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Introduction Numerical example

Stochastic optimization techniques such as the Random Batch Method (RBM) are well-established and The temperature in the space & = (&1,&,&3) € [-L, L is

widely used in modern intelligent systems such as search engines, recommendation software, and speech modeled by the heat equation 1 = Ay. Our aim is to keep the Considered spatial domain

and image recognition platforms [1]. temperature on Sy, = {£3 = L} (the orange surface in the
The RBM has also been applied to the simulation and optimization of interacting particle systems where it figure) close to zero by applying a uniform heat load -

leads to a significant reduction in computational cost [2,3]. Inspired by these results, we consider here a —Oy(t, €)/0& = ult) on S| = {& = —L} (the green surface

stochastic method to speed up the simulation and optimization of large-scale linear dynamical systems. in the figure). Zero Neumann boundary conditions are applied

Onpti | | except on S|. For simplicity, the control u(t) is taken ¢ 2L
pria corro independent of space. The initial condition is

In a classical control problem, the aim is to find the optimal control u*(¢) that minimizes y(0,§) = exp(—|£\2/(8[,2)) and the cost functional is taken as 1 i%ﬁ
T T T 52 2L
7= [ ((@lt) = 2a®) T Qlatt) ) + ult) Ru(t)) (1) 7= [ [ v agaiot [Cuw? . o
0 top

on a finite time interval |0, T'| subject to the dynamics The time horizon is T' = 2 and L = 1.5. A finite difference discretization on a uniform rectangular grid with
#(t) = Az(t) + Bu(t), (0) = x;, 2) N =313 = 29,791 nodes results in a system of the form (1)—(2). The time grid is uniform with stepsize h.

Observe that the matrix A can be written as the sum of interaction matrices A;; of the form
where z(t) € RY is the state, u(t) € RY is the control, z4(t) is a given desired trajectory, and @ = 0,

el AL a1 RTINS O

R >0, A, and B are constant matrices. Without loss of generality, we can assume that ¢ < V. AZ] i,] = AU J»l = AEZ AZ] 4, 7] AU 1] N (10)

It is well known that the problem (1)=(2) has a unique solution u* € L?(0, T; RY). where ¢ and 7 are adjacent nodes in the spatial grid with spacing A. The set of 86,490 interaction

However, computing ©* can be challenging because (2) and the corresponding adjoint equation need to be matrices A;; is randomly partitioned into M subsets of approximately equal size. Each submatrix Ay, is

solved several times and each time step typically has a computational complexity of O(Ng). the sum of the interaction matrices A;; in one subset. Note that this construction assures that (3) holds.

Especially when N is large, finding u«*(¢) is computationally demanding. The probabilities py are chosen as py = 1/M when Sy = {m} for some m € {1,2,..., M} and py =0

otherwise. It follows that 7, = 1/M. Note that Ay(t) = A when M = 1.

Stochastic simulation and optimization method We present numerical results for two situations. Situation | illustrates the convergence result (7) for the
solution x,(t) of the forward dynamics (6) with u;, () = 0. Situation Il illustrates the convergence result

>tep 1 Decompose the matrix A into submatrices Ay, as (8) for the control u; (t) that minimizes the cost .J;, in (5). In both cases, zj(t) and u;(f) are computed

M for 10 different realizations of the sets Sf(k) (but for the same decomposition of A into submatrices A,,).
A= Z Am. (3) The figures below show the mean and the (estimated) 20-confidence interval of the error and the
m=1 computational time (based on these 10 realizations). Observe that the solutions () and u; (t) for M =1
The submatrices A,, are chosen such that replacing A by A, in (2) reduces the computational cost are equal to 2(t) and u*(t).
per time step. Typically, the submatrices A;, will be more sparse than A.
Step 2 Let {Sy}, . <on denote the collection of oM subsets of {1,2,..., M} Situation I: Relative error and computational time for the response x,(t) with uy(t) = 0
Assign to each subset a probability p; € [0, 1] with which the subset Sy will be selected such that = 006
M = : | | | |
> > =1, B —o— M =2 || M =1
> szz{€|m€8€}pg>0.foreachm§{1,2,....,M}. c:}é:“ = M=3| — 10° H _o— 27 = 2 E
Note that m,,, is the probability that the index m is an element of the selected subset. 8% M =4 - M =3
Step 3 Partition the time interval I = [0, T] into K subintervals I}, = [t;._1,t;] of length < A. In each = 0.04} 8 i V— 4 |
time interval [;., choose a subset Sf(k:) according to the probabilities py from Step 2 and define = :é 101 | _ i
A S © i .
Apt)= Y —, t eIy (4) | T k= i i
A~ - ] -+
mESg(k) m % 002 a O - -
This definition ensures that E[Aj(t)] = A for all t € [0, T]. = ot 107 | E
Step 4 Find the optimal control u} () that minimizes %Q : :
= i |
T =t 0 | | | | | | | | | |
T= [ ((@n(t) = 2alt) T QLanl) = a(®) + un(®) Rup(t)) . (5) ) 27> 270 277 270 277 27> 270 277 270 277
0
h
subject to the dynamics h
iy (8) = Ay ()2 (1) + Buy (1), (0) = 2. (6) Situation Il: Relative error and computational time for the optimal control u; ()
When the N x N-matrix A is decomposed into M blocks of size N/v/M x N/+/M, the computational - 0.8 ' ' E | | | ]
complexity for each time step of (6) and the corresponding adjoint equation is reduced to O(N3/M>/2). <) o M =2 i i
Typically, u;(t) can be computed faster than u™(?). -~ ) — M =3 | i )
< . —hA— M — 4 % 102 - .
= 3 i :
Convergence results > T 5 - i
S 04| 1= : :
Fix any control w € L?(0,T;R%) in (2). When the control u(t) in (6) is equal to the control u(t) in (2), S = i :
we can prove similarly as in [3] that = = 10l b |
. 2 *3 O 2 B N - ® M — 2
lim E [|xh(t) — 2(t)] } — 0, (7) - U 3 i & M=3|
for all t € [0, T]. Using this result and the strong convexity of the cost functional .J;,, we proved that S i\'\‘\.\’ ) ——M =4 |
— | | | | 0 | | | | |
. 9 0 10
Jim [ [HU?} —u’|| Lzm,T)] =0. (8) 275 276 277 28 9279 275 276 277 278 279
h h

These results imply that for any ¢ > 0 and 0 > 0, there exists an A > 0 such that

P max |z,,(t) — z(t)]? > 6] < ¢ and Pl||luj — u*||2L2 o >0 <e. The figures show that the errors in z,(t) and u;(f) decrease with h.
t€|0,1] (0,T) : . .
Increasing ) increases the error but speeds up the computations.

Conclusions, discussions, and further research

The accuracy of the proposed stochastic simulation In the considered numerical example, the reduction in  Note that x;, depends nonlinearly on Aj, so that Topics for further research:
and optimization method for large-scale linear computational time varies between a factor 2 and 10 E|xy| # x and E[u}| # u™ for h > 0. Because of this  » What is the best choice for the probabilities p,?
dynamical systems increases when the time step 1 is  and generally increases when h decreases. With bias, the variation in the ), and u; obtained for » What is the best way to decompose A into
decreased. Our analysis shows that M =2 and h =27, optimal controls with an different realizations of the sets Sé(k) on the same submatrices A,,?
Elmax;epg 77 [z (t) — x(t)|] and E|||ju; — ’U,*”LQ(O,T)] expected 4%-error are compyted. 3 times fasjcer. We time grid cannot be usczed to estima;ce the* e>2<pected > Extensions to infinite-dimensional and nonlinear
converge to zero as v/. This rate can also be expect an even larger reduction in computational time  errors E||z,(t) — z(¢)|"] and E[||uy —u HLQ(O,T)]' oroblems.
observed in the numerical example. when the state dimension [V is increased further.
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