],
Chapter 11. In the whole chapter we only use even convolution kernels, so our
definition does not need the reflection used in the definition in [12]

Definition 2.12. Let there be an even convolution kernel ρε and a distribution u, both
on Rn. Then there is also a distribution ρε ∗ u on Rn. We define it for ϕ ∈ C∞c (R

n) by

ρε ∗ u(ϕ) := u(ρε ∗ϕ)

Remark 2.13. This definition generalizes the convolution of a function with an even
convolution kernel in the following sense: For a L1−function f and the associated
distribution test f (defined by test f (ϕ) =

∫

Rn ϕ(x) f (x)dx for a test function ϕ) there
holds test(ρε∗ f ) = ρε∗ test f for an even convolution kernel. We insert a test function
ϕ:

ρε ∗ test f (ϕ) = test f (ρε ∗ϕ) =
∫

Rn

ρε ∗ϕ(x) f (x)dx

=

∫

Rn

∫

Rn

ρε(x − y)ϕ(y)dy f (x)dx

=

∫

Rn

∫

Rn

ρε(y − x)ϕ(y) f (x)dx dy

=

∫

Rn

ρε ∗ f (y)ϕ(y)dy

= test(ρε ∗ f )(ϕ)

10



2 Analytic preparations

We used Fubini, this is justified as the integrals are all finite.

As we consider a parabolic equation, we have not distributions onRn but on [0, T )×Rn.
We also want to mollify them, but only in space:

Definition 2.14. Let there be an even convolution kernel ρε on Rn and a distribution
u on [0, T )×Rn. Then there is also a distribution ρε ∗ u on [0, T )×Rn. We define it
for ϕ ∈ C∞c ([0, T )×Rn) by

ρε ∗ u(ϕ) := u(ρε ∗ϕ)

Here ρε ∗ϕ(x , t) := ρε ∗ϕ(·, t)(x)

We will have only distributions of order zero and one in t, so we have the following
two lemmata:

Lemma 2.15. Let u be a distribution on [0, T ) × Rn of order zero in t, so there are
distributions ut on Rn such that

u(ϕ) =

∫ T

0

ut(ϕ(·, t))dt

Then ρε ∗ u is also of order zero and given by
∫ T

0
ρε ∗ ut dt:

Proof. This is easily proven by inserting ϕ ∈ C∞c ([0, T )×Rn):

ρε ∗ u(ϕ) = u(ρε ∗ϕ) =
∫ T

0

ut(ρε ∗ϕ(·, t))dt =

∫ T

0

ρε ∗ ut(ϕ(·, t))dt

The other situation is a distribution of order one in t:

Lemma 2.16. Let there be u ∈ L1
loc([0, T )×Rn) with boundary data u0 at 0. We consider

the distribution ∂tu(given by ∂tu(ϕ) = −
∫ T

0

∫

Rn u∂tϕ +
∫

Rn u0ϕ(0, ·) ).
Then we have ρε ∗∂tu= ∂t(ρε ∗u), with the second distribution seen with boundary data
ρε ∗ u0 for an even convolution kernel ρε.

11



2 Analytic preparations

Proof.

ρε ∗ ∂tu(ϕ) = ∂tu(ρε ∗ϕ)

= −
∫ T

0

∫

Rn

u(x , t)∂t(ρε ∗ϕ)(x , t) +

∫

Rn

u0(x)ρε ∗ϕ(0, x)dx

= −
∫ T

0

∫

Rn

u(x , t)ρε ∗ ∂tϕ(x , t) +

∫

Rn

∫

Rn

u0(x)ρε(x − y)ϕ(0, y)dy dx

= −
∫ T

0

∫

Rn

∫

Rn

u(x , t)ρε(x − y)∂tϕ(y, t)dx dy dt

+

∫

Rn

ϕ(0, y)

∫

Rn

u0(x)ρε(y − x)dx dy

= −
∫ T

0

∫

Rn

∂tϕ(y, t)

∫

Rn

u(x , t)ρε(y − x)dy dx dt

+

∫

Rn

ϕ(0, y)ρε ∗ u0(y)dy

= −
∫ T

0

∫

Rn

∂tϕ(y, t)ρε ∗ u(y, t) +

∫

Rn

ϕ(0, y)ρε ∗ u0(y)dy

= ∂t(ρε ∗ u)(ϕ)

2.4 A distributional Gronwall inequality

Next we have the following distributional version of Gronwalls inequality:

Lemma 2.17. Let there be a function f ∈ C([0, T])with f (0) = 0 and g, h ∈ L1([0, T]).
f , g and h are assumed to be nonnegative. Additionally f ′ ≤ f g + h distributionally, so
for every nonnegative test function ϕ ∈ C∞c ((0, T )) we have

−
∫ T

0

ϕ′(t) f (t)dt ≤
∫ T

0

f (t)g(t)ϕ(t)dt +

∫ T

0

h(t)ϕ(t)dt

Then

f (t)≤ e
∫ t

0 g(r)dr

∫ t

0

h(s)ds

almost everywhere in [0, T].

Proof. In the distributional formulation we test with eϕ(s) = e−
∫ s

0 g(r)drϕ for a nonnegative
test function ϕ. This is not an element of C∞c ((0, T )), but monotone, bounded and

12



2 Analytic preparations

weakly differentiable, as s 7→
∫ s

0
g(r)dr is weakly differentiable with derivative g, so

we can approximate it by test functions and the equation holds.

Testing with eϕ leads to

−
∫ T

0

ϕ′(s)e−
∫ s

0 g(r)dr f (s)ds+

∫ T

0

ϕ(s)e−
∫ s

0 g(r)dr g(s) f (s)ds

≤
∫ T

0

ϕ(s)g(s) f (s)e−
∫ s

0 g(r)dr ds+

∫ T

0

ϕ(s)h(s)e−
∫ s

0 g(r)dr ds

=⇒−
∫ T

0

ϕ′(s)e−
∫ s

0 g(r)dr f (s)ds ≤
∫ T

0

ϕ(s)h(s)e−
∫ s

0 g(r)dr ds

Defining R(s) = e−
∫ s

0 g(r)dr f (s) and estimating e−
∫ s

0 g(r)dr ≤ 1 we have R ∈ C([0, T]),
R(0) = 0 and

−
∫ T

0

R(s)ϕ′(s)ds ≤
∫ T

0

ϕ(s)h(s)ds

so R′ ≤ h distributionally. Lets define R(t) =
∫ t

0
h(s)ds, so R

′
(t) = h(t) almost

everywhere. So we have

−
∫ T

0

(R(s)− R(s))ϕ′(s)ds = −
∫ T

0

R(s)ϕ′(s) +

∫ T

0

R(s)ϕ′(s)

≤
∫ T

0

ϕ(s)h(s)ds−
∫ T

0

R
′
(s)ϕ(s)ds

=

∫ T

0

ϕ(s)h(s)ds−
∫ T

0

ϕ(s)h(s)ds

= 0

According to the following lemma, this leads to R − R ≤ 0, so R(t) ≤
∫ t

0
h(s)ds on

[0, T], so

f (t)≤ e
∫ t

0 g(r)dr

∫ t

0

h(s)ds

almost everywhere. This was to show.

Lemma 2.18. Let there be R ∈ C([0, T]), R(0) = 0 and R′ ≤ 0 distributionally:
∫ T

0

R(s)ϕ′(s)ds ≥ 0

for all nonnegative test functions ϕ. Then R≤ 0 in [0, T].

13
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Proof. We argue by contradiction, so lets assume the existence of a t ∈ [0, T] with
R(t) > 0. We take mollified functions Rε of R (to achieve this, extend R on some
interval [−τ, T + τ] constant outside of [0, T] and continuous in 0 and T), so Rε is
well defined. As R is continuous, we have Rε→ R uniformly and for a δ > 0, we have
an ε > 0 such that ‖Rε − R‖∞ ≤ δ.
So, for any positive test function ϕ, we have

0≤
∫ T

0

R(s)ϕ′(s)ds =

∫ T

0

Rε(s)ϕ
′(s)ds+

∫ T

0

(R(s)− Rε(s))ϕ
′(s)ds

≤
∫ T

0

Rε(s)ϕ
′(s)ds+ ‖ϕ′‖1‖R− Rε‖∞

≤
∫ T

0

Rε(s)ϕ
′(s)ds+ ‖ϕ′‖1δ

So, by a partial integration, we get, that for every δ > 0 there exists a ε > 0 such that
∫ T

0

R′
ε
(s)ϕ(s)≤ ‖ϕ′‖1δ (2)

Now we take nonnegative test functions ϕk for k ∈ N with the following properties,
let there be

• ϕk(0) = 0

• ϕk = 1 on [1
k , t − 1

k]

• ϕk = 0 on [t, T]

• |ϕ′k| ≤ 2K , so especially ‖ϕ′k‖1 ≤ 4 independent of k as ϕ′k 6= 0 only in [0, 1
k] and

[t − 1
k , t]

So we have ϕk→ 1[0,t] pointwise almost everywhere.
Inserting ϕk in (2) leads to

∫ T

0

R′
ε
(s)ϕk(s)ds ≤ ‖ϕ′k‖1δ ≤ 4δ

Now lets take k→∞. As |Rε| is a continuous function on [0, T], it is integrable and
hence a suitable dominating function for the left-hand side (because |ϕk| ≤ 1). So we
can apply the dominated convergence theorem and get for any δ > 0 an ε > 0 such
that

∫ t

0

R′
ε
(s)ds = Rε(t)− Rε(0)≤ 4δ

Now let δ→ 0, so also ε→ 0. Then Rε(0)→ 0 and Rε(t)→ R(t) > 0 by assumption.
This is a contradiction as the right hand side goes to 0.
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2.5 Youngs inequality for integral operators

From harmonic analysis we use the following result (also known as Schur’s test), which
is also valid in more general versions, see [15], Theorem 0.3.1:

Theorem 2.19. Let K : Rn ×Rn→ [0,∞) and f ∈ Lp(Rn) for p ≥ 1. Let there be
∫

Rn

K(x , y)dy ≤ 1 for almost every x ∈ Rn

and
∫

Rn

K(x , y)dx ≤ 1 for almost every y ∈ Rn

Then we have
∫

Rn

∫

Rn

K(x , y)| f (y)|p dy dx ≤
∫

Rn

| f (y)|p dy

Proof. [15], Theorem 0.3.1

This leads to the following lemma

Lemma 2.20. Let there be f ∈ Lp
loc(R

n) for p ≥ 1. Then we have for R> 1 and 0< ε < 1
∫

BR

∫

B1(0)

| f (x + ε y)|p dy dx ≤ ‖ f ‖p
Lp(BR+1)

Proof. Use theorem 2.19 (after setting f to 0 outside of BR+1) and

K(x , y) =

¨

1
|Bε |

|x − y| ≤ ε
0 otherwise

2.6 Bouchuts Lemma

In the proof of the renormalization theorem we will defineΛ(M ,ρ) =
∫

Rn

�

�〈Mz,Ïρ(z)〉
�

�dz
for a n×n-Matrix and ρ ∈ C∞c (R

n). We will try to get Λ(M ,ρ) as small as possible by
choosing the convolution kernel ρ. The following lemma of Bouchut gives an answer
to this question if M has rank one (this will be satisfied by Albertis rank one theorem):

Lemma 2.21. Let there be ξ,η ∈ Rn with ξ ⊥ η and with ξ = η = 1. Then, for any
given ε we find a even ρ ∈ C∞c (R

n), such that Λ(η⊗ ξ,ρ)< ε, this means
∫

Rn

�

�〈z,ξ〉
�

�

�

�〈Ïρ(z),η〉
�

�dz < ε

15
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Proof. ([2], Lemma 3.3) We first prove the Lemma for n= 2. Without loss of generality
we can assume ξ= e1 and η= e2. Lets define the rectangle Rε = [

ε
2 , ε2]×[−

1
2 , 1

2]. Then
we take

ρ =
1Rε
ε
∗ hδ

for a convolution kernel hδ.
So we have

∫

Rn ρ = 1 and

�

�

�

∂ (ρ ∗ hδ)
∂ z2

�

�

�→
|ν2|
ε
H 1 ∂ Rε

as δ→ 0 in the sense of measure with ν= (ν1,ν2) the inner unit normal to Rε.
Then we have

lim
δ→0
Λ(η⊗ ξ,ρ) = lim

δ→0

∫

R2

|z1|
�

�

�

∂ (ρ ∗ hδ)
∂ z2

�

�

�dz =
2
ε

∫
ε
2

− ε2

|z1|dz1 =
ε

2

So we can choose δ small enough to get a suitable ρ. If n > 2 we just multiply this
2-dimensional kernel with a fixed kernel in the other dimensions (orthogonal to ξ and
η).
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3 The Fokker-Planck equation

3 The Fokker-Planck equation

We are going to consider a Fokker-Planck-equation of the following form:

∂t p+ ∂i(pbi)−
1
2
∂i(σikσ jk∂ j p) = 0 (3)

This is a time-dependent equation, so we consider it on a time interval [0, T]. We have
problem data

• A drift field b : [0, T]×Rn→ Rn

• A diffusion term σ : [0, T]×Rn→ Rn×m

and a solution

• p : [0, T]×Rn→ R

For σ = 0, (3) becomes the standard transport equation. The main difficulty is that
we consider a drift-field b which has only BV-regularity in the spatial variables.
We will consider weak solutions in the following sense:

Definition 3.1. Let there be an initial condition p0 ∈ L2∩ L∞ (in the formal sense that
p|t=0 = p0). Then a function p ∈ L∞([0, T], L2∩ L∞) satisfying σ∗Ïp ∈ L2([0, T], L2)
(where σ∗ is the transpose of σ) is called a weak solution to (3) if

∫ T

0

∫

Rn

p∂tϕ dx dt +

∫

Rn

p0ϕ(0, ·)dx

= −
∫ T

0

∫

Rn

p〈b,Ïϕ〉dx dt +
1
2

∫ T

0

∫

Rn

〈σ∗Ïp,σ∗Ïϕ〉dx dp

for all test functions ϕ ∈ C∞c ([0, T )×Rn)

The main theorem we prove is the following (Theorem 1.1 in [14]):

Theorem 3.2. Let b and σ be as above, satisfying the following regularity assumptions:

• b ∈
�

L1
�

[0, T], BVloc(Rn)
�

�n

• b
1+|x | ∈

�

L1
�

[0, T], L1 + L∞(Rn)
�

�n

• div(b) ∈ L1
�

[0, T], L1
loc(R

n)
�

• [div(b)]− ∈ L1
�

[0, T], L∞(Rn)
�

and
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3 The Fokker-Planck equation

• σ ∈
�

L2
�

[0, T], W 1,2
loc (R

n)
�

�n×m

• σ
1+|x | ∈

�

L2
�

[0, T], L2 + L∞(Rn)
�

�n×m

Then, for any initial condition p|t=0 = p0 with p0 ∈ L2 ∩ L∞, (3) has a unique weak
solution in the space

X2 =
¦

p ∈ L∞
�

[0, T], L2 ∩ L∞
�

,σ∗Ïp ∈ L2
�

[0, T], L2
�

©

3.1 Definition and properties of σ∗Ïp

In the definition of the Fokker-Planck equation (3) (respectively in the weak formalization
of Definition 3.1) we need to define the meaning of σ∗Ïp, as p is only assumed to be
in L2 ∩ L∞:

Remark 3.3. For the existence of a weak solution of (3) we state the existence of
σ∗Ïp(t) for almost every t in the following distributional sense: There exists an u ∈
L2(Rn)n, such that, for all test functions ϕ ∈ H1

0(R
n)n:

∫

Rn

u(t, x)ϕ(t, x)dx dt = −
∫

Rn

p · div(σϕ)dx dt

In this sense we will also write u= σ∗Ïp

Next, let there be pε mollified versions (only in space) of p, then we show the following
convergence:

Lemma 3.4. We have σ∗Ïpε→ σ∗Ïp in L2
�

[0, T], L2
loc

�

.

Proof. For a compact K ⊂ Rn we estimate by adding the zero (σ∗Ïp)ε− (σ∗Ïp)ε with
(σ∗Ïp)ε being the mollified version of σ∗Ïp

∫ T

0

‖σ∗Ïpε(t)−σ∗Ïp(t)‖L2(K) dt

≤
∫ T

0

‖σ∗Ïpε(t)− (σ∗Ïp)ε (t)‖L2(K) dt +

∫ T

0

‖ (σ∗Ïp)ε (t)−σ
∗Ïp(t)‖L2(K) dt

The first integral goes to zero by Lemma 3.16 as it is exactly Rε. (Note that this is not
a circular reasoning argument, as Lemma 3.16 is proven without using this lemma or
anything else depending on this lemma).
The second integral also converges to zero, as ‖ (σ∗Ïp)ε (t)−σ∗Ïp(t)‖L2(K) → 0 for
every t pointwise by the properties of the convolution and as we have the dominating
function t 7→ 2‖σ∗Ïp(t)‖L2(K).
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3 The Fokker-Planck equation

For the definition of renormalized solution we will have to give also a meaning to the
expression σ∗Ïβ(p) for a β ∈ C2(R):

Remark 3.5. Let there be a function u ∈ L2(Rn)n, such that, for all test functions
ϕ ∈ H1

0(R
n)n:

∫

Rn

u(t, x)ϕ(t, x)dx dt = −
∫

Rn

β(p) · div(σϕ)dx dt

In this sense we will also write u= σ∗Ïβ(p).

Also in this distributional sense we have the following chain-rule:

Lemma 3.6. In the sense of the last remark we have σ∗Ïβ(p) = β ′(p) ·σ∗Ïp

Proof. We approximate σ ∈ W 1,2
loc (R

n) and p ∈ L2 ∩ L∞ by smooth functions σn ∈
C∞∩W 1,2

loc and pn ∈ C∞c ∩L2∩L∞ (note that the pn should have compact support), such
thatσn→ σ in W 1,2

loc (R
n) and pn→ p only in L2 (not in L∞, because this is not possible

in general). Additionally, let ‖σn‖2 ≤ ‖σ‖2, ‖Ïσn‖2 ≤ ‖Ïσ‖2 and ‖pn‖2 ≤ ‖p‖2,
‖pn‖∞ ≤ ‖p‖∞. This can be achieved for example by mollifying σ and p.
At first we show thatσ∗nÏpn *σ

∗Ïp weak in L2
loc, possibly after picking a subsequence

(especially σ∗nÏpn ∈ L2
loc as Ïpn is bounded). We have for a test function ϕ

∫

Rn

σ∗nÏpnϕ = −
∫

Rn

pnÏ(σnϕ)→−
∫

Rn

pÏ(σϕ) =
∫

Rn

σ∗Ïpϕ

The convergence is because σn→ σ in W 1,2
loc (R

n) and pn→ p in L2 both strongly.
We want to show β ′(p) · σ∗Ïp = σ∗Ïβ(p) in the following big frame, for any test
function ϕ:

∫

Rn

β ′(p) ·σ∗Ïp ·ϕ A
= lim

n→∞

∫

Rn

β ′(pn) ·σ∗nÏpn ·ϕ = lim
n→∞

∫

Rn

Ï(β(pn)) · (σnϕ)

= lim
n→∞

−
∫

Rn

β(pn)div(σnϕ)
B
= −

∫

Rn

β(p) ·Ï(σϕ)

By the last remark 3.6 this would show the Lemma, but of course we need to justify
A and B. For both we will need, that β ′ ◦ pn→ β ′ ◦ p in measure. This holds because
pn→ p in measure (Lp-convergence implies convergence in measure) and Lemma 2.9,
as pn are uniformly bounded and β ∈ C2(R).
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Step A: We have

lim
n→∞

∫

Rn

β ′(p) ·σ∗Ïp ·ϕ − β ′(pn) ·σ∗nÏpn ·ϕ

= lim
n→∞

∫

Rn

�

β ′(p)− β ′(pn)
�

·
�

σ∗Ïp+σ∗nÏpn

�

·ϕ

+ lim
n→∞

∫

Rn

β ′(pn) ·σ∗Ïp ·ϕ

− lim
n→∞

∫

Rn

β ′(p) ·σ∗nÏpn ·ϕ

So we need to check the behavior of these three limits:

• The first integral
∫

Rn

�

β ′(p)−β ′(pn)
�

·
�

σ∗Ïp+σ∗nÏpn

�

·ϕ converges to zero by
Lemma 2.11 as β ′(p)−β ′(pn) goes to zero in measure and as σ∗nÏpn is bounded
in L2 (because its weakly convergent in L2

loc and we integrate on the compact
support of ϕ

• The second integral
∫

Rn β
′(pn) ·σ∗Ïp ·ϕ goes to

∫

Rn β
′(p) ·σ∗Ïp ·ϕ by Lemma

2.10

• The third integral
∫

Rn β
′(p) ·σ∗nÏpn ·ϕ goes to

∫

Rn β
′(p) ·σ∗Ïp ·ϕ by the weak

convergence of the σ∗nÏpn

So the sum converges to 0, this was to show.

Step B: We have

lim
n→∞

∫

Rn

β ′(p) · div(σϕ)− β ′(pn) · div(σnϕ)

= lim
n→∞

∫

Rn

�

β ′(p)− β ′(pn)
�

· (div(σnϕ) + div(σϕ))

− lim
n→∞

∫

Rn

β ′(p)div(σnϕ)

+ lim
n→∞

∫

Rn

β ′(pn)div(σϕ)

Again, we check the three integrals:

• The first integral
∫

Rn (β
′(p)− β ′(pn)) · (div(σnϕ) + div(σϕ)) goes to zero by

Lemma 2.10

• The second integral
∫

Rn β
′(p)div(σnϕ) goes to

∫

Rn β
′(p)div(σϕ) by the strong

convergence of Ïσn to Ïσ in L2
loc
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• The third integral
∫

Rn β
′(pn)div(σϕ) goes to

∫

Rn β
′(p)div(σϕ) by Lemma 2.10

So also here the sum goes to 0 and the proof is finished.

3.2 Existence of solutions

Theorem 3.7. Let there be b,σ as in Theorem 3.2. Then, for any p0 ∈ L2 ∩ L∞, there
exists a solution of

∂t p+ ∂i(pbi)−
1
2
∂i(σikσ jk∂ j p) = 0 (4)

in the space

X2 =
¦

p ∈ L∞
�

[0, T], L2 ∩ L∞
�

,σ∗Ïp ∈ L2
�

[0, T], L2
�

©

(see [5] p. 20 and p. 24 for the idea of the proof). The strategy is, to consider a
regularized version of (4) (by approximating b and σ by smooth functions) and to
show that the solutions of the smoothed PDE converge weakly. Then we show that
the weak limit solves the actual PDE.
At first, we need to derive the a-priori-estimates of the following lemma. We assume
b,σ and p0 to be smooth. Then, according according to [11], Theorem 2 a solution
exists, even smooth in space and continuously differentiable in time. For this solution
we get some estimates:

Lemma 3.8. Let there be b,σ and p0 as in 3.2 and additionally smooth and let p be the
solution of (4). Then we have constants C1, C2 and C3, depending only on b and p0, such
that for all t (uniformly)

‖p(t)‖∞ ≤ C1 (5)

‖p(t)‖2 ≤ C2 (6)

‖σ∗Ïp‖L2([0,T],L2) ≤ C3 (7)

Proof. So assume p to be a solution (continously differentiable in time and smooth in
space) of (4) with p|t=0 = p0 and p0 ∈ L2 ∩ L∞ also smooth by [11].
We start with the L∞-bound of p. Lets define ϕ : R→ R by

∂tϕ(t) = sup
x∈R

�

divb(t, x)
�−
·ϕ(t) + ε

with ε > 0 and ϕ(0) = ‖p0‖∞ + ε . Then, by [4, p. 53], ϕ exists and is bounded on
[0, T].
We show that p(t, x) < ϕ(t) for all t, x by contradiction. Then, this is enough to
show (5), as ϕ is bounded on [0, T]. So lets assume the existence of x0, t0 such that
p(t0, x0)≥ ϕ(t0). Let t0 be the minimal t under this assumption (ϕ is a monotonously
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increasing continuous function and at t = 0 we have p(x , 0)< ϕ(0), so such a minimal
t0 is well defined), so, as p is continuous we especially get

p(t0, x0) = ϕ(t0)

Now we claim that x0 is a global maximum in space of p: If there was a x1 with
p(t0, x1) > p(t0, x0), we would take the function t → p(t, x1)− ϕ(t). This function
is negative in 0 and strictly positive in t0, so it has to have a zero-value less than t0.
This is a contradiction to the minimality of t0, so x0 is a maximum. We have, that

∂t p(t0, x0)− ∂tϕ(t0)≥ 0 (8)

because t0 is by definition the smallest zero of p − ϕ, and as p(0) − ϕ(0) < 0 by
definition, the derivative has to by nonnegative in t0.
Now we go back to the differential equation (4) and split up the derivatives with the
product rule:

∂t p+ (Ïp) · b+ p div b−
1
2
∂i(σikσ jk)∂ j p)−

1
2
σikσ jk∂i∂ j p = 0

Lets consider this equation in (t0, x0). As x0 is a maximum in space, we have, that
Ïp(t0, x0) = 0, and, that the Hessematrix is negative definit in x0, so we have

σikσ jk∂i∂ j p(x0, t0)≤ 0

So we have

∂t p(t0, x0) + div(b(t0, x0)) · p(t0, x0) =
1
2
σikσ jk∂i∂ j p(t0, x0)≤ 0

This leads to:

∂t p(t0, x0)≤ −div(b(t0, x0)) · p(t0, x0)

Additionally ϕ is always nonnegative (by the defining ODE, the derivative and the
initial value is nonnegative), so by p(t0, x0) = ϕ(t0) also p(t0, x0) is nonnegative.
This is important in the following estimate:

∂t p(t0, x0)≤ −div(b(t0, x0)) · p(t0, x0)≤ sup
x∈R

�

divb(t0, x)
�−

p(t0, x0)

= sup
x∈R

�

divb(t0, x)
�−
ϕ(t0) = ∂tϕ(t0)− ε

This is a contradiction to (8). For a lower bound lets take −p, which also solves (4)
(with the sign-flipped initial data) and for which we have established an upper bound.

For the L2-bound we may multiply (4) with p and integrate in space over some Rn.
We assume that all integrals exist and are finite, which will be justified later:

∫

Rn

p∂t p+

∫

Rn

p∂i(pbi)−
∫

Rn

1
2

�

∂i(σikσ jk∂ j p)
�

p = 0
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3 The Fokker-Planck equation

Now p∂t p = ∂t
p2

2 , and p is continously differentiable in time, so we may change
integration and differentiation in the first integral:

1
2
∂t

∫

Rn

p2 +

∫

Rn

p∂i(pbi)−
1
2

∫

Rn

�

∂i(σikσ jk∂ j p)
�

p = 0 (9)

In the second integral we integrate by parts two times:
∫

Rn

p∂i(pbi) = −
∫

Rn

∂i ppbi = −
∫

Rn

∂i
p2

2
bi =

∫

Rn

p2

2
div b

Multiplying with 2 and another integration by parts in the last term in (9) leads to

∂t

∫

Rn

p2 +

∫

Rn

p2 div b+

∫

Rn

(σikσ jk∂ j p)∂i p = 0

In the last term we have (σikσ jk∂ j p)∂i p = |σ∗Ïp|2:

∂t

∫

Rn

p2 +

∫

Rn

p2 div b+

∫

Rn

|σ∗Ïp|2 = 0 (10)

One of the regularity assumptions of 3.2 is, that [div b]− ∈ L1([0, T], L1
loc(R

n)), so let
there be a function C ∈ L1([0, T]) such that [div b]− < C(t). Since

∫

Rn |σ∗Ïp|2 ≥ 0,
(10) leads to

∂t

∫

Rn

p2 ≤ C(t)

∫

Rn

p2

Now we can apply Gronwalls inequality in differential form [9, p. 711], which leads
to

||p(t)||22 ≤ e‖C(·)‖1 t ||p0||22 = C1||p0||22 (11)

with C1 = e‖C(·)‖1T , so (6) is proven.
We want to get an analog bound for the L2-Norm of t → ‖σ∗(·, t)Ïp(·, t)‖2 (in fact
the squared L2-Norm) using (10) :

∫ T

0

‖σ∗Ïp‖2
2 dt =

∫ T

0

∫

Rn

|σ∗(x , t)Ïp(x , t)|2 dx dt

=

∫ T

0

�

−∂t

∫

Rn

p2 dx −
∫

Rn

p2 div b dx

�

dt

= −
∫

Rn

p(x , T )2 dx + ‖p0‖2
2 −

∫ T

0

∫

Rn

p2 div b dx dt

≤
∫ T

0

‖[div b(t)]−‖∞

∫

Rn

p2 dx dt + ‖p0‖2
2
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3 The Fokker-Planck equation

We can use the L2-estimate (11) and get

∫ T

0

‖σ∗Ïp‖2
2 dt ≤

∫ T

0

‖[div b(t)]−‖∞C1||p0||22 dt + ‖p0‖2
2

≤ C1||p0||22

∫ T

0

‖[div b(t)]−‖∞ dt + ‖p0‖2
2

≤ C1||p0||22 · ‖‖[div b(·)]−‖∞‖1 + ‖p0‖2
2

≤ C2‖p0‖2
2 (12)

with C2 = C1














[div b(·)]−






∞










1
+ 1. Here














[div b(·)]−






∞










1
is finite because the

components of b are assumed to be in L1
�

[0, T], L∞(Rn)
�

. So also (7) is proven and
the proof is finished.

Now we are able to prove Theorem 3.7:

Proof of Theorem 3.7. Lets take convolution kernels in space and time ρε and define
bε = ρε ∗ b, σε = ρε ∗σ and p0ε = ρε ∗ p0. To convolute in time, we need to define b
and σ on [−ε, T + ε] by reflecting on the interval bound, so for 0 < τ < ε we extend
b by b(−τ) = b(τ) and b(T +τ) = b(T −τ). σ is extended analogously.
Then a solution to the according smooth problem exists according to [11], Theorem
2, let it be assigned with pε. This solution exists even smooth in space and continuously
differentiable in time, so the a-priori-estimates (5), (6) and (7) hold for pε. Additionally,
by the properties of the convolution, we know that the norms of div bε and p0ε are
lower or equal then the correspondent non-smoothed ones, so there are uniform
constants in the a-priori-estimates (this can be easily checked by going through the
proof of Lemma 3.8 and verifying, that the constants only depend on the norms of
div b and p0).
So we have a bounded sequence pε in L2

�

[0, T]×Rn
�

. By picking a subsequence we
get a weak convergent subsequence, and, as ‖σt

ε
Ïpε‖ is also bounded, we can take a

weak convergent subsubsequence (but a priori it is not clear that it converges to σ∗Ïp
!), which we call without loss of generality again pε, so we have functions p and u such
that

pε* p
σt
ε
Ïpε* u

For a test function ϕ ∈ C∞c ([0, T )×Rn), we have

∫ T

0

∫

Rn

uϕ = lim
ε→0

∫ T

0

∫

Rn

σt
ε
Ïpεϕ = − lim

ε→0

∫ T

0

∫

Rn

pε ·Ï(σεϕ) = −
∫ T

0

∫

Rn

p ·Ï(σϕ)

with the last equality by the weak convergence of pε and, the strong convergence of
Ï(σεϕ) and Lemma 2.7. So u= σtÏp in the distributional sense of Remark 3.3.
So we need to show that p is a weak solution of (4). This is done by taking the
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3 The Fokker-Planck equation

weak formulation with the smoothed terms and checking the convergence to the
corresponding terms. We have

∫ T

0

∫

Rn

pε∂tϕ dx dt +

∫

Rn

p0εϕ(0, ·)dx =

−
∫ T

0

∫

Rn

pε〈bε,Ïϕ〉dx dt +
1
2

∫ T

0

∫

Rn

〈σ∗
ε
Ïpε,σ

∗
ε
Ïϕ〉dx dp

for any test function ϕ ∈ C∞c ([0, T )×Rn). Now we need to check the convergence of
these integrals:

• The first integral
∫ T

0

∫

Rn pε∂tϕ dx dt goes to
∫ T

0

∫

Rn p∂tϕ dx dt by the weak convergence
of pε

• The second integral
∫

Rn p0εϕ(0, ·)dx goes to
∫

Rn p0ϕ(0, ·)dx by the strong convergence
of p0ε to p0 (which implies weak convergence).

• The third integral
∫ T

0

∫

Rn pε〈bε,Ïϕ〉dx dt goes to
∫ T

0

∫

Rn p〈b,Ïϕ〉dx dt by Lemma
2.7 with 〈bε,Ïϕ〉 strong convergent and pε weak convergent

• The last integral
∫ T

0

∫

Rn〈σ∗εÏpε,σ
∗
ε
Ïϕ〉dx dp goes to

∫ T

0

∫

Rn〈σ∗Ïp,σ∗Ïϕ〉dx dp
also by Lemma 2.7, because σ∗

ε
Ïpε converges weakly to σ∗p (recalling the

definition ofσ∗p above in the distributional sense) andσ∗
ε
Ïϕ is strong convergent

in L2 to σ∗Ïϕ

So all integrals converge to the corresponding terms in p, p0, b and σ, so p is in fact a
solution of (4).

3.3 Uniqueness of solutions

3.3.1 The technique of renormalized solutions

To get a suitable definition of a renormalized solution, we need to calculate at first
only formally, taking no account of any regularity or the difference between weak and
strong solutions. We start with (3), but of course inserting β(p) instead of p with
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3 The Fokker-Planck equation

β : R→ R and assuming that p solves (3)

∂tβ(p) + ∂i(β(p)bi)−
1
2
∂i

�

σikσ jk∂ jβ(p)
�

= β ′(p) · ∂t p+ β
′(p)∂i pbi + β(p)div(b)−

1
2
∂i(σikσ jkβ

′(p)∂ j p)

= β ′(p) · ∂t p+ β
′(p)∂i pbi + β(p)div(b)−

1
2
β ′(p)∂i(σikσ jk∂ j p)−

1
2
σikσ jk∂ j pβ

′′(p)∂i p

= β ′(p)
�

∂t p+ ∂i pbi −
1
2
∂i(σikσ jk∂ j p)

�

+ β(p)div(b)−
1
2
β ′′(p)σikσ jk∂ j p∂i p

= β ′(p)
�

∂t p+ ∂i pbi + p div b−
1
2
∂i(σikσ jk∂ j p)

�

︸ ︷︷ ︸

=0 by (3)

−β ′(p)p div(b) + β(p)div(b)

−
1
2
β ′′(p)|σ∗Ïp|2

=
�

β(p)− pβ ′(p)
�

div(b)−
1
2
β ′′(p)|σ∗Ïp|2

So the following is a natural definition of a renormalized solution, of course now again
understood distributionally:

Definition 3.9. A solution of (3) is called a renormalized solution, if, for all β ∈ C2(R),
the following equation holds (in the distributional sense as in definition 3.1)

∂tβ(p)+∂i(β(p)bi)−
1
2
∂i

�

σikσ jk∂ jβ(p)
�

−
�

β(p)− pβ ′(p)
�

div(b)+
1
2
β ′′(p)|σ∗Ïp|2

= 0

Remark 3.10. The distribution in definition 3.9 (and of course also the distribution
in definition 3.1) can also be tested with a test function only in space ϕ2 ∈ C∞c (R

n) to
get a distribution uϕ2

on [0, T], seen as a functional on C∞0 ([0, T]). Formally, we take
ϕ1 ∈ C∞0 ([0, T]) and ϕ2 ∈ C∞c (R

n) and test definition 3.9 with ϕ(x , t) = ϕ1(t)ϕ2(x):

uϕ2
(ϕ1) = −

∫ T

0

∫

Rn

β(p)ϕ2∂tϕ1 −
∫ T

0

∫

Rn

β(p)bi∂iϕ2ϕ1

+
1
2

∫ T

0

∫

Rn

ϕ1




σ∗Ïϕ2,σ∗Ïβ(p)
�

+

∫ T

0

∫

Rn

�

−β(p)div(b) + pβ ′(p)div(b) +
1
2
β ′′(p)|σ∗Ïp|2

�

ϕ1ϕ2

= 0

In this distributional sense, we also write
�

d
dt

∫

Rn β(p)ϕ2

�

(ϕ1) = −
∫ T

0

∫

Rn β(p)ϕ2∂tϕ1

for the first integral, as a distribution on [0, T].
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3 The Fokker-Planck equation

3.3.2 Proof of uniqueness under the renormalization assumption

Theorem 3.11. If any weak solution of the Fokker-Planck-equation (3) is also a renormalized
solution, the uniqueness in Theorem 3.2 holds.

Proof. ([14], p. 8): As we consider a linear equation, its enough to prove, that p0 ≡ 0
implies p(t)≡ 0 for almost every t.
We choose β(s) = s2, so we have β ′′ = 2 and β(p)− pβ ′(p) = −p2, so definition 3.9
together with Lemma 3.6 leads to

∂t(p
2) + ∂i(p

2 bi)− ∂i(σikσ jkp∂ j p) + p2 div(b) = −|σ∗Ïp|2 ≤ 0 (13)

Of course, the ≤ is meant in the sense, that testing with a nonnegative function leads
to a nonnegative result.
As mentioned in 3.10 it is possible to test with a test function in C∞c (R

n) to get a
distribution on [0, T]. We choose especially a function ϕR with R > 0, defined by
a nonnegative function ϕ ∈ Cc(Rn, [0, 1]) satisfying ϕ|B(1) ≡ 1 and spt(ϕ) ⊂ B(2).
Then let ϕR be the stretched version of ϕ by the parameter R, so

ϕR(x) = ϕ
� x

R

�

So we have ÏϕR(x) =
1
Rϕ(

x
R ).

Testing with this function in (13) leads to

d
dt

∫

Rn

p2ϕR −
∫

Rn

p2〈b,ÏϕR〉+
∫

Rn

p〈σ∗ÏϕR,σ∗Ïp〉+
∫

Rn

p2ϕR div(b)≤ 0

So:

d
dt

∫

Rn

p2ϕR ≤
∫

Rn

p2〈b,ÏϕR〉 −
∫

Rn

p〈σ∗ÏϕR,σ∗Ïp〉 −
∫

Rn

p2ϕR div(b) (14)

(14) is an inequality of distributions on [0, T], but the three integrals on the right
hand side exist also in a classical sense, so we can try to estimate them. In the first
one we have:

�

�

�

�

∫

Rn

p2〈b,ÏϕR〉
�

�

�

�

=

�

�

�

�

∫

{R≤|x |≤2R}
p2〈b,

1
R
Ïϕ

� ·
R

�

〉
�

�

�

�

≤ ‖Ïϕ‖∞

∫

{R≤|x |≤2R}
p2|b|

1
R

Now we have |x | ≤ 2R, so we can estimate with a generic constant C for R big enough:
�

�

�

�

∫

Rn

p2〈b,ÏϕR〉
�

�

�

�

≤ C‖Ïϕ‖∞

∫

{x≥R}
p2 |b|

1+ |x |

Next we use, that b
1+|x | ∈

�

L1
�

[0, T], L1 + L∞(Rn)
�

�n
by assumption, so let there

be vector fields b1, b2 such that b = b1 + b2 and |b1|
1+|x | ∈ L1

�

[0, T], L1(Rn)
�

, |b2|
1+|x | ∈

L1
�

[0, T], L∞(Rn)
�

. So, taking ‖Ïϕ‖∞ into the generic constant, we get
�

�

�

�

∫

Rn

p2〈b,ÏϕR〉
�

�

�

�

≤ C

∫

{x≥R}
p(t, ·)2

|b1(t)|
1+ |x |

+ C

∫

{x≥R}
p(t, ·)2

|b2(t)|
1+ |x |

(15)
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3 The Fokker-Planck equation

We want to use dominated convergence for R→∞, so we need dominating integrable
functions for both integrals, seen as functions of t:

C

∫

{x≥R}
p2 |b1(t)|

1+ |x |
≤ C‖p2(t, ·)‖∞













b1(t)
1+ x













1

As p ∈ L∞([0, T], L∞), the first norm is finite and the last one is an integrable function
of t by definition of b1.
Next we have

C

∫

{x≥R}
p(t, ·)2

|b2(t)|
1+ |x |

≤ C













b2(t)
1+ |x |













∞

∫

{x≥R}
p(t, ·)2 ≤ C













b2(t)
1+ |x |










∞
‖p(t, ·)‖2

2

As p ∈ L∞
�

[0, T], L2
�

, we also have a dominating function. So we can use dominated
convergence in (15), and as all terms on the right hand side go to 0 for almost every
fixed t at R→∞, we conclude

lim
R→∞

∫ T

0

�

�

�

�

∫

Rn

p2〈b,ÏϕR〉
�

�

�

�

= 0 (16)

Next, we estimate
∫

Rn p〈σ∗ÏϕR,σ∗Ïp〉 with the same estimate for 1
R :

�

�

�

�

∫

Rn

p〈σ∗ÏϕR,σ∗Ïp〉
�

�

�

�

≤
∫

{R≤|x |≤2R}
|p| · |σ∗Ïp| ·

1
R
‖Ïϕ‖∞|σ|

≤ C‖Ïϕ‖∞

∫

{|x |≥R}
|p| · |σ∗Ïp| ·

|σ|
1+ |x |

Again by assumption, we split σ in σ = σ1 +σ2, with

|σ1|
1+ |x |

∈ L2([0, T], L2(Rn))

|σ2|
1+ |x |

∈ L2([0, T], L∞(Rn))

So we have:
�

�

�

�

∫

Rn

p〈σ∗ÏϕR,σ∗Ïp〉
�

�

�

�

≤ C

∫

{|x |≥R}
|p| · |σ∗Ïp| ·

|σ1|
1+ |x |

+ C

∫

{|x |≥R}
|p| · |σ∗Ïp| ·

|σ2|
1+ |x |

(17)

Now, as above, we estimate both terms:

C

∫

{|x |≥R}
|p| · |σ∗Ïp| ·

|σ1|
1+ |x |

≤ C‖p‖∞

∫

{|x |≥R}
|σ∗Ïp| ·

|σ1|
1+ |x |

≤ C‖p‖∞‖σ∗(t)Ïp(t)‖2













|σ1(t)|
1+ |x |













2
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As functions of t, both t → ‖σ∗(t)Ïp(t)‖2 and t →









|σ1(t)|
1+|x |










2
are L2-functions by

assumption, so the product is a L1-function and thus we have found a dominating
function.
Next we estimate the second term:

C

∫

{|x |≥R}
|p| · |σ∗Ïp| ·

|σ2|
1+ |x |

≤ C













|σ2(t)|
1+ |x |













∞

∫

{|x |≥R}
|p| · |σ∗Ïp|

≤ C













|σ2(t)|
1+ |x |













∞

‖p(t)‖2‖σ∗(t)Ïp(t)‖2

≤ C













|σ2(t)|
1+ |x |













∞

‖p‖L∞([0,T],L2(Rn))‖σ∗(t)Ïp(t)‖2

Again, as functions of t, both t → ‖σ∗(t)Ïp(t)‖2 and t →









|σ2(t)|
1+|x |










∞
are L2-functions

by assumption and ‖p‖L∞([0,T],L2(Rn)) is a constant, so we have found a dominating
function.
So we can use the dominated convergence theorem in (17) and again we have pointwise
convergence to 0, so we have:

lim
R→∞

∫ T

0

�

�

�

�

∫

Rn

p〈σ∗ÏϕR,σ∗Ïp〉
�

�

�

�

= 0 (18)

At last we have to estimate the last integral of the right hand side of (14):

−
∫

Rn

p2ϕR div(b)≤ ‖[div(b)]−‖∞

∫

Rn

p2ϕR (19)

Now we are able to estimate (14). To simplify notation, we define:

AR(t) =

∫

Rn

p2(t)〈b(t),ÏϕR〉 −
∫

Rn

p(t)



σ∗(t)ÏϕR,σ∗(t)Ïp(t)
�

Thus, (16) and (18) lead to

lim
R→∞

∫ T

0

|AR(t)|d t = 0 (20)

So, testing (14) with a nonnegative test function ψ in time, and using (19) we get

−
∫ T

0

∫

Rn

p(x , t)2ϕR(x)ψ
′(t)dx dt

≤
∫ T

0

AR(t)ψ(t)dt +

∫ T

0

‖[div(b(t))]−‖∞

∫

Rn

p2(x , t)ϕR(x)dxψ(t)dt

Now we use the distributional form of Gronwalls Lemma (Lemma 2.17) with

29



3 The Fokker-Planck equation

• f (t) =
∫

Rn p(x , t)2ϕR(x)dx

• g(t) = ‖[div(b(t))]−‖∞

• h(t) = AR(t)

The assumptions of Lemma 2.17 are all obviously fulfilled except the continuity of f .
But also this holds as f is a Sobolev-function in one dimension and hence continuous.
Thus we have

∫

Rn

p(x , t)2ϕR(x)dx ≤ exp

�∫ t

0

‖[div(b(r))]−‖∞ dr

�∫ t

0

|AR(s)|ds

Here we take the limit R→∞. On the right hand side we use (20) and that

exp

�∫ t

0










�

div(b(r))
�−









∞
dr

�

≤ exp
�




[div(b)]−






1

�

So the integral exists as [div(b)]− ∈ L1
�

[0, T], L∞(Rn)
�

and the right hand side goes
to 0.
On the left hand side we use the monotone convergence theorem as ϕR is converging
monotone against the constant function with value 1 and p2 is nonnegative, so we get:

∫

Rn

p(x , t)2 dx ≤ 0

for almost every t, so p ≡ 0 almost everywhere. This was to show.

3.3.3 Commutators and the commutator estimate of DiPerna and Lions

The proof of the renormalization assumption will regularize the renormalized Fokker-
Planck equation to approximate the renormalized Fokker-Planck equation up to some
error terms which will converge to zero. For this aim, we have to regularize the
standard-Fokker-Planck equation at first, as the error terms arising here will also arise
in the regularized renormalized Fokker-Planck equation.
So lets take even convolution kernels ρ with support in B1(0) and define pε = ρε ∗ p.
Then, we are interested in the term

∂t pε + ∂i(pεbi)−
1
2
∂i(σikσ jk∂ j pε) (21)

Therefore we regularize (3) in the spatial variables, as explained in Section 2.3, especially
in the lemmata 2.15 and 2.16, so we get:

∂t(ρε ∗ p) +ρε ∗ ∂i(pbi)−
1
2
ρε ∗ ∂i(σikσ jk∂ j p) = 0 (22)

For the following calculations we define commutators:
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3 The Fokker-Planck equation

Definition 3.12. For a differential operator or a function c we define

[ρε, c]( f ) = ρε ∗ (c f )− c(ρε ∗ f )

Remark 3.13. Note that these commutators are in general only distributions, as c f
does not need to be defined as a function if f is for example only in a Lp-space. See
section 2.3 for the details of the mollifications of distributions.

So we analyse the terms of (22) trying to get terms of (21):

ρε ∗ ∂i(pbi) = ρε ∗ (div(b)p) +ρε ∗ (bi∂i p)
= ρε ∗ (div(b)p)− div(b)pε +ρε ∗ (bi∂i p)− bi∂i pε + ∂i(bi pε)
= [ρε, div(b)](p) + [ρε, bi∂i](p) + ∂i(bi pε)
=: Q1,ε +Q2,ε + ∂i(bi pε)

Next we have

ρε ∗ ∂i(σikσ jk∂ j p) = ρε ∗
�

(∂iσik)σ jk∂ j p+σik∂i(σ jk∂ j p)
�

= [ρε,∂iσik](σ jk∂ j p) + (∂iσik)ρε ∗ (σ jk∂ j p) + [ρε,σik∂i](σ jk∂ j p) +σik∂i(ρε ∗ (σ jk∂ j p))

= [ρε,∂iσik](σ jk∂ j p) + [ρε,σik∂i](σ jk∂ j p) + ∂i

�

σik ·ρε ∗ (σ jk∂ j p)
�

=: Sε + Tε + ∂i

�

σikρε ∗ (σ jk∂ j p)
�

We further analyse the term σik ·ρε ∗ (σ jk∂ j p) by defining Rk,ε = [ρε,σ jk∂ j](p):

σikρε ∗ (σ jk∂ j p) = σikRk,ε +σikσ jk∂ j pε

So, (22) leads to:

∂t pε + ∂i(pεbi)−
1
2
∂i(σikσ jk∂ j pε) = −Q1,ε −Q2,ε +

1
2
(∂i(σikRk,ε) + Sε + Tε) (23)

with the above defined error terms:

• Q1,ε = [ρε, div(b)](p) = ρε ∗ (div(b)p)− div(b)pε

• Q2,ε = [ρε, bi∂i](p) = ρε ∗ (bi∂i p)− bi∂i pε

• Rk,ε = [ρε,σ jk∂ j](p) = ρε ∗ (σ jk∂ j p)−σ jk∂ j pε

• Sε = [ρε,∂iσik](σ jk∂ j p) = ρε ∗ ((∂iσik)σ jk∂ j p)− (∂iσik) ·ρε ∗σ jk∂ j p

• Tε = [ρε,σik∂i](σ jk∂ j p) = ρε ∗ ((σik∂i)σ jk∂ j p)−σik∂i(ρε ∗σ jk∂ j p)

Later, in the proof of the renormalization assumption (Theorem 3.20), we will need
the behavior of the error terms at ε ↘ 0. The term Q2,ε is difficult in the BV setting,
but the other terms can be dealt with a commutator estimate from the Di-Perna-Lions
Theory:
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Lemma 3.14. For 1≤ r,α, r1,α1 ≤∞we define β and β1 by 1
β =

1
r+

1
α and 1

β1
= 1

r1
+ 1
α1

.
Let c, f and g be in the following spaces:

• c ∈
�

Lα1([0, T], W 1,α
loc (R

n))
�n

• f ∈ L r1
�

[0, T], L r
loc(R

n)
�

• g ∈ Lα1
�

[0, T], Lαloc(R
n)
�

Then the following commutators converge at ε→ 0

[ρε, ci∂i]( f )→ 0 in Lβ1
�

[0, T], Lβloc(R
n)
�

(24)

[ρε, g]( f )→ 0 in Lβ1
�

[0, T], Lβloc(R
n)
�

(25)

Proof. (see [7][Theorem II.1]) The proof is done in five steps. In the first three steps
we prove (24), but only time independent, in the fourth step we include the time
dependency and in the last step we show how to prove (25). Also mind the following
Remark 3.15 for the case when r = r1 =∞.

Step 1: An estimate
As said, we fix the time dependency in the fourth step, so we consider c ∈W 1,α

loc (R
n)n

and f ∈ L r
loc(R

n) and show [ρε, ci∂i]( f )→ 0 in Lβloc(R
n)

[ρε, ci∂i]( f )(x) = (ci∂i f ) ∗ρε(x)− ci(x)∂i( f ∗ρε)(x)
= (ci∂i f ) ∗ρε(x)− ci(x)( f ∗ ∂iρε)(x)

=

∫

Rn

ci(y)∂i f (y)ρε(x − y)dy −
∫

Rn

ci(x) f (y)∂iρε(x − y)dy

=

∫

Rn

−∂ici(y) f (y)ρε(x − y) + ci(y) f (y)∂iρε(x − y)

− ci(x) f (y)∂iρε(x − y)dy

= −( f div c) ∗ρε(x) +
∫

Rn

f (y)
�

ci(y)− ci(x)
�

∂iρε(x − y)dy

The first term goes to − f div c in Lβloc(R
n), so we consider the second one. In the

following step, we will take the Lβ -norm on a ball BR, as we want to show convergence
in Lβloc(R

n). C will denote various constants, changing from line to line and independent
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of ε, f , c, only depending on the convolution kernel ρ and R:













∫

Rn

f (y)
�

ci(y)− ci(x)
�

∂iρε(x − y)dy













β

Lβ (BR)

=

∫

BR

�

�

�

�

∫

Rn

f (y)
�

ci(y)− ci(x)
�

∂iρε(x − y)dy

�

�

�

�

β

dx

=

∫

BR

�

�

�

�

�

∫

Bε(x)

f (y)
�

ci(y)− ci(x)
�

∂iρε(x − y)dy

�

�

�

�

�

β

dx

=

∫

BR

�

�

�

�

�

∫

Bε(x)

f (y)
�

ci(y)− ci(x)
�

�

1
εN+1

∂iρ
� x − y
ε

�

�

dy

�

�

�

�

�

β

dx

=

∫

BR

�

�

�

�

�

∫

Bε(x)

f (y)
�

ci(y)− ci(x)
ε

�

∂iρ
� x − y
ε

� 1
εN

dy

�

�

�

�

�

β

dx

=

∫

BR

�

�

�

�

�

∫

B1(0)

f (x + εz)
�

ci(x + εz)− ci(x)
ε

�

∂iρ (z)dz

�

�

�

�

�

β

dx

Next we use that ∂iρ is bounded, so we can estimate it by C . In the following estimate
we use Hölder with the pair of Hölder-conjugate exponents r

β and α
β and Jensens

inequality to pull a β into the integrals, maybe by changing the constant C:

≤ C

∫

BR

�

�

�

�

�

∫

B1(0)

f (x + εz)
�

ci(x + εz)− ci(x)
ε

�

dz

�

�

�

�

�

β

dx (26)

≤ C

∫

BR

�

∫

B1(0)

| f (x + εz)|
r
β dz

�
β2

r
�

∫

B1(0)

� |ci(x + εz)− ci(x)|
ε

�
α
β

dz

�
β2

α

dx

≤ C

∫

BR

�

∫

B1(0)

| f (x + εz)|r dz

�
β
r
�

∫

B1(0)

� |ci(x + εz)− ci(x)|
ε

�α

dz

�
β
α

dx

Next we use again Hölder with the pair of Hölder-conjugate exponents r
β and α

β , but
this time in the x-integral:

≤ C

�

∫

BR

∫

B1(0)

| f (x + εz)|r dz dx

�
β
r
�

∫

BR

∫

B1(0)

� |ci(x + εz)− ci(x)|
ε

�α

dz dx

�
β
α

By Lemma 2.20 we know, that the first integral is estimated by ‖ f ‖r
Lr (BR+1)

, thus we can
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3 The Fokker-Planck equation

take both sides
1
β to get:













∫

Rn

f (y) (ci(y)− ci(x))∂iρε(x − y)dy













Lβ (BR)

≤ C‖ f ‖Lr (BR+1)

�

∫

BR

∫

B1(0)

� |ci(x + εz)− ci(x)|
ε

�α

dz dx

�
1
α

So we estimate the integral using Fubini and the estimate of the Lα-norm of difference
quotients against the Lα-norm of the gradient ([9], p. 277):
∫

BR

∫

B1(0)

� |ci(x + εz)− ci(x)|
ε

�α

dz dx =

∫

B1(0)

|z|α
∫

BR

� |ci(x + εz)− ci(x)|
ε|z|

�α

dx dz

≤ C

∫

B1(0)

|z|α‖Ïc‖αLα(BR+1)
dz

≤ C‖Ïc‖αLα(BR+1)

So we get












∫

Rn

f (y)
�

ci(y)− ci(x)
�

∂iρε(x − y)dy













Lβ (BR)

≤ C‖ f ‖Lr (BR+1)‖Ïc‖Lα(BR+1+C ) (27)

Step 2: Reducing the problem to smooth f and c
We want to show

∫

Rn

f (y)
�

ci(y)− ci(x)
�

∂iρε(x − y)dy → f div c

in Lβ(BR) as functions of x . Here we show that it is enough to show this for smooth f
and c. So lets take f̃ and c̃ smooth with ‖ f̃ − f ‖r ≤ ε1 and ‖c̃ − c‖W 1,α

loc
≤ ε2. Then we

have












∫

Rn

f (y)
�

ci(y)− ci(x)
�

∂iρε(x − y)dy − f div c













Lβ (BR)

≤












∫

Rn

f̃ (y)
�

c̃i(y)− c̃i(x)
�

∂iρε(x − y)dy − f̃ div c̃













Lβ (BR)

+













∫

Rn

f̃ (y)
�

ci(y)− c̃i(y) + ci(x)− c̃i(x)
�

∂iρε(x − y)dy













Lβ (BR)

+













∫

Rn

�

f (y)− f̃ (y)
��

ci(y)− ci(x)
�

∂iρε(x − y)dy













Lβ (BR)

+













∫

Rn

f div c − f̃ div c̃













Lβ (BR)

But the error terms (the last three integrals) can be estimated by (27), in the order of
the terms by
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3 The Fokker-Planck equation

• C‖ f ‖Lr (BR+1)‖Ï(c − c̃)‖Lα(BR+1+C ) ≤ C‖ f ‖Lr (BR+1)ε2

• C‖ f − f̃ ‖Lr (BR+1)‖Ïc‖Lα(BR+1+C ) ≤ Cε1‖Ïc‖Lα(BR+1+C )

• and the last one, by easy arguments by
C max(‖ f ‖Lr (BR+1),‖Ïc‖Lα(BR+1+C ))max(ε1,ε2).

So all terms are controlled by ε1 or ε2, so it is enough to show the convergence of the
first integral to 0, which is the same as assuming c and f to be smooth for the rest of
the proof.

Step 3: Solving the time-independent problem
So now we only have to show

∫

Rn

f (y)
�

ci(y)− ci(x)
�

∂iρε(x − y)dy → f div c

in Lβ(BR) as functions of x for smooth f and c. At first we want to replace f (y) by
f (x), so we use the smoothness of f and c to control
∫

Rn

�

f (y)− f (x)
��

ci(y)− ci(x)
�

∂iρε(x − y)dy

≤ ‖Ï f ‖∞‖Ïc‖∞

∫

Rn

|x− y|2∂iρε(x− y)dy ≤ C‖Ï f ‖∞‖Ïc‖∞

∫

Rn

ε2∂iρε(x− y)dy

As
∫

Rn ∂iρε ∈ O (
1
ε ) the term converges to 0, so we can ignore it.

So now we have to estimate

f (x)

∫

Rn

�

ci(y)− ci(x)
�

∂iρε(x − y)dy

We have:

ci(y)− ci(x) =
∂ ci(x)
∂ x j

(y j − x j) +O ((y j − x j)
2) =

∂ ci(x)
∂ x j

(y j − x j) +O (ε2)

As
∫ n

R ∂iρε ∈ O (
1
ε ) we can again ignore the ε2-term in the following calculation:

f (x)

∫

Rn

�

ci(y)− ci(x)
�

∂iρε(x − y)dy = f (x)

∫

Rn

∂ ci(x)
∂ x j

(y j − x j)∂iρε(x − y)dy

Substituting z = x − y leads to

− f (x)
∂ ci(x)
∂ x j

∫

Rn

z j∂iρε(z)dz

A integration by parts leads to
∫

Rn

z j∂iρε(z)dy = −
∫

Rn

∂i(z j)ρε(z)dz = −δi j
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3 The Fokker-Planck equation

So we get

f (x)
∂ ci(x)
∂ x j

δi j = f (x)div c(x)

Step 4: Including the time-dependency
In the first three steps we have shown [ρε, ci∂i]( f )(t)→ 0 in Lβloc(R

n) for almost every
t. Now we want to show

∫ T

0










�

ρε, ci∂i

�

( f )(t)









β1

Lβloc(R
n)
→ 0

As we have convergence against 0 pointwise almost everywhere, we want to use the
dominated convergence theorem, so we need a dominating function. But the estimate
(27) of Step 1 leads exactly to










�

ρε, ci∂i

�

( f )









β1

Lβloc(R
n)
(t)≤ C‖ f ‖β1

Lr
loc(R

n)(t)‖Ïc‖β1

Lαloc(R
n)(t)

As ‖ f ‖Lr ∈ L r1([0, T]) and ‖Ïc‖Lα ∈ Lα1([0, T]) and 1
β1
= 1

r1
+ 1
α1

, this is in fact an
integrable function.

Step 5: The second commutator (25)
Here we can argue more directly:

[ρε, g]( f ) = (g f ) ∗ρε − g( fε)

As g f is in Lβloc(R
n), by the properties of the mollification we know, that the first term

goes to g f in Lβloc(R
n). So does the second term, as the following calculation leads to

(using Hölder with the pair α
β and r

β ):

‖g f − g fε‖Lβ (BR) ≤ ‖g‖Lα(BR)‖ f − fε‖Lr (BR)

which goes also to 0 by basic properties of the mollification. The time dependency is
included analog with the dominating function 2‖ f ‖Lr

loc(R
n)‖g‖Lαloc(R

n)

Remark 3.15. We proved Lemma 3.14 only for all exponents <∞. The lemma is
also valid for exponents being ∞, and the proof can be easily adapted. As we only
use it for r = r1 =∞, we only consider this case in detail (so α = β and α1 = β1).
The proof for α = β = 1 can also be found in a slightly different form in [6], Lemma
2.2.
Again we do at first the time-independent case and include the time-dependency later.
With the same steps as in Step 1 of the Lemma 3.14 we need to show

∫

BR

�

�

�

�

�

∫

B1(0)

f (x + εz)
�

ci(x + εz)− ci(x)
ε

�

∂iρ (z)dz + f (x)div c(x)

�

�

�

�

�

β

dx → 0
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The different sign compared to the calculations above is from the transformation from
y to z in the derivative ofρ. Above there was no difference because we only considered
absolute values.
Now we use dominated convergence: f and ρ are bounded, and the sequence of
difference quotients of c converges in Lβ(BR) to ∂zci (see [13], p.182, theorem 9.1.1
for the whole space, this can be easily adapted to BR as the proof works just by
an approximation with smooth functions), thus we can find an almost everywhere
convergent subsequence. f (x + εz) is the translation, and it is well known, that the
translation converges in Lp, so we can extract a subsequence converging pointwise
almost everywhere to f (so formally we use the fact, that a sequence converges if we
can extract a subsequence of every given subsequence converging to the same limit).
So we use dominated convergence and get

∫

BR

�

�

�

�

�

∫

B1(0)

f (x)∂zci(x)∂iρ (z)dz + f (x)div c(x)

�

�

�

�

�

β

dx

=

∫

BR

�

�

�

�

�

f (x)∂ jci(x)

∫

B1(0)

z j∂iρ(z)dz + f (x)div c(x)

�

�

�

�

�

β

dx

As before we have
∫

B1(0)
z j∂iρ(z)dz = −δi j, so the above term is 0.

Including the time-dependency can be done with exactly the same argument as in Step
4.
So only the second commutator (25) has to be done in the case r1 = r =∞:

∫

BR

�

�[ρε, g]( f )(x)
�

�

β
dx =

∫

BR

�

�

�

�

�

∫

Bε(x)

�

g(x)− g(y)
�

f (y)ρε(x − y)dy

�

�

�

�

�

β

dx

≤ ‖ f ‖βL∞(BR+1)

∫

BR

�

�

�

�

�

∫

Bε(x)

�

g(x)− g(y)
�

ρε(x − y)dy

�

�

�

�

�

β

dx

= ‖ f ‖βL∞(BR+1)

∫

BR

�

�g(x)− gε(x)
�

�

β
dx

This converges to zero as ε → 0 by basic properties of the mollification. The time
dependency is again included analogously.

With Lemma 3.14 we can control the error terms in (23) except Q2,ε:

Lemma 3.16. As ε→ 0 the terms Q1,ε, Sε, Tε converge strongly to 0 in L1
�

[0, T], L1
loc(R

n)
�

,
the term Rk,ε converges to 0 even in L2

�

[0, T], L2
loc(R

n)
�

.

Proof. This is just a trivial consequence of Lemma 3.14 with the regularity assumptions:

• For Q1,ε = [ρε, div(b)](p)we use the second limit (25) withα1 = α= β1 = β = 1
and r1 = r =∞
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• For Sε = [ρε,∂iσik](σ jk∂ j p) we use the second limit (25) with α1 = α = r1 =
r = 2 and β1 = β = 1

• For Tε = [ρε,σik∂i](σ jk∂ j p) we use the first limit (24) with α1 = α= r1 = r = 2
and β1 = β = 1

• For Rk,ε = [ρε,σ jk∂ j](p) we use the first limit (24) with α1 = α = β1 = β = 2
and r1 = r =∞

Lemma 3.17. We have Rk,ε ∈ L2([0, T], W 1,2
loc (R

n)), so it has first order Sobolev regularity
with respect to the spatial variables.

Proof. (see [14], Remark 2.2 for a more general version) We have

Rk,ε(x) =

∫

Rn

ρε(x − y)σ jk(y)∂ j p(y)−σ jk(x)∂ jρε(x − y)p(y)dy

=

∫

Rn

∂ jρε(x − y)σ jk(y)p(y)−ρε(x − y)∂ jσ jk(y)p(y)

−σ jk(x)∂ jρε(x − y)p(y)dy

=

∫

Rn

∂ jρε(x − y)
�

σ jk(y)−σ jk(x)
�

p(y)dy −
�

(p · ∂ jσ jk) ∗ρε
�

(x)

These expressions are all well defined functions, so it is in fact well defined to consider
Rk,ε as a function and not only as a distribution. The term (p · ∂ jσ jk) ∗ ρε is smooth,
so we check the regularity of the integral:
∫

Rn

∂ jρε(x − y)
�

σ jk(y)−σ jk(x)
�

p(y)dy =
�

(pσ jk) ∗ ∂ jρε
�

(x)−σ jk(x) · p ∗ ∂ jρε(x)

(pσ jk) ∗ ∂ jρε and p ∗ ∂ jρε are again smooth, so as σ ∈
�

L2
�

[0, T], W 1,2
loc (R

n)
�

�n×m
has

Sobolev regularity in space also Rk,ε ∈ L2
�

[0, T], W 1,2
loc (R

n)
�

.

For simplification of notation we denote

Uε = −Q1,ε +
1
2
(Sε + Tε)

So we have Uε→ 0 in L1
�

[0, T], L1
loc(R

n)
�

and (23) becomes

∂t pε + ∂i(pεbi)−
1
2
∂i(σikσ jk∂ j pε) = Uε −Q2,ε +

1
2
∂i(σikRk,ε) (28)

38



3 The Fokker-Planck equation

3.3.4 The commutator estimate of Ambrosio

For this proof we will need another commutator estimate to deal with Q2,ε. Therefore
we define Mt by Ds bt = Mt |Ds bt |

Theorem 3.18. For a n× n-Matrix M and ρ ∈ C∞c (R
n) we define

Λ(M ,ρ) =

∫

Rn

�

�

�




Mz,Ïρ(z)
�

�

�

�dz

I(ρ) =

∫

Rn

|z| · |Ïρ(z)|dz

Then for any compact K ⊂ (0, T )×Rn we get

lim sup
ε→0

∫

K

|Q2,ε|dx dt ≤ ‖p‖∞

∫

K

Λ(Mt(x),ρ)d|Ds b|(t, x) + ‖p‖∞(n+ I(ρ))|Da b|(K)

(29)

and

limsup
ε→0

∫

K

|Q2,ε|dx dt ≤ ‖p‖∞I(ρ)|Ds b|(K) (30)

Remark 3.19. Ds b is a measure on K in the following way: Defining At = {x ∈ Rn :
(x , t) ∈ A} for A⊂ K we have

Ds b(A) =

∫ T

0

Ds bt(At)dt

This is in fact well defined as b ∈
�

L1
�

[0, T], BVloc(Rn)
�

�n
. Da b is defined analogously.

Proof of Theorem 3.18. ([2], Theorem 3.2) At first we derive an identity for Q2,ε. Mind,
that the distribution bi∂i p is defined as following (for a test function ϕ and as usual
ignoring the time-dependency):

bi∂i p(ϕ) = −
∫

Rn

pbi∂iϕ −
∫

Rn

p div bϕ

With this and the definitions of the mollification of distributions of section 2.3 and the
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evenness of ρ in mind we do the following calculation:

Q2,ε(ϕ) = [ρε, bi∂i](p)(ϕ)
= ρε ∗ (bi∂i p)(ϕ)− bi∂i pε(ϕ) = bi∂i p(ρε ∗ϕ)− bi∂i pε(ϕ)

= −
∫

Rn

bi(x)p(x)∂i(ρε ∗ϕ)(x) + p(x)div b(x)ρε ∗ϕ(x)

+ bi(x)∂i pε(x)ϕ(x)dx

= −
∫

Rn

∫

Rn

bi(x)p(x)∂iρε(x − y)ϕ(y) + p(x)div b(x)ρε(x − y)ϕ(y)

+ bi(x)∂iρε(x − y)p(y)ϕ(x)dy dx

= −
∫

Rn

∫

Rn

−bi(y)p(y)∂iρε(x − y)ϕ(x) + p(y)div b(y)ρε(x − y)ϕ(x)

+ bi(x)∂iρε(x − y)p(y)ϕ(x)dy dx

=

∫

Rn

∫

Rn

p(y)
�

bi(y)− bi(x)
�

∂iρε(x − y)ϕ(x)dy dx

−
∫

Rn

∫

Rn

p(y)div b(y)ρε(x − y)ϕ(x)dy dx

=

∫

Rn

∫

Rn

p(y)
�

bi(y)− bi(x)
�

∂iρε(x − y)ϕ(x)dy dx − p div b ∗ρε(ϕ)

In the fifth = we switched x and y in the first two integrals and used the evenness
of ρ (and hence the in-evenness of ∂iρ). So Q2,ε is in fact represented by a function.
Changing variables y = x − εz leads to:

Q2,ε(x) =

∫

Rn

p(x − εz)
�

b(x − εz)− b(x)
ε

�

Ïρ(z)dz − p div b ∗ρε (31)

So now we consider lim sup
ε→0

∫

K
|Q2,ε|dx dt using the decomposition of the difference

quotient of the BV-function b of Lemma 2.5 into b1
ε

and b2
ε

(by slightly relabeling
b1
ε
(t, x , z) = (bt)

1
ε
(−z)(x) and analog with b2

ε
(t, x , z)) and defining p̃ε(t, x , z) = p(t, x−

40



3 The Fokker-Planck equation

εz) (from now on we also keep again track of the time-dependency)

limsup
ε→0

∫

K

|Q2,ε|dx dt

= lim sup
ε→0

∫

K

�

�

�

�

∫

Rn

p̃ε(b
1
ε
+ b2

ε
)Ïρ(z)dz − p(t, x)div b(t, x) ∗ρε

�

�

�

�

dx dt

≤ lim sup
ε→0

∫

K

�

�

�

�

∫

Rn

p̃εb
1
ε
Ïρ(z)dz − p(t, x)div b(t, x)

�

�

�

�

dx dt

+ lim sup
ε→0

∫

K

|p(t, x)div b(t, x) ∗ρε − p(t, x)div b(t, x)|dt dx

+ lim sup
ε→0

‖p‖∞

∫

Rn

|Ïρ(z)|
∫

K

|b2
ε
(t, x , z)|dx dt dz

We estimate these three limes superior to prove (30) first.
The second lim sup is 0 as convolutions are converging in L1 in space and then dominated
convergence in t with dominating function 2‖p‖∞‖div(x)‖1(·) in t.
The third lim sup can be estimated as following using Lemma 2.5:

lim sup
ε→0

‖p‖∞

∫

Rn

|Ïρ(z)|
∫

K

|b2
ε
(t, x , z)|dx dt dz

≤ ‖p‖∞

∫

Rn

|Ïρ(z)|
∫ T

0

|z||Ds bt(Kt)|dx dt dz

With Remark 3.19 and the definition of I this is estimated by ‖p‖∞I(ρ)|Ds b|(K), so
only the first integral remains and it remains to show

lim sup
ε→0

∫

K

�

�

�

�

∫

Rn

p̃ε(t, x , z)b1
ε
(t, x , z)Ïρ(z)dz − p(t, x)div b(t, x)

�

�

�

�

dx dt = 0

At first we leave t fixed and consider the functions p̃ε(t, ·, ·)b1
ε
(t, ·, ·) as functions in

L1
loc(R

n × Rn). We have convergence in L1
loc(R

n × Rn) to p(x)Ïbt(x)(−z), because
(again leaving away the time dependency as t is fixed for the moment)








p̃ε(x , z)b1
ε
(x , z)− p(x)Ïbt(x)(−z)










1

≤









�

p̃ε(x , z)− p(x)
�

Ïbt(x)(−z)









1
+







p̃ε(x , z)
�

b1
ε
(x , z)−Ïbt(x)(−z)

�










1

In the first norm we apply dominated convergence: We have convergence pointwise
to 0 almost everywhere and, as p and p̃ε are both bounded by ‖p‖∞ (mind that p̃ε is
only a translation of p), we have the dominating function 2‖p‖∞Ïbt(x)(−z).
The second norm also converges to 0 as p̃ε is bounded again and
‖(b1

ε
(x , z)−Ïbt(x)(−z))‖1→ 0 by Lemma 2.5.

Of course multiplying with the in ε constant, bounded function Ïρ does not change

41



3 The Fokker-Planck equation

this convergence, and the integration in t is included analogously with dominated
convergence as Lemma 2.5 gives a uniform bound, which is also bounded by an L1-
function in t. So it just remains to show:

∫

K

�

�

�

�

�

p(t, x)

�∫

Rn

∂ b j
t

∂ x i
(x)zi

∂ ρ

∂ z j
(z)dz + div b(t, x)

�

�

�

�

�

�

dx dt = 0

But this is clear by
∫

zi
∂ ρ

∂ z j
dz = −δi j by a partial integration. So (30) is shown.

Next we show (29): We start with (31), so we can estimate:

‖Q2,ε‖L1(K) ≤ ‖p‖∞

∫

Rn

∫

K

�

�

�

�

b(t, x − εz)− b(t, x)
ε

�

�

�

�

Ïρ(z)dt dx dz + ‖p‖∞‖div b‖L1(Kε)

(32)

with Kε = {x ∈ Rn|dist(x , K)< ε} the ε-neighborhood of K .
We fix z ∈ Rn and define wtz(x) = b(t, x)Ïρ(z). We estimate the first integral of (32)
using Lemma 2.2 and Kt = {x ∈ Rn|(x , t) ∈ K} and Ktε|z| the ε|z| neighborhood of Kt:

∫

K

1
ε
|wtz(x − εz)−wtz(x)|dx dt =

∫ T

0

∫

Kt

1
ε
|wtz(x − εz)−wtz(x)|dx dt

≤
∫ T

0

1
ε

�

�

�

�

�

n
∑

i=1

εzi Diwtz

�

�

�

�

�

(Ktε|z|)dt

≤
∫ T

0

�

�

�

�

�

n
∑

i=1

zi Diwtz

�

�

�

�

�

(Ktε|z|)dt

So we are interested in the distributional derivative of wtz, which is given by:

Diwtz =
∂ b j

t

∂ x i

∂ ρ

∂ z j
(z)L n + (Mt) ji

∂ ρ

∂ z j
|Ds bt | (33)

So (32) leads to:

limsup
ε→0

‖Q2,ε‖L1(K)

≤ lim sup
ε→0

‖p‖∞

∫

Rn

∫ T

0

�

�

�

�

�

n
∑

i=1

zi Diwtz

�

�

�

�

�

(Ktε|z|)dt dz + lim sup
ε→0

‖p‖∞‖div b‖L1(Kε)

By basic properties of measure theory lim sup
ε→0

‖p‖∞‖div b‖L1(Kε) = ‖p‖∞‖div b‖L1(K).

Also in the first integral we can apply dominated convergence, as the integral in z is
in fact only on the support of ρ and not on the whole Rn, thus we have an integrable
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dominating function as wtz ∈ BVloc with a norm which is bounded in z. Thus we can
replace Ktε|z| by Kt . So we have, using (33)

lim sup
ε→0

‖Q2,ε‖L1(K)

≤ ‖p‖∞

∫

Rn

∫ T

0

�

�

�

�

�

zi

�

∂ b j
t

∂ x i

∂ ρ

∂ z j
(z)L n + (Mt) ji

∂ ρ

∂ z j
|Ds bt |

�

�

�

�

�

�

(Kt)dt dz + ‖p‖∞‖div b‖L1(K)

≤ ‖p‖∞

∫

Rn

∫ T

0

∫

Kt

�

�

�

�

�

zi
∂ b j

t

∂ x i

∂ ρ

∂ z j
(z)

�

�

�

�

�

dx dt dz

+ ‖p‖∞

∫

Rn

∫ T

0

∫

Kt

�

�

�

�

zi(Mt) ji
∂ ρ

∂ z j

�

�

�

�

d|Ds bt |(x)dt dz + ‖p‖∞‖div b‖L1(K)

≤ ‖p‖∞

∫

Rn

∫

K

|z||Ïbt ||Ïρ(z)|dx dt dz + ‖p‖∞

∫

Rn

∫

K

�

�〈Mt(x)z,Ïρ(z)〉
�

�d|Ds b|(t, x)dz

+ ‖p‖∞‖div b‖L1(K)

= ‖p‖∞I(ρ)

∫

K

|Ïbt(x)|dx dt + ‖p‖∞

∫

K

Λ(Mt(x),ρ)d|Ds b|(t, x) + ‖p‖∞‖div b‖L1(K)

= ‖p‖∞

∫

K

Λ(Mt(x),ρ)d|Ds b|(t, x) + ‖p‖∞I(ρ)|Da b|(K) + ‖p‖∞‖div b‖L1(K)

As ‖div b‖L1(K) ≤ n|Da b|(K) (because
∂ b j

x i
is the density of Da b with respect to the

Lebesgue-measure), the proof is finished.

3.3.5 Proof of the renormalization assumption

Now we have all the tools to prove the renormalization property:
pε is smooth in the spatial variables and by (28) (using the regularity assumptions
on b and σ and of Lemma 3.16) we know that ∂t pε ∈ L1

loc

�

[0, T] × Rn
�

, as Rk,ε ∈
L2
�

[0, T], W 1,2
loc (R

n)
�

by Lemma 3.17. So pε ∈W 1,1
loc ([0, T]×Rn). Hence we can do the

calculations at the beginning of section 3.3.1 now rigorously for pε instead of p using
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the chain rule for Sobolev-functions:

∂tβ(pε) + ∂i(β(pε)bi)−
1
2
∂i

�

σikσ jk∂ jβ(pε)
�

= β ′(pε) · ∂t pε + β
′(pε)∂i pεbi + β(pε)div(b)−

1
2
∂i(σikσ jkβ

′(pε)∂ j pε)

= β ′(pε) · ∂t pε + β
′(pε)∂i pεbi + β(pε)div(b)−

1
2
β ′(pε)∂i(σikσ jk∂ j pε)

−
1
2
σikσ jk∂ j pεβ

′′(pε)∂i pε

= β ′(pε)
�

∂t pε + ∂i pεbi −
1
2
∂i(σikσ jk∂ j pε)

�

+ β(pε)div(b)−
1
2
β ′′(pε)σikσ jk∂ j pε∂i pε

= β ′(pε)
�

∂t pε + ∂i pεbi + pε div b−
1
2
∂i(σikσ jk∂ j pε)

�

︸ ︷︷ ︸

=Uε−Q2,ε+
1
2 ∂i(σikRk,ε) by (28)

−β ′(pε)pε div(b) + β(pε)div(b)

−
1
2
β ′′(pε)|σ∗Ïpε|2

So we have in a distributional sense:

∂tβ(pε) + ∂i(β(pε)bi)−
1
2
∂i

�

σikσ jk∂ jβ(pε)
�

−
�

β(pε)− pεβ
′(pε)

�

div(b)

+
1
2
β ′′(pε)|σ∗Ïpε|2 = β ′(pε)

�

Uε −Q2,ε +
1
2
∂i(σikRk,ε)

�

(34)

Theorem 3.20. Let b,σ be as in Theorem 3.2. Then a weak solution in the sense of
definition 3.1 is always a renormalized solution.

Proof. [14], Theorem 2.5: We take (34) and let ε → 0, so we need to check the
behavior of all terms in (34) as distributions. For the argumensts we will often need
Lemma 2.10, and, to use this, that β(pε) − β(p) converges to 0 and is uniformly
bounded in ε. This holds because pε→ p in measure (Lp-convergence implies convergence
in measure) and Lemma 2.9, as pε are uniformly bounded by ‖p‖∞ and β ∈ C2(R),
so the analog statement also holds for β ′(pε) and β ′′(pε):

Step 1: ∂tβ(pε)→ ∂tβ(p)
So we have to show

∫ T

0

∫

Rn

�

β(pε)− β(p)
�

· ∂tϕ→ 0

and
∫

Rn

�

β(pε)|t=0 − β(p)|t=0

�

ϕ|t=0→ 0

for a test function ϕ. This is both clear by Lemma 2.10, for the first integral we have
the convergence at first pointwise for a fixed t and then by the dominated convergence
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theorem, as β(pε)− β(p) is also bounded in t, so we have an integrable dominating
function.

Step 2: ∂i(β(pε)bi)→ ∂i(β(p)bi)

So
∫ T

0

∫

Rn

�

β(pε)− β(p)
�

· bi · ∂iϕ→ 0

which is clear again by Lemma 2.10 and dominated convergence in t, as b ∈ L1
loc, so

b ·Ïϕ ∈ L1.

Step 3: ∂i

�

σikσ jk∂ jβ(pε)
�

→ ∂i

�

σikσ jk∂ jβ(p)
�

We have (by using σ∗Ïβ(p) = β ′(p) ·σ∗Ïp by Lemma 3.6)

−
∫ T

0

∫

Rn

ϕ∂i

�

σikσ jk∂ jβ(pε)
�

−ϕ∂i

�

σikσ jk∂ jβ(pε)
�

=

∫ T

0

∫

Rn




σ∗Ïϕ,σ∗Ïβ(pε)−σ∗Ïβ(p)
�

=

∫ T

0

∫

Rn




σ∗Ïϕ,β ′(pε)σ
∗Ïpε − β(p)σ∗Ïp

�

=

∫ T

0

∫

Rn

�

β ′(pε) + β
′(p)

�

· 〈σ∗Ïϕ,σ∗Ïpε −σ∗Ïp〉

+

∫ T

0

∫

Rn

β ′(pε) 〈σ∗Ïϕ,σ∗Ïp〉

−
∫ T

0

∫

Rn

β ′(p) 〈σ∗Ïϕ,σ∗Ïpε〉

So again we have to check the three integrals:

•
∫ T

0

∫

Rn

�

β ′(pε)+β ′(p)
�

·〈σ∗Ïϕ,σ∗Ïpε −σ∗Ïp〉 → 0 by using the uniform boundedness
of β ′(pε) + β ′(p), the Cauchy-Schwarz inequality and Lemma 3.4, by which
σ∗Ïpε −σ∗Ïp→ 0 in L2

�

[0, T], L2
loc

�

.

•
∫ T

0

∫

Rn β
′(pε) 〈σ∗Ïϕ,σ∗Ïp〉 →

∫ T

0

∫

Rn β
′(p) 〈σ∗Ïϕ,σ∗Ïp〉 by Lemma 2.10 and

dominated convergence in t

•
∫ T

0

∫

Rn β
′(p) 〈σ∗Ïϕ,σ∗Ïpε〉 →

∫ T

0

∫

Rn β
′(p) 〈σ∗Ïϕ,σ∗Ïp〉 by the strong convergence

of Lemma 3.4
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Step 4: β(pε)div(b)→ β(p)div(b)
So

∫ T

0

∫

Rn

�

β(pε)− β(p)
�

· div(b)ϕ→ 0

which is again clear by Lemma 2.10 and dominated convergence in t, as div(b) ∈ L1
loc,

so div(b)ϕ ∈ L1.

Step 5: pεβ
′(pε)div(b)→ pβ ′(p)div(b)

Here we have to show
∫ T

0

∫

Rn

�

pεβ(pε)− pβ(p)
�

· div(b)ϕ→ 0

Again, we reduce it to the spatial problem and use dominated convergence, so it
suffices to show

∫

Rn

�

pεβ(pε)− pβ(p)
�

· div(b)ϕ→ 0

for fixed t. We have
∫

Rn

�

pεβ(pε)− pβ(p)
�

· div(b)ϕ =

∫

Rn

(pε − p)
�

β(pε) + β(p)
�

· div(b)ϕ

+

∫

Rn

pβ ′(pε)div(b)ϕ

−
∫

Rn

pεβ
′(p)div(b) ·ϕ

So we check the three integrals:

•
∫

Rn (pε − p)
�

β(pε)+β(p)
�

·div(b)ϕ ≤ ‖β ′(pε)+β ′(p)‖∞
∫

sptϕ
|pε−p|div(b)→ 0

according to the dominated convergence theorem, as pε → p pointwise almost
everywhere and as pε is bounded

•
∫

Rn pβ ′(pε)div(b)ϕ→
∫

Rn pβ ′(p)div(b)ϕ as in Step 4 after taking ‖p‖∞ out of
the integral

•
∫

Rn pεβ
′(p)div(b)·ϕ→

∫

Rn pβ ′(p)div(b)·ϕ again with dominated convergence.

So the sum converges to 0, which was to show.

Step 6: β ′′(pε)|σ∗Ïpε|2→ β ′′(p)|σ∗Ïp|2
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So we have to show:
∫ T

0

∫

Rn

�

β ′′(pε)|σ∗Ïpε|2 − β ′′(p)|σ∗Ïp|2
�

ϕ→ 0

Again we reduce it to a spatial problem and estimate:
∫

Rn

�

β ′′(pε)|σ∗Ïpε|2 − β ′′(p)|σ∗Ïp|2
�

ϕ =

∫

Rn

�

β ′′(pε) + β
′′(p)

� �

|σ∗Ïpε|2 − |σ∗Ïp|2
�

ϕ

+

∫

Rn

β ′′(pε)|σ∗Ïp|2ϕ

−
∫

Rn

β ′′(p)|σ∗Ïpε|2ϕ

In the three integrals we have

•
∫

Rn

�

β ′′(pε) + β ′′(p)
� �

|σ∗Ïpε|2 − |σ∗Ïp|2
�

ϕ → 0 by the strong convergence of
|σ∗Ïpε|2 to |σ∗Ïp|2 by Lemma 3.4 and as β ′′(pε) + β ′′(p) and ϕ are bounded.

•
∫

Rn β
′′(pε)|σ∗Ïp|2ϕ→

∫

Rn β
′′(p)|σ∗Ïp|2ϕ by Lemma 2.10

•
∫

Rn β
′′(p)|σ∗Ïpε|2ϕ→

∫

Rn β
′′(p)|σ∗Ïp|2ϕ by the strong convergence of |σ∗Ïpε|2

to |σ∗Ïp|2 by Lemma 3.4

Step 7: β ′(pε)Uε→ 0
We have

∫ T

0

∫

Rn

β ′(pε)Uεϕ ≤ sup
ε>0
‖β ′(pε)‖∞

∫ T

0

∫

sptϕ

|Uε| → 0

as Uε→ 0 in L1
�

[0, T], L1
loc(R

n)
�

according to Lemma 3.16.
Step 8: β ′(pε)Q2,ε→ 0
As this step is more complicated than the others, it is done in the following Lemma
3.21

Step 9: β ′(pε)∂i(σikRk,ε)→ 0
By partial integration and the product rule Ï(β ′(pε)ϕ) = β ′(pε)Ïϕ+β ′′(pε)Ïpεϕ we
have to consider at first the integral

∫ T

0

∫

Rn

β ′(pε)〈σ∗Ïϕ, Rε〉 ≤ ‖β ′‖∞‖Ïϕ‖∞

∫ T

0

∫

sptϕ

|σ||Rε|

≤ ‖β ′‖∞‖Ïϕ‖∞

∫ T

0

‖σ|sptϕ‖2‖Rε‖2→ 0
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by Lemma 3.16.
The other integral we have to estimate is the following:

∫ T

0

∫

Rn

ϕβ ′′(pε)〈σ∗Ïpε, Rε〉 ≤ ‖ϕ‖∞‖β ′′(pε)‖∞

∫ T

0

∫

Rn

〈σ∗Ïpε, Rε〉

≤ ‖ϕ‖∞‖β ′′(pε)‖∞

∫ T

0

‖σ∗Ïpε‖2‖Rε‖2→ 0

again by Lemma 3.16 and Lemma 3.4.

Lemma 3.21. We have the convergence β ′(pε)Q2,ε→ 0 in the distributional sense.

Proof. ([14][p.6] und [2][p. 241]) At first we fix the convolution kernelρ, from which
Q2,ε depends. By Theorem 3.18 we know, that |Q2,ε| as a function of ε is bounded in
L1

loc((0, T )×Rn), thus also |β ′(pε)Q2,ε| is bounded. We can consider them as Radon-
measures. So, by the Riesz-Markov Representation theorem, we can also see them
as elements of the dual space of Cc((0, T )×Rn), which is a separable Banach space.
So we have a bounded sequence in the dual space of a separable Banach space and
can pick a weakly-∗-convergent subsequence to some measure Qρ. This measure is in
fact indepent of ρ, because in the proof of Theorem 3.20 we have already seen, that
all other terms except β ′(pε)Q2,ε in (34) converge in a distributional sense to terms
independent of ρ. So lets set Q :=Qρ. Of course we want to show Q = 0.
For a test function ϕ ∈ Cc((0, T )×Rn), which we insert in the measure Q and using
Theorem 3.18 (extended to inserting test functions instead of compact subsets by
monotone convergence), we have:

Q(ϕ) = lim
ε→0

∫

(0,T )×Rn

|β ′(pε)Q2,ε|ϕ dx dt

≤ ‖β ′(pε)‖∞ lim sup
ε→0

∫

(0,T )×Rn

|Q2,ε|ϕ dx dt

≤ ‖β ′(pε)‖∞‖p‖∞I(ρ)|Ds b|(ϕ)

Thus Q is absolutely continuous with respect to |Ds b| and we can define g as the
Radon-Nikodym density of Q with respect to |Ds b|, so we have

Q(K) =

∫

K

g(t, x)d|Ds b|(t, x)

for any compact K .
Thus we get, this time with the first estimate of Theorem 3.18:
∫

K

g(t, x)d|Ds b|(t, x) =Q(K)≤ ‖β ′(pε)‖∞

�

limsup
ε→0

∫

K

|Q2,ε|dx dt

�

≤ ‖β ′(pε)‖∞‖p‖∞

∫

K

Λ(Mt(x),ρ)d|Ds b|(t, x) + ‖β ′(pε)‖∞‖p‖∞(n+ I(ρ))|Da b|(K)
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This holds for arbitrary compact sets K , so we can especially choose |Da b|-null-sets,
and, as |Ds b| and |Da b| are singular, we hence get with C = ‖β ′(pε)‖∞‖p‖∞

g(t, x)≤ CΛ(Mt(x),ρ)

for |Ds b|-almost-every (t, x) and for every convolution kernel ρ.
Let D be a countable dense subset of the set of convolution kernels with respect to the
W 1,1-norm (which is separable). So we have

g(t, x)≤ C inf
ρ∈D
Λ(Mt(x),ρ)

for |Ds b|-almost-every (t, x). From the definition of Λ we get that the mapping ρ →
Λ(Mt(x),ρ) is continuous for fixed (x , t), thus we have

inf
ρ∈D
Λ(Mt(x),ρ) = inf

ρ
Λ(Mt(x),ρ)

where the right infimum is taken with respect to all convolution kernels. But this
infimum is 0, as Mt(x) has rank one |Ds b| almost everywhere by Theorem 2.6 and
for such a matrix the infimum of Λ is 0 by Lemma 2.21. So g = 0 |Ds b|-almost-
everywhere, thus Q = 0 and β ′(pε)Q2,ε→ 0 in the distributional sense.

Remark 3.22. Taking the countable dense subset in the proof of Lemma 3.21 was
necessary because the uncountable infimum of measurable functions does need need
to be measurable anymore, so speaking about inequalities |Ds b|-almost everywhere,
which contain inf

ρ
Λ(Mt(x),ρ) directly is not well defined (see also [6], Theorem 3.6

for this subtility from another point of view).
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4 Summary

After the introduction in section 1 we collected some analytic tools used later in various
proofs in section 3. At first some properties on BV-functions, mainly the theorem
on difference quotients (Lemma 2.5) and Albertis rank-one theorem (Theorem 2.6).
Then we proved some convergence lemmata, especially on convergence in measure
and defined the convolution of distributions. After this we had a distributional form
of Gronwalls inequality (Lemma 2.17), Youngs inequality and a Lemma of Bouchut.
In Section 3 we started considering the actual topic of this thesis, the fokker-planck-
equation with BV-drift. The main theorem is Theorem 3.2. In the definition of weak
solutions we had the term σ∗Ïp, which is a priori not well defined because p is only
assumed to be in Lp. Hence there is a weak definition of this term (Remark 3.3).
Section 3.1 deals with all problems arising in this context.
Then we proven existence of solutions with an approximation-ansatz using some a-
priori-estimates (Theorem 3.7 and Lemma 3.8).
Then the main part of the thesis started, the proof of uniqueness of solutions using the
theory of renormalized solutions and commutator estimates.
At first we assumed the renormalization assumption and proved uniqueness under
this assumption (Theorem 3.11). Then we defined commutators (Definition 3.12)
and proved the commuator estimates from the DiPerna and Lions (Lemma 3.14) and
from Ambrosio (Theorem 3.18)
Both were used to prove then the renormalization assumption (Theorem 3.20)
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