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Motivation and applications
I Main applications:
I traffic flow: adjusting velocity of flow at a current location based on the foregoing traffic

situation.
I chemical engineering: growing of particles depending on the surface area or concentration

of synthesized products.
I Temporal development of the state in the given spatial variables (also in the broad sense)

depending on the information on the whole considered domain.
I Further applications: crowd dynamics, pedestrian flow, sedimentation processes, opinion

formation, supply chains, etc.

Mathematical models: NLCL on Rn. . .
For (t,x) ∈ (0, T )× Rn, n ∈ N≥1 and T ∈ R>0

qt(t,x) + divx

(
λ
[
W [q, γ,A]

]
(t,x)q(t,x)

)
= h(t,x) + g(t,x)q(t,x)

q(0,x) = q0(x)

W [q, γ,A](t,x) :=
∫∫
A(t)

γ(t,x,y)q(t,y) dy

λ[w](t,x) := λ(w(t,x), t,x).

Description of terms

I q: traffic density, particle size distribution (PSD), etc.
I q0: initial datum.
I λ: velocity function, growth function (in particle synthesis).
I W : nonlocal impact (look ahead behavior, mass of particles, etc.).
I γ: nonlocal weight.
I g: damping term (rate of vehicles on highway exits, outflow rate of particles, etc.).
I h: further source/sink term (vehicles on highway access, inflow of new nuclei, etc.).
I A: nonlocal integration area. For K ∈ R>0 be A ∈ C([0, T ];M n

K) with

M n
K := {B ∈ M n : Hn−1(∂B) ≤ K}

and M n the set of all Lebesgue measurable subsets in Rn which are bounded or whose
complement is bounded.
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Figure 1: Graphical illustration of the nonlocal impact. Here, the speed of a generic cuboid moving in diagonal
direction linearly depends on the partial volume of the cuboid located over the gray area. The motion can be
described by an appropriate NLCL. Left: Development from the top. Remaining: Development from the side
(cf. [3]).

. . . and on bounded domains in R
For (t, x) ∈ (0, T )× (0, 1), and T ∈ R>0

qt(t, x) = −∂x
(
λ
[
W [q, v, γη]

]
(t, x)q(t, x)

)
q(0, x) = q0(x)

λ
[
W [q, v, γη]

]
(t, 0)q(t, 0) = λ

[
W [q, v, γη]

]
(t, 0)u(t)

W [q, v, γη](t, x) :=

∫ x+η

x

γη(t, x, y)

({
q(t, y) y ∈ (0, 1)

v(t, y) else

)
dy

Further explanations and comments

I η: nonlocal reach (view horizon).
I u: boundary datum (inflow of new vehicles at beginning of road).
I Integration area in nonlocal term depending on x.
I Nonnegative velocity function λ. Thus, upper boundary condition more general than

assuming q(t, 0) = u(t) and no boundary condition in x = 1 to be prescribed. However, v
determining the velocity of the outflow represents a kind of “boundary condition”.

Figure 2: Simulation of different traffic scenarios with Greenshields’ flux function λ[w] ≡ 1− w, v representing
traffic lights on the right end, green only for t ∈ (1, 2) ∪ (3, 4), and a given γη. From left to right:
(q0, u) = (1, 14), (q0, u) = (0, 14), (q0, u) = (1, 1− v) and (q0, u) = (0, 1− v) (cf. [4]).

Analytical properties
I No fully local behavior anymore, i.e., solution has to be known on the nonlocal integration

area to process in time.
I Still finite propagation of mass but infinite information flow.
I None of the usual existence results (Kružkov, etc.) applicable.
I Existence of weak solutions provable by a fixed-point argument in the nonlocal term.
I No Entropy condition required for uniqueness.
I Additional conditions on data can guarantee existence of solution on any finite time horizon

(maximum principle, etc.).
I No smoothing of solutions (as with Kružkov, i.e., in contrast to the regularizing effect to

solutions of local conservation laws for positive times), thus preservation of regularity.
I IBVP: very good approximation of the Lighthill–Whitham–Richards traffic flow model,

significantly more reasonable due to the look ahead behavior.

Optimal control in chemical engineering
I Optimization of cost functionals depending on the solution of NLCL.
I Controls as time-dependent process conditions: temperature profiles, inflow/outflow rates,...
I Cost functionals: minimizing the difference between the resulting particle size distribution

(PSD) and a target PSD, minimizing the relative standard deviation, maximizing the yield,...
I Model- and gradient-based optimization possible due to a differentiable numerical scheme.
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Figure 3: Final time L2-tracking of fluidized bed spray granulation process with monomodal initial datum and
bimodal target by adjusting process temperature and inflow rate. From left to right: optimization of controls for
different degrees of freedom d, final PSD and top view of temporal development of the solution (cf. [6]).

Ongoing and further research
I Convergence of solutions of NLCL to local conservation laws (see the poster The singular

limit of nonlocal conservation laws to local conservation laws by Coclite et al. and [1]).
I NLCL incorporating time delays for encoding data, e.g., of routing apps.
I NLCL with feedback terms for synthesis processes with residence time distribution reactors.
I Nonlocal (non mass preserving) transport equations.
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