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A system identification problem
We consider the following system identification problem: given an unknown differential equation

ẋ = f (x), x ∈ Ω ⊂ Rd, (1)

with flow Φt
f : Ω→ Ω, recover the vector field f : Ω→ Rd from data on the trajectories, and

predict the future evolution of the system.

Koopman operator: exchanging finite dimension for linearity
It is well-known that f can also be seen as the velocity field of the linear transport equation

∂ϕ

∂t
(t, x) = f (x) · ∇ϕ(t, x)

with the associated linear transport operator and semigroup:

K := f (x) · ∇, etKϕ0 = ϕ0 ◦ Φt
f ,

which are sometimes referred to as the Koopman operators (after B.O.Koopman, see [4]). Now,
applying the Koopman operators on the coordinate functions gi(x) = xi, we get :

Kgi = fi, etKgi = gi ◦ Φt
f =

(
Φt
f

)
i
, i = 1 · · · d. (2)

Thus, applying K to the gi yields f and its flow Φt
f . The system identification problem can then be

solved by using data to recover an approximation of K and applying it to the gi.

Galerkin projections and system identification
Due to the infinite dimensional nature of K, data-driven methods focus on recovering finite
dimensional approximations of K. A common choice is the Galerkin projection KN on a
N -dimensional space VN ⊂ L2(Ω) of functions. Noting ΠN the orthogonal projection on VN :

KN = ΠNKΠN . (3)

Well chosen Galerkin projections can provide approximate solutions to the system identification
problem. Indeed, (2) can be approximated by applying the Galerkin projection KN to the coordinate
functions gi. It is then natural to focus on the cases where gi ∈ VN , in which case we get, from (2) and
(3),

KNgi = ΠN(Kgi) = ΠNfi, i = 1 · · · d. (4)
If VN is well chosen (see “Quantitative analysis”), one can approximate the semigroup etK with etKN :

etKNgi ≈ ΠN(etKgi) = ΠN

(
Φt
f

)
i
, i = 1 · · · d. (5)

In turn, for relevant choices of VN (see “Quantitative analysis”), ΠNfi and ΠN

(
Φt
f

)
i
provide good

approximations of the vector field components fi and the flow components
(
Φt
f

)
i
respectively.

Generator Extended Dynamic Mode Decomposition (gEDMD)
It remains now to recover KN . Data-driven approximations of Galerkin projections KN can be
computed by the gEDMD (generator Extended Dynamic Mode Decomposition algorithm, see [6, 3]).
Step 1 Draw m random points {xk ∈ Ω, 1 ≤ k ≤ m} uniformly and independently.
Step 2 From the corresponding solutions xk(t) of (1), approximate the velocities yk ≈ ẋk(0) = f (xk).
Step 3 Choose a basis ψ1, · · · , ψN of VN . These functions will be used to enrich the observations

{xk, yk} = {xk, f (xk)} with additional data, in order to learn the action of K on VN .
Step 4 Define the data matrices, sampling the values of the ψi and the Kψi on the data set {xk, yk} :

Am
N =

ψ1(x
1) · · · ψ1(x

m)
... . . . ...

ψN(x1) · · · ψN(xm)

 , Gm
N =

 y1 · ∇ψ1(x
1) · · · ym · ∇ψ1(x

m)
... . . . ...

y1 · ∇ψN(x1) · · · ym · ∇ψN(xm)

 .

Step 5 Perform the linear regression Km
N := argmin

K∈MN(R)

‖KAm
N −Gm

N‖
2 = Gm

N (Am
N)† .

The matrix Km
N defines an operator KmN on VN . We prove the following (see also [6, 5]):

Proposition.[8] If for m > N large enough, Am
N (Am

N)> is invertible with probability 1, then, in any
operator norm on VN , there exists a constant C(VN) > 0 such that

‖KmN −KN‖ ≤ C(VN)m−
1
2 (6)

Implementation of system identification
The system identification problem can thus be solved in a data-driven way:
Step 1 Choose a subspace VN such that gi ∈ VN
Step 2 Perform gEDMD with VN . The matrix Km

N thus obtained represents an approximation of KN .
Step 3 Then, recalling (4), (5) and (6),

‖KmNgi − ΠNfi‖L2 ≤ C1(VN)‖gi‖L2m−
1
2, ‖etKmNgi − etKNgi‖L2 ≤ C2(VN)‖gi‖L2m−

1
2, i = 1 · · · d.

(7)
These figures show the recovery of some 1-D functions by gEDMD with linear finite elements (left),
and a comparison of the approximation error for different methods on the same data set (right).

Quantitative analysis
The gEDMD algorithm guarantees a good approximation of the Galerkin projection KN . We have
seen above that some Galerkin projections can provide approximations of f and Φt

f . Now, we need to
quantify this approximation error. We have, from (4) and (5), for all i = 1 · · · d:

‖KNgi−fi‖L2 ≤ ‖(ΠN−I)fi‖L2, ‖etKNgi− (Φt
f)i‖L2 ≤ ‖ΠN(etKΠN−etK)gi‖L2 +‖(ΠN−I)etKgi‖L2. (8)

In [8] we outline two typical situations where the right-hand sides of (8) can be estimated:
Koopman invariant subspaces. [1] This ideal situation, where both right-hand sides become 0,
seems too rare to be used consistently.
Classical approximation spaces. Classical function spaces such as finite elements or polynomials
guarantee estimates on the projection error for any f regular enough. When Ω = [0, L]d and VN is the
space of finite elements of degree at most k in each variable, on a uniform rectangular grid of size h,
we have, for all i = 1 · · · d:

‖KNgi − fi‖L2 ≤ C1h
k+1|fi|k+1, ‖(ΠN − I)etKgi‖L2 ≤ C2h

k+1,
∥∥(etKΠN − etK)gi

∥∥
L2 ≤ C(f )hk. (9)

In this case we have estimates both on the recovery of f and its flow Φt
f , by considering the linear

operator KN and its exponential etKN . Theoretically this presents an advantage over direct
interpolation methods, which only provide an approximation of f , and would require the integration of
a nonlinear ODE to recover the flow. However, to guarantee at most ε > 0 error in (9), N must satisfy

N ≥ Ckdε−
d

k+1,

which is exponential in the dimension d. This is the curse of dimensionality. Even in small dimension
d the resulting large dimension N makes the recovery of the flow by etK

m
N computationally expensive.

Moreover, the 1-D numerical examples above illustrate the superiority of direct interpolation methods
over gEDMD with linear finite elements for recovering f . In fact, for a sample {xk, f (xk), k = 1 · · ·m},
gEDMD with higher order finite elements can reach comparable accuracy. However, in that case, due
to the linear regression performed in Step 5 of the algorithm, the computational cost is of the order
O(m3). This is more expensive than the linear complexity of direct interpolation methods.
To sum up, gEDMD with finite elements produces reliable approximations of f and its flow Φt

f .
However the method quickly becomes computationally intractable.
In small dimension d direct interpolation methods are a better and cheaper option to recover f .

Perspectives
I Find optimal lower-dimensional subspaces of functions VN .
I Develop a theoretical understanding of deep-learning methods to find these subspaces [7].
I Alleviate computations using kernel methods [2].
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[2] Stefan Klus, Feliks Nüske, and Boumediene Hamzi. “Kernel-Based Approximation of the
Koopman Generator and Schrödinger Operator”. In: Entropy 22.7 (June 2020), p. 722.

[3] Stefan Klus et al. “Data-driven approximation of the Koopman generator: Model reduction, system
identification, and control”. In: Physica D: Nonlinear Phenomena 406 (2020), p. 132416.

[4] B. O. Koopman. “Hamiltonian Systems and Transformation in Hilbert Space”. In: Proceedings of
the National Academy of Sciences 17.5 (1931), pp. 315–318.
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