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Introduction
Stochastic optimization techniques such as the Random Batch Method (RBM) are well-established and
widely used in modern intelligent systems such as search engines, recommendation software, and speech
and image recognition platforms [1].
The RBM has also been applied to the simulation and optimization of interacting particle systems where it
leads to a significant reduction in computational cost [2,3]. Inspired by these results, we consider here a
stochastic method to speed up the simulation and optimization of large-scale linear dynamical systems.

Optimal control
In a classical control problem, the aim is to find the optimal control u∗(t) that minimizes

J =

∫ T

0

(
(x(t)− xd(t))>Q(x(t)− xd(t)) + u(t)>Ru(t)

)
dt, (1)

on a finite time interval [0, T ] subject to the dynamics

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (2)

where x(t) ∈ RN is the state, u(t) ∈ Rq is the control, xd(t) is a given desired trajectory, and Q � 0,
R � 0, A, and B are constant matrices. Without loss of generality, we can assume that q ≤ N .
It is well known that the problem (1)–(2) has a unique solution u∗ ∈ L2(0, T ;Rq).
However, computing u∗ can be challenging because (2) and the corresponding adjoint equation need to be
solved several times and each time step typically has a computational complexity of O(N3).

Especially when N is large, finding u∗(t) is computationally demanding.

Stochastic simulation and optimization method
Step 1 Decompose the matrix A into submatrices Am as

A =

M∑
m=1

Am. (3)

The submatrices Am are chosen such that replacing A by Am in (2) reduces the computational cost
per time step. Typically, the submatrices Am will be more sparse than A.

Step 2 Let {S`}1≤`≤2M denote the collection of 2M subsets of {1, 2, . . . ,M}.
Assign to each subset a probability p` ∈ [0, 1] with which the subset S` will be selected such that

I
∑2M

`=1 p` = 1,
I πm =

∑
{`|m∈S`} p` > 0 for each m ∈ {1, 2, . . . ,M}.

Note that πm is the probability that the index m is an element of the selected subset.

Step 3 Partition the time interval I = [0, T ] into K subintervals Ik = [tk−1, tk] of length ≤ h. In each
time interval Ik, choose a subset S`(k) according to the probabilities p` from Step 2 and define

Ah(t) =
∑

m∈S`(k)

Am
πm

, t ∈ Ik. (4)

This definition ensures that E[Ah(t)] = A for all t ∈ [0, T ].

Step 4 Find the optimal control u∗h(t) that minimizes

Jh =

∫ T

0

(
(xh(t)− xd(t))>Q(xh(t)− xd(t)) + uh(t)>Ruh(t)

)
dt, (5)

subject to the dynamics

ẋh(t) = Ah(t)xh(t) + Buh(t), x(0) = x0. (6)

When the N ×N -matrix A is decomposed into M blocks of size N/
√
M ×N/

√
M , the computational

complexity for each time step of (6) and the corresponding adjoint equation is reduced to O(N3/M3/2).

Typically, u∗h(t) can be computed faster than u∗(t).

Convergence results
Fix any control u ∈ L2(0, T ;Rq) in (2). When the control uh(t) in (6) is equal to the control u(t) in (2),
we can prove similarly as in [3] that

lim
h→0

E
[
|xh(t)− x(t)|2

]
= 0, (7)

for all t ∈ [0, T ]. Using this result and the strong convexity of the cost functional Jh, we proved that

lim
h→0

E
[
‖u∗h − u∗‖2L2(0,T )

]
= 0. (8)

These results imply that for any ε > 0 and δ > 0, there exists an h > 0 such that
P[ max
t∈[0,T ]

|xh(t)− x(t)|2 > δ] < ε and P[‖u∗h − u∗‖2L2(0,T )
> δ] < ε.

Numerical example

The temperature in the space ξ = (ξ1, ξ2, ξ3) ∈ [−L,L]3 is
modeled by the heat equation yt = ∆y. Our aim is to keep the
temperature on Stop = {ξ3 = L} (the orange surface in the
figure) close to zero by applying a uniform heat load
−∂y(t, ξ)/∂ξ1 = u(t) on S1 = {ξ1 = −L} (the green surface
in the figure). Zero Neumann boundary conditions are applied
except on S1. For simplicity, the control u(t) is taken
independent of space. The initial condition is
y(0, ξ) = exp(−|ξ|2/(8L2)) and the cost functional is taken as

J =

∫ T

0

∫∫
Stop

y(t, ξ)2 dξ1 dξ2 dt+ 10−4
∫ T

0
u(t)2 dt. (9)

Considered spatial domain

2L

2L

2L

ξ3

ξ2

ξ1

The time horizon is T = 2 and L = 1.5. A finite difference discretization on a uniform rectangular grid with
N = 313 = 29, 791 nodes results in a system of the form (1)–(2). The time grid is uniform with stepsize h.
Observe that the matrix A can be written as the sum of interaction matrices Aij of the form

Aij[i, i] = Aij[j, j] = − 1
∆ξ2, Aij[i, j] = Aij[j, i] = 1

∆ξ2, (10)

where i and j are adjacent nodes in the spatial grid with spacing ∆ξ. The set of 86, 490 interaction
matrices Aij is randomly partitioned into M subsets of approximately equal size. Each submatrix Am is
the sum of the interaction matrices Aij in one subset. Note that this construction assures that (3) holds.
The probabilities p` are chosen as p` = 1/M when S` = {m} for some m ∈ {1, 2, . . . ,M} and p` = 0
otherwise. It follows that πm = 1/M . Note that Ah(t) = A when M = 1.

We present numerical results for two situations. Situation I illustrates the convergence result (7) for the
solution xh(t) of the forward dynamics (6) with uh(t) = 0. Situation II illustrates the convergence result
(8) for the control u∗h(t) that minimizes the cost Jh in (5). In both cases, xh(t) and u∗h(t) are computed
for 10 different realizations of the sets S`(k) (but for the same decomposition of A into submatrices Am).

The figures below show the mean and the (estimated) 2σ-confidence interval of the error and the
computational time (based on these 10 realizations). Observe that the solutions xh(t) and u∗h(t) for M = 1
are equal to x(t) and u∗(t).

Situation I: Relative error and computational time for the response xh(t) with uh(t) = 0
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Situation II: Relative error and computational time for the optimal control u∗h(t)
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The figures show that the errors in xh(t) and u∗h(t) decrease with h.
Increasing M increases the error but speeds up the computations.

Conclusions, discussions, and further research
The accuracy of the proposed stochastic simulation
and optimization method for large-scale linear
dynamical systems increases when the time step h is
decreased. Our analysis shows that
E[maxt∈[0,T ] |xh(t)− x(t)|] and E[‖u∗h − u∗‖L2(0,T )]

converge to zero as
√
h. This rate can also be

observed in the numerical example.

In the considered numerical example, the reduction in
computational time varies between a factor 2 and 10
and generally increases when h decreases. With
M = 2 and h = 2−9, optimal controls with an
expected 4%-error are computed 3 times faster. We
expect an even larger reduction in computational time
when the state dimension N is increased further.

Note that xh depends nonlinearly on Ah so that
E[xh] 6= x and E[u∗h] 6= u∗ for h > 0. Because of this
bias, the variation in the xh and u∗h obtained for
different realizations of the sets S`(k) on the same
time grid cannot be used to estimate the expected
errors E[|xh(t)− x(t)|2] and E[‖u∗h − u∗‖2L2(0,T )

].

Topics for further research:

I What is the best choice for the probabilities p`?

I What is the best way to decompose A into
submatrices Am?

I Extensions to infinite-dimensional and nonlinear
problems.
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