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Motivation and Introduction
I Background An important inverse problem arising in scientific computing is the

identification of moving pollution sources in fluids that can be described by
diffusion-advection systems. Such kind problems can be mathematically modeled by
initial source identification problems of diffusion-advection systems, where the initial
source is assumed to be sparse, i.e., its support is zero in Lebesgue measure.

I Diffusion-advection equation. Let Ω ⊂ RN with N ≥ 1 be a bounded domain
and ∂Ω its boundary. Consider the linear diffusion-advection equation:

∂tu− d∆u + v · ∇u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) in Ω,

(1)

where 0 < T < +∞, d > 0, and v ∈ RN . We further assume that

u0(x) =

l∑
i=1

αiδx(xi),

where {αi}li=1 ∈ Rl and xi ∈ Ω, 1 ≤ i ≤ l, are the intensities and locations,
respectively, with 1 ≤ l < +∞ the number of locations. The Dirac measure δx(xi) is
defined by δx(xi) = 1 if x = xi, and δx(xi) = 0 otherwise.

I Sparse Initial Source Identification Problem. Consider the diffusion-advection
equation (1). Let uT be a given or observed function. We aim at identifying an
initial condition û∗0 satisfying

û∗0(x) =

l∑
i=1

α̂∗i δx(x̂
∗
i ) with α̂∗i ∈ R, x̂∗i ∈ Ω

such that the corresponding final state û∗(·;T ) of (1) is close to uT , in the sense
that for ε > 0 arbitrary small we have

‖û∗(·;T )− uT‖L2(Ω) ≤ ε, a.e in Ω.

I Our numerical approach It is well-known that the sparse initial source
identification problem is exponentially ill-posed and thus challenging to design some
efficient numerical algorithms for solving it. We propose a new two-stage numerical
approach consisting of a sparsity promotion stage and a structure enhancement stage.

Sparsity Promotion Stage
I Optimal control problem. We formulate the sparse initial source identification

problem as the following optimal control problem:

u∗0 = arg min
u0∈L2(Ω)

=
1

2

∫
Ω

|u(·, T )− uT |2 dx +
τ

2

∫
Ω

|u0|2 dx + β

∫
Ω

|u0| dx, (2)

I u(·, T ) is the final state of equation (1) corresponding to u0, the constants τ > 0 and β > 0 are
regularization parameters;

I the first term 1
2

∫
Ω |u(·, T )− uT |2 dx seeks for an initial condition u0 such that the corresponding

u(·, T ) is as close as possible to uT ;
I the L1-regularization term promotes the sparsity of u0;
I the L2-regularization term is introduced to guarantee the well-posedness while improving the

conditioning of the optimal control problem.

I For solving (2), we introduce a generalized primal-dual algorithm. The main
computation at each iteration is solving only two PDEs. Hence, its implementation is
easy and computationally cheap; its strong global convergence and worst-case
convergence rate are also analyzed.

I Due to the presence of the L2-regularization term and its smoothing property, the
recovered initial condition u∗0 by solving (2) is not sparse as desired (see the results
reported below). Hence, a structure enhancement stage is necessary to identify the
optimal locations {x̂∗i}li=1 and the intensities {α̂∗i}li=1.

Figure: Numerical results by solving (2) with T = 0.01, d = 1, v = (0, 0)>, τ = 10−2 and β = 3× 10−1

(a) Reference initial datum û0 (b) Recovered initial datum u∗0

Structure Enhancement Stage
I Optimal locations identification. It was shown in [4] that the local maxima of
|u∗0(x)| fall into the optimal locations. Consequently, one can identify the optimal
locations x̂∗ by solving

x̂∗ = arg max
x∈supp(u∗0)

|u∗0(x)|, (3)

where we denote by supp(u∗0) the support of u∗0.

I Optimal intensities identification. Since equation (1) is linear, the
corresponding solution operator L verifies Lu0 =

∑l
i=1αiLδx(xi), for any

u0(x) =
∑l

i=1αiδx(xi) with αi ∈ R and xi ∈ Ω. To find the optimal intensities , it
is sufficient to consider the following least squares problem:

{α̂∗i}li=1 = arg min
{αi}li=1∈Rl

1

2

∥∥∥∥∥∥
l∑
i=1

αiLδx(x̂∗i )− uT

∥∥∥∥∥∥
2

L2(Ω)

. (4)

With the computed locations {x̂∗i}li=1 and intensities {α̂∗i}li=1, the recovered initial source
is thus given by

û∗0 =

l∑
i=1

α̂∗i δx(x̂
∗
i ).

Numerical Results

Figure: Numerical results for d = 0.08 on Ω1 = (0, 1)× (0, 1), d = 0.05 on Ω2 = (1, 2)× (0, 1), v = (1, 2)>

on Ω, and a reachable target uT at T = 0.1.

(a) Reference initial state (b) Reachable target uT (c) Recovered initial state (d) Recovered final state

Figure: Numerical results for d = 0.05 on Ω, v = (0, 0)> on Ω1 = (0, 1)× (0, 1), v = (0,−3)> on
Ω2 = (1, 2)× (0, 1)), and a noisy observation uT at T = 0.1.

(a) Reference initial state (b) Noisy observation uT (c) Recovered initial state (d) Recovered final state

Figure: Numerical results for d = 0.05, v = (2,−2)> on Ω, and a reachable target uT at T = 1.

(a) Reference initial datum û0 (b) Reference final state uT (c) Recovered initial datum û∗0 (d) Recovered final state u(T )

Figure: Numerical results for d = 0.05 and v = (0, 0)> on Ω, and a reachable target uT at T = 1.

(a) Reference initial state (b) Reachable target uT (c) Recovered initial state (d) Recovered final state

Conclusions and Perspectives
I Conclusions

I When the final time T is small (e.g., T = 0.1), the initial sources from reachable targets or noisy
observations were efficiently and accurately identified by our proposed two-stage numerical
approach, even for some heterogeneous materials or coupled models.

I When the final time T gets larger (e.g., T = 1), the problem becomes increasingly ill-posed, and
the sparse initial source may not be identified correctly. We observe that the admissible final time,
for which the sparse initial source can be identified accurately, varies from case to case.

I Perspectives
I Design novel and efficient algorithms allowing to address the sparse initial source identification of

advection-diffusion systems in some relatively longer time horizons.
I Address a complete analysis of the maximum admissible final time, for which the sparse initial

source can still be accurately identified.
I Discuss the optimal combination of the L2- and L1-regularization parameters.
I Design algorithms for the sparse initial source identification of equations that are nonlinear or

modeled on more complicated geometries.
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