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Motivation and applications
» Main applications:

» traffic flow: adjusting velocity of flow at a current location based on the foregoing traffic
situation.
» chemical engineering: growing of particles depending on the surface area or concentration
of synthesized products.
» Temporal development of the state in the given spatial variables (also in the broad sense)
depending on the information on the whole considered domain.
» Further applications: crowd dynamics, pedestrian flow, sedimentation processes, opinion
formation, supply chains, etc.

Mathematical models: NLCL on R". ..
For (t,x) € (0,T) x R", n € N>y and T € R+

alt, )+ dive (A Wlg, 7, Al|(t, 2)a(t, ) = h(t. @) + g(t @)q(t, )
Q(Ov (E) — C]()<$)
Wi Alta) = [ t.ayalty)dy
| A(t)
Awl|(t,x) = ANw(t,x),t,x)

Description of terms

» ¢: traffic density, particle size distribution (PSD), etc.

» ¢o: initial datum.

» )\: velocity function, growth function (in particle synthesis).

» IV: nonlocal impact (look ahead behavior, mass of particles, etc.).

» ~: nonlocal weight.

» ¢: damping term (rate of vehicles on highway exits, outflow rate of particles, etc.).
» h: further source/sink term (vehicles on highway access, inflow of new nuclei, etc.).
» A: nonlocal integration area. For K € R be A € C(|0,T]; #}) with

My ={Bc.n":H" ' (0B) <K}
and .#" the set of all Lebesgue measurable subsets in R" which are bounded or whose
complement is bounded.
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Figure 1: Graphical illustration of the nonlocal impact. Here, the speed of a generic cuboid moving in diagonal
direction linearly depends on the partial volume of the cuboid located over the gray area. The motion can be
described by an appropriate NLCL. Left: Development from the top. Remaining: Development from the side

(cf. [3]).

...and on bounded domains in R
For (t,z) € (0,T) x (0,1), and T" € R

q(t,x) = —0, ()\ [W[q, v,%]} (t,x)q(t, :1:))

Q(Ov SE) — C]()(SE)
AW lg, v, %)) (£, 0)q(t,0) = AW (g, v, y)] (£, 0)u(t)

Wlg, v, v|(t,z) = /Hn Yo(t, 2, ) (<

Further explanations and comments

» 7): nonlocal reach (view horizon).

» u: boundary datum (inflow of new vehicles at beginning of road).

» Integration area in nonlocal term depending on z.

» Nonnegative velocity function A. Thus, upper boundary condition more general than
assuming ¢(t,0) = u(t) and no boundary condition in x = 1 to be prescribed. However, v
determining the velocity of the outflow represents a kind of “boundary condition”.
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Figure 2: Simulation of different traffic scenarios with Greenshields’ flux function A|w| = 1 — w, v representing
traffic lights on the right end, green only for £ € (1,2) U (3,4), and a given ~,. From left to right:

(qoau) — (17%1>' (Qo,u) — (Ov i)' (QO7U> — (17 1 — U) and <QO7u) — <O7 1 — ?J) (Cf [4])

Analytical properties

» No fully local behavior anymore, i.e., solution has to be known on the nonlocal integration
area to process In time.

» Still finite propagation of mass but infinite information flow.

» None of the usual existence results (Kruzkov, etc.) applicable.

» Existence of weak solutions provable by a fixed-point argument in the nonlocal term.

» No Entropy condition required for uniqueness.

» Additional conditions on data can guarantee existence of solution on any finite time horizon
(maximum principle, etc.).

» No smoothing of solutions (as with KruZkov, i.e., in contrast to the regularizing effect to
solutions of local conservation laws for positive times), thus preservation of regularity.

» IBVP: very good approximation of the Lighthill-Whitham—Richards traffic flow model,
significantly more reasonable due to the look ahead behavior.

Optimal control in chemical engineering

» Optimization of cost functionals depending on the solution of NLCL.

» Controls as time-dependent process conditions: temperature profiles, inflow/outflow rates,...

» Cost functionals: minimizing the difference between the resulting particle size distribution
(PSD) and a target PSD, minimizing the relative standard deviation, maximizing the yield, ...

» Model- and gradient-based optimization possible due to a differentiable numerical scheme.
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Figure 3: Final time L*-tracking of fluidized bed spray granulation process with monomodal initial datum and
bimodal target by adjusting process temperature and inflow rate. From left to right: optimization of controls for

different degrees of freedom d, final PSD and top view of temporal development of the solution (cf. [6]).

Ongoing and further research

» Convergence of solutions of NLCL to local conservation laws (see the poster The singular
limit of nonlocal conservation laws to local conservation laws by Coclite et al. and [1]).

» NLCL incorporating time delays for encoding data, e.g., of routing apps.

» NLCL with feedback terms for synthesis processes with residence time distribution reactors.

» Nonlocal (non mass preserving) transport equations.
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